39 research outputs found

    Broadcast Strategies with Probabilistic Delivery Guarantee in Multi-Channel Multi-Interface Wireless Mesh Networks

    Full text link
    Multi-channel multi-interface Wireless Mesh Networks permit to spread the load across orthogonal channels to improve network capacity. Although broadcast is vital for many layer-3 protocols, proposals for taking advantage of multiple channels mostly focus on unicast transmissions. In this paper, we propose broadcast algorithms that fit any channel and interface assignment strategy. They guarantee that a broadcast packet is delivered with a minimum probability to all neighbors. Our simulations show that the proposed algorithms efficiently limit the overhead

    Characterization of multi-channel interference

    Get PDF
    Multi-channel communication protocols in wireless networks usually assume perfect orthogonality between wireless channels or consider only the use of interference-free channels. The first approach may overestimate the performance whereas the second approach may fail to utilize the spectrum efficiently. Therefore, a more realistic approach would be the careful use of interfering channels by controlling the interference at an acceptable level. We present a methodology to estimate the packet error rate (PER) due to inter-channel interference in a wireless network. The methodology experimentally characterizes the multi-channel interference and analytically estimates it based on the observations from the experiments. Furthermore, the analytical estimation is used in simulations to derive estimates of the capacity in larger networks. Simulation results show that the achievable network capacity, which is defined as the number of simultaneous transmissions, significantly increases with realistic interfering channels compared with the use of only orthogonal channels. When we consider the same number of channels, the achievable capacity with realistic interfering channels can be close to the capacity of idealistic orthogonal channels. This shows that overlapping channels which constitute a much smaller band, provides more efficient use of the spectrum. Finally, we explore the correctness of channel orthogonality and show why this assumption may fail in a practical setting

    Can Multiple Subchannels Improve the Delay Performance of RTS/CTS-based MAC Schemes?

    Get PDF
    We analyze the delay performance of RTS/CTSbased (Request-To-Send/Clear-To-Send) multi-channel MAC (Medium Access Control) schemes for wireless networks. These schemes usually employ multiple data subchannels for data transmission and one control subchannel to send the RTS/CTS dialogue for channel reservation. Through theoretical analysis and simulations, we show that, in fully-connected networks, such multi-channel MAC schemes suffer longer delays than the corresponding single channel MAC scheme, that puts the RTS/CTS dialogue on the same channel as data packet transmissions. This conclusion holds even when data packets have different priorities and higher priority traffic is sent ahead of lower priority traffic

    Multi-channel Utilization Algorithms for IEEE 802.15.4 based Wireless Network: A Survey

    Get PDF
    In the pass years, IEEE 802.15.4 based Wireless Sensor Networks (WSNs) have received great attention and have been employed in many areas such as inventory checking, local monitoring and alarming etc. One of the key issues affecting WSN's system performance is interference caused by devices operating with the same or different standards on the overlapping frequency within the 2.4 GHz ISM band. This paper addresses the coexistence problem, which is the key motivation for the necessity of flexible channel usage. A review of existing approaches being proposed to date supporting multi-channel utilization in IEEE 802.15.4 based WSNs is categorized and discussed. The paper also presents major functionalities needed in implementing multi-channel utilization

    Adaptive channel selection through collaborative sensing

    Get PDF
    Proper channel selection is essential to exploit the benefits of multi-channel systems by distributing conflicting transmissions across non-interfering channels? Critical to channel selection is the channel quality metric, We propose a busy time ratio (BTR) metric that captures channel contention and user traffic load under a variety of network dynamics, We also propose a distributed collaborative sensing scheme to reduce sensing overhead and energy consumptions, The proposed algorithms can be implemented using conventional 802.11 hardware with single radio interface, The proposed metric can be integrated with routing and channel selection. Experimental results show that the proposed scheme significantly outperforms the existing channel selection methods. © 2006 IEEE.published_or_final_versio

    Directory-based incentive management services for ad-hoc mobile clouds

    No full text
    Mobile cloud computing is envisioned as a promising approach to augment the computational capabilities of mobile devices for emerging resource-intensive mobile applications. This augmentation is generally achieved through the capabilities of stationary resources in cloud data centers. However, these resources are mostly not free and sometimes not available. Mobile devices are becoming powerful day by day and can form a self-organizing mobile ad-hoc network of nearby devices and offer their resources as on-demand services to available nodes in the network. In the ad-hoc mobile cloud, devices can move after consuming or providing services to one another. During this process, the problem of incentives arises for a node to provide service to another device (or other devices) in the network, which ultimately decreases the motivation of the mobile device to form an ad-hoc mobile cloud. To solve this problem, we propose a directory-based architecture that keeps track of the retribution and reward valuations (in terms of energy saved and consumed) for devices even after they move from one ad-hoc environment to another. From simulation results, we infer that this framework increases the motivation for mobile devices to form a self-organizing proximate mobile cloud network and to share their resources in the network

    An Energy-efficient Multi-channel MAC Protocol for Cluster Based Wireless Sensor Networks

    Get PDF
    Abstract The research on wireless multimedia sensor networks (WMSNs) becomes more popular recently because multimedia sensor nodes largely improve the capability of wireless sensor networks for event description. WMSNs need large bandwidth to deliver multimedia contents effectively using energy-constrained sensor nodes because transmitting multimedia contents, such as video or audio clips, involves a large amount of data. In this paper, we propose an energy efficient, scalable and collision free multichannel medium access control protocol for cluster-based WMSNs to achieve high throughput, low medium access delay and high energy efficiency. The proposed MAC integrates the merits of frequency and time division principles to effectively utilize channels and timeslots assigned to sensor nodes. The proposed MAC also uses energy efficient techniques to reduce the number of nodes needed to send data to the cluster head. The proposed MAC is based on clustered network topology, and the protocol employs a simple algorithm for assigning channels among clusters to enable simultaneous non-interfering data collection. Intra-cluster transmissions are scheduled by cluster head (CH) based on time slot. CHs aggregate the gathered data and forward it over inter-CH paths to the base-station based on minimum spanning tree routing. Distinct channels are adopted by the independent branches of the inter-CH routing tree. The proposed MAC minimizes energy consumption by allowing nodes to stay in sleeping mode for the longest duration. Simulation demonstrated superiority of proposed MAC in terms of convergent rate, throughput and delay performance when compared with well-known protocol MMSN. With the low MAC delay feature, our protocol is suitable for applications of real time multimedia traffic sensing and transmitting, such as remote monitoring of hospital patients and fire spots

    Analyzing Multi-Channel Medium Access Control Schemes With ALOHA Reservation

    Get PDF
    In order to improve the throughput performance of Medium Access Control (MAC) schemes in wireless communication networks, some researchers proposed to divide a single shared channel into several sub-channels: one as control subchannel and the others as data sub-channels. In this paper, we analyze and evaluate the maximum achievable throughput of a class of generic multi-channel MAC schemes that are based on the RTS/CTS (Ready-To-Send/Clear-To-Send) dialogue and on ALOHA contention resolution. We study these multichannel MAC schemes under two split-channel scenarios: the fixed-total-bandwidth scenario and the fixed-channel-bandwidth scenario. In the fixed-total-bandwidth scenario, we show that the throughput of the multi-channel MAC schemes is inferior to that of the corresponding single-channel MAC scheme, which sends the RTS/CTS packets and DATA packets on a single shared channel. For the fixed-channel-bandwidth scenario, where CDMA or similar techniques can be applied, we derive the optimal number of the data sub-channels that maximizes the throughput. The analytical framework that we derive in this paper can also be used to evaluate other contention resolution technique, when the average contention period is known

    AMNP: ad hoc multichannel negotiation protocol for multihop mobile wireless networks

    Full text link
    Abstract — Increasing the capacity of wireless communication is an important and urgent research area, which has attracted more attentions. One of potential solutions is to divide the radio spectrum into several independent radio channels, which can be operated and accessed by all nodes within their radio transmission range simultaneously. Many solutions adopt mul-tiple transceivers to fulfill this goal. However, these solutions are short in implementation and may increase the prime cost of the device since most wireless devices only equip one single transceiver. Moreover, with a few exceptions, most researchers have emphasized centralized resource allocation algorithms for cellular systems where the base station keeps track of the requirements of the various users and is thus responsible for the management of network resources. Nevertheless, on the other hand, a multihop mobile ad hoc network (MANET) is generally configured as peer-to-peer networks with no centralized hubs or controllers to coordinate channel allocations. Therefore, in this paper, we proposed a multichannel medium access control (MAC) protocol, named ad hoc multichannel negotiation protocol (AMNP), for multichannel transmission by using the distributed fashion. We address the issue of distributed resource allocation for multihop MANETs by presenting an AMNP that builds on the multichannel request-to-send/clear-to-send (MRTS/MCTS) bandwidth reservation mechanism under the constraint of a single transceiver. Besides, to conquer the problem of broadcast transmissions in multichannel environment under the constrain of one single transceiver, we further design a broadcast announce-ment scheme for AMNP. Moreover, an enhancement version of AMNP called AMNP with channel scheduling (AMNP/s) is also introduced to improve the channel utilization. We show via simulations that AMNP/s provides a higher throughput compared to its single channel counterpart by promoting simultaneous transmissions in different channels. Simulation results also show that the proposed AMNP/s derives higher performance than other multichannel transmission schemes, which equip multiple transceivers
    corecore