117 research outputs found

    PROCESS FOR BREAKING DOWN THE LTE SIGNAL TO EXTRACT KEY INFORMATION

    Get PDF
    The increasingly important role of Long Term Evolution (LTE) has increased security concerns among the service providers and end users and made security of the network even more indispensable. The main thrust of this thesis is to investigate if the LTE signal can be broken down in a methodical way to obtain information that would otherwise be private; e.g., the Global Positioning System (GPS) location of the user equipment/base station or identity (ID) of the user. The study made use of signal simulators and software to analyze the LTE signal to develop a method to remove noise, breakdown the LTE signal and extract desired information. From the simulation results, it was possible to extract key information in the downlink like the Downlink Control Information (DCI), Cell-Radio Network Temporary Identifier (C-RNTI) and physical Cell Identity (Cell-ID). This information can be modified to cause service disruptions in the network within a reasonable amount of time and with modest computing resources.Defence Science and Technology Agency, SingaporeApproved for public release; distribution is unlimited

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    Scheduler Algorithms for MU-MIMO

    Get PDF
    In multi-user multiple input multiple output (MU-MIMO), the complexity of the base-station scheduler has increased further compared to single-user multiple input multiple output (SU-MIMO). The scheduler must understand if several users can be spatially multiplexed in the same time-frequency resource. One way to spatially separate users is through beamforming with sufficiently many antennas. In this thesis work, two downlink beamforming algorithms for MU-MIMO are studied: The first algorithm implements precoding without considering inter-cell interference (ICI). The second one considers it and attempts to mitigate or null transmissions in the direction of user equipments (UEs) in other cells. The two algorithms are evaluated in SU-MIMO and MU-MIMO setups operating in time division duplex (TDD) mode and serving with single and dual-antenna terminals. Full-Buffer (FB) and file transfer protocol (FTP) data traffic profiles are studied. Additionally, various UE mobility patterns, UE transmit antenna topologies, sounding reference signal (SRS) periodicity configurations, and uniform linear array (ULA) topologies are considered. Simulations have been performed using a system level simulation framework developed by Ericsson AB. Another important part of this thesis work is the functional verification of this simulation framework, which at the time of writing is still undergoing development. Our simulation results show that in SU-MIMO, the second algorithm, which considers ICI, outperforms the first one for FB traffic profile and all UE speeds, but not for FTP traffic profile and medium (30 km/h) or high (60 km/h) UE speeds. In this case, the first algorithm, which does not consider ICI, can be used with advantage. In MU-MIMO, cell downlink throughput gains are observed for the second algorithm over the first one for low and medium system loads (number of users). For both algorithms, the cell throughput is observed to decrease with increasing UE speed and sounding periodicity.Scheduling in modern wireless standards, e.g., 3G, 4G and future 5G, can be defined as the task of allocating time and frequency resources by the base station (BS) to each user equipment (UE) that wants to engage in communication. Resources are allocated every transmission time interval (TTI), which is typically one millisecond. There exist both uplink (from the UEs to the BS) and downlink (from the BS to the UEs) resource schedulers implemented in the e-Node B, i.e., the base station (BS) in Long Term Evolution (LTE). The aim of this thesis work is to study how various communication techniques proposed for 5G can increase the overall system throughput of the downlink (DL) when a realistic resource scheduler is used. In particular, we consider: (i) Beamforming, (ii) Multi-user multiple input multiple output (MU-MIMO), and (iii) Inter-cell interference (ICI) mitigation. Beamforming can be achieved by deploying a large number of antenna elements at the BS with the aim of increasing the signal to interference noise ratio (SINR) towards the UE. Contrary to single-user multiple input multiple output (SU-MIMO), in MU-MIMO more than one UE are scheduled for transmissions in the same time-frequency resource; this is possible by judiciously pairing various UEs which are spatially sufficiently separated (according to some metric that we will define later). ICI mitigation can be achieved by means of proper precoding at BS where the precoder attempts to mitigate the interfering signal from BS towards UEs belonging to neighboring cells. In this thesis work, we investigate the performance of two scheduler algorithms for MU-MIMO, using SU-MIMO as baseline. The first algorithm does not consider ICI while the second one does. Dual layer beamforming (that is, two independent data streams are transmitted to each UE) and time division duplex (TDD) are assumed. In TDD mode the BS acquires the channel information from sounding reference signals (SRS) transmitted in the uplink (UL) and, by virtue of channel reciprocity, reuses the so-obtained channel information in the downlink. The performance evaluation of the two algorithms is based on the following parameters: UE Traffic profile, UE speed, SRS UL antenna configuration, SRS parameters, and BS antenna topology. - UE speed includes 3,30, and 60 km/h. - UE traffic profile includes full-buffer (FB) and file transfer protocol (FTP). With FB traffic profile, UEs send/receive data to/from the BS all the time, while this is not the case in the FTP traffic profile case. Some examples of FTP traffic profiles may include chatty, video, VoIP, web, etc. - SRS UL antenna configuration includes: (i) Two SRS, in which each UE sends two SRS to the BS from two antennas, (ii) one SRS with antenna selection, in which each UE alternately sends one SRS to the BS from each of two antennas, and (iii) one SRS without antenna selection, in which each UE sends one SRS to the BS from only one antenna. For two SRS UE case (note that in the downlink two layers, and hence two UE antennas, are always used). - SRS parameters include SRS bandwidth and SRS periodicity. In this thesis work, full-bandwidth SRS (20 MHz) with various SRS periodicities such as 5 ms, 10 ms, 20 ms are considered. - BS antenna topology includes 8 and 64 antenna elements at the BS. The main result of this thesis work is that in both SU-MIMO and MU-MIMO with FB traffic profile, it is better to use the second algorithm which considers ICI rather than the first one which does not. However, with FTP traffic profile, this is not always the case

    LTE-verkon suorituskyvyn parantaminen CDMA2000:sta LTE:hen tehdyn muutoksen jÀlkeen

    Get PDF
    CDMA2000 technology has been widely used on 450 MHz band. Recently the equipment availability and improved performance offered by LTE has started driving the operators to migrate their networks from CDMA2000 to LTE. The migration may cause the network performance to be in suboptimal state. This thesis presents four methods to positively influence LTE network performance after CDMA2000 to LTE migration, especially on 450 MHz band. Furthermore, three of the four presented methods are evaluated in a live network. The measured three methods were cyclic prefix length, handover parameter optimization and uplink coordinated multipoint (CoMP) transmission. The objective was to determine the effectiveness of each method. The research methods included field measurements and network KPI collection. The results show that normal cyclic prefix length is enough for LTE450 although the cell radius may be up to 50km. Only special cases exist where cyclic prefix should be extended. Operators should consider solving such problems individually instead of widely implementing extended cyclic prefix. Handover parameter optimization turned out to be an important point of attention after CDMA2000 to LTE migration. It was observed that if the handover parameters are not concerned, significant amount of unnecessary handovers may happen. It was evaluated that about 50% of the handovers in the network were unnecessary in the initial situation. By adjusting the handover parameter values 47,28 % of the handovers per user were removed and no negative effects were detected. Coordinated multipoint transmission has been widely discussed to be an effective way to improve LTE network performance, especially at the cell edges. Many challenges must be overcome before it can be applied to downlink. Also, implementing it to function between cells in different eNBs involve challenges. Thus, only intra-site uplink CoMP transmission was tested. The results show that the performance improvements were significant at the cell edges as theory predicted.CDMA2000 teknologiaa on laajalti kÀytetty 450 MHz:n taajuusalueella. Viime aikoina LTE:n tarjoamat halvemmat laitteistot ja parempi suorituskyky ovat kannustaneet operaattoreita muuttamaan verkkoaan CDMA2000:sta LTE:hen. Kyseinen muutos saattaa johtaa epÀoptimaaliseen tilaan verkon suorituskyvyn kannalta. TÀmÀ työ esittelee neljÀ menetelmÀÀ, joilla voidaan positiivisesti vaikuttaa LTE-verkon suorituskykyyn CDMA2000:ste LTE:hen tehdyn muutoksen jÀlkeen erityisesti 450 MHz:n taajuusalueella. Kolmea nÀistÀ menetelmistÀ arvioidaan tuotantoverkossa. NÀmÀ kolme menetelmÀÀ ovat suojavÀlin pituus, solunvaihtoparametrien optimointi ja ylÀlinkin koordinoitu monipistetiedonsiirto. Tavoite oli mÀÀrittÀÀ kunkin menetelmÀn vaikutus. Tutkimusmenetelmiin kuului kenttÀmittaukset ja verkon suorituskykymittareiden analyysi. Tutkimustulosten perusteella voidaan sanoa, ettÀ normaali suojavÀli on riittÀvÀn pitkÀ LTE450:lle vaikka solujen sÀde on jopa 50km. Vain erikoistapauksissa tarvitaan pidennettyÀ suojavÀliÀ. Operaattoreiden tulisi ratkaista tÀllaiset tapaukset yksilöllisesti sen sijaan, ettÀ koko verkossa kÀytettÀisiin pidennettyÀ suojavÀliÀ. Solunvaihtoparametrien optimointi osoittautui tÀrkeÀksi huomion aiheeksi CDMA2000:sta LTE:hen tehdyn muutoksen jÀlkeen. Turhia solunvaihtoja saattaa tapahtua merkittÀviÀ mÀÀriÀ, mikÀli parametreihin ei kiinnitetÀ huomiota. LÀhtötilanteessa noin 50 % testiverkon solunvaihdoista arvioitiin olevan turhia. Solunvaihtoparametreja muuttamalla 47,28 % solunvaihdoista per kÀyttÀjÀ saatiin poistettua ilman, ettÀ mitÀÀn haittavaikutuksia olisi huomattu. Koordinoidun monipistetiedonsiirron on laajalti sanottu olevan tehokas tapa parantaa LTE-verkon suorituskykyÀ, etenkin solujen reunoilla. Monia haasteita pitÀÀ ratkaista, enne kuin sitÀ voidaan kÀyttÀÀ alalinkin tiedonsiirtoon. LisÀksi sen kÀyttöön eri tukiasemien solujen vÀlillÀ liittyy haasteita. TÀstÀ syystÀ monipistetiedonsiirtoa voitiin testata vain ylÀlinkin suuntaan ja vain yhden tukiaseman vÀlisten solujen kesken. Tulokset osoittivat, ettÀ suorituskyky parani merkittÀvÀsti solun reunalla

    Models of Control Channels in the LTE System

    Get PDF
    DizertačnĂ­ prĂĄce se zabĂœvĂĄ zpracovĂĄnĂ­m signĂĄlu fyzickĂœch ƙídicĂ­ch kanĂĄlĆŻ systĂ©mu LTE a vyĆĄetƙovĂĄnĂ­m bitovĂ© chybovosti pƙi pƙenosu ƙídicĂ­ informace z vysĂ­lače do pƙijĂ­mače v zĂĄvislosti na podmĂ­nkĂĄch pƙíjmu. PrĂĄce je rozdělena do dvou hlavnĂ­ch částĂ­. PrvnĂ­ část prĂĄce je zaměƙena na simulaci pƙenosu ƙídicĂ­ informace LTE v zĂĄkladnĂ­m pĂĄsmu. Jsou zde prezentovĂĄny vytvoƙenĂ© simulĂĄtory ƙídicĂ­ch kanĂĄlĆŻ ve směru uplink i downlink. Simulace jsou provedeny pro vĆĄechny druhy nastavenĂ­ systĂ©mu a zĂĄkladnĂ­ modely pƙenosovĂ©ho prostƙedĂ­. Jsou zde popsĂĄny vĂœsledky vlivu pouĆŸitĂ­ MIMO technologiĂ­ na kvalitu pƙíjmu ƙídicĂ­ informace pƙedevĆĄĂ­m v ĂșnikovĂœch kanĂĄlech. DruhĂĄ část prĂĄce je zaměƙena na moĆŸnost nasazenĂ­ systĂ©mu LTE ve sdĂ­lenĂ©m pĂĄsmu ISM (2.4 GHz). Jsou zde pƙedstaveny zĂĄkladnĂ­ koncepce pouĆŸitĂ­, na jejichĆŸ zĂĄkladě je vytvoƙen scĂ©náƙ simulacĂ­. Kapitola dĂĄle popisuje tvorbu simulĂĄtoru koexistence LTE a systĂ©mu Wi-Fi v pƙenesenĂ©m pĂĄsmu ISM 2.4GHz. Jsou zde uvedeny vĂœsledky simulacĂ­ koexistence LTE a ruĆĄivĂ©ho systĂ©mu Wi-Fi provedenĂœch dle vytvoƙenĂ©ho scĂ©náƙe. VĂœsledky simulacĂ­ koexistence LTE a Wi-Fi jsou ověƙeny měƙenĂ­m v laboratornĂ­ch podmĂ­nkĂĄch. Toto porovnĂĄnĂ­ je dĆŻleĆŸitĂ© z hlediska optimalizace simulĂĄtoru koexistence. Dle vĂœsledkĆŻ obou typĆŻ simulacĂ­ a měƙenĂ­ jsou stanovena provoznĂ­ doporučenĂ­, kterĂĄ majĂ­ pƙispět k bezpečnĂ©mu a spolehlivĂ©mu vysĂ­lĂĄnĂ­ a pƙíjmu ƙídicĂ­ch informacĂ­ LTE i pƙi nepƙíznivĂœch podmĂ­nkĂĄch pƙíjmu.The doctoral thesis is focused on a signal processing in the LTE physical control channels and performance analysis of control information transmission according to receiving conditions. The thesis is divided into two parts. The first part deals with simulation of the transmission of control information in baseband. The created simulators for uplink and downlink are presented. The simulations are performed for all possible system settings and various channel models. The MIMO influence on a quality of control information reception under fading channels is also presented. The second part of the thesis is focused on LTE utilization in shared channel ISM (2.4 GHz). The basic LTE application concept for ISM band is presented. This concept is fundamental to created simulation scenario. The chapter also presents the LTE and Wi-Fi coexistence simulator in 2.4 GHz ISM passband. The coexistence simulation are presented according to simulation scenario and the results are shown. The simulated coexistence analysis results are verified in laboratory environment. The comparison of the simulated and the measured coexistence analysis results is crucial for further optimization of the coexistence simulator. Recommendations for optimal and reliable operation of LTE are specified according to the simulated and the measured results. Recommendations should be useful to the reliable transmission of LTE control information in bad receiving conditions.

    Lo standard LTE

    Get PDF
    Per il sempre crescente traffico dati la rete mobile, attualmente basata sul sistema UMTS, sta cominciando a dimostrare i suoi limiti. Per questo il 3GPP (third Generation Partnership Project) ha avviato la standardizzazione di un nuovo sistema di telecomunicazioni mobile, chiamato LTE (Long Term Evolution), che migliora il precedente ponendo ambiziosi traguardi in quanto a prestazioni. Attualmente il sistema Ăš ancora in fase sperimentale e le prime applicazioni commerciali si avranno solo tra il 2010-2011. Questa tesi ha lo scopo di studiare le principali caratteristiche del livello fisico dell'LTE e valutarne le prestazioni offert

    Performance analysis of carrier aggregation for various mobile network implementations scenario based on spectrum allocated

    Full text link
    Carrier Aggregation (CA) is one of the Long Term Evolution Advanced (LTE-A) features that allow mobile network operators (MNO) to combine multiple component carriers (CCs) across the available spectrum to create a wider bandwidth channel for increasing the network data throughput and overall capacity. CA has a potential to enhance data rates and network performance in the downlink, uplink, or both, and it can support aggregation of frequency division duplexing (FDD) as well as time division duplexing (TDD). The technique enables the MNO to exploit fragmented spectrum allocations and can be utilized to aggregate licensed and unlicensed carrier spectrum as well. This paper analyzes the performance gains and complexity level that arises from the aggregation of three inter-band component carriers (3CC) as compared to the aggregation of 2CC using a Vienna LTE System Level simulator. The results show a considerable growth in the average cell throughput when 3CC aggregations are implemented over the 2CC aggregation, at the expense of reduction in the fairness index. The reduction in the fairness index implies that, the scheduler has an increased task in resource allocations due to the added component carrier. Compensating for such decrease in the fairness index could result into scheduler design complexity. The proposed scheme can be adopted in combining various component carriers, to increase the bandwidth and hence the data rates.Comment: 13 page

    A Review of MAC Scheduling Algorithms in LTE System

    Get PDF
    The recent wireless communication networks rely on the new technology named Long Term Evolution (LTE) to offer high data rate real-time (RT) traffic with better Quality of Service (QoS) for the increasing demand of customer requirement. LTE provide low latency for real-time services with high throughput, with the help of two-level packet retransmission. Hybrid Automatic Repeat Request (HARQ) retransmission at the Medium Access Control (MAC) layer of LTE networks achieves error-free data transmission. The performance of the LTE networks mainly depends on how effectively this HARQ adopted in the latest communication standard, Universal Mobile Telecommunication System (UMTS). The major challenge in LTE is to balance QoS and fairness among the users. Hence, it is very essential to design a down link scheduling scheme to get the expected service quality to the customers and to utilize the system resources efficiently. This paper provides a comprehensive literature review of LTE MAC layer and six types of QoS/Channel-aware downlink scheduling algorithms designed for this purpose. The contributions of this paper are to identify the gap of knowledge in the downlink scheduling procedure and to point out the future research direction. Based on the comparative study of algorithms taken for the review, this paper is concluded that the EXP Rule scheduler is most suited for LTE networks due to its characteristics of less Packet Loss Ratio (PLR), less Packet Delay (PD), high throughput, fairness and spectral efficiency
    • 

    corecore