4,015 research outputs found

    Cross-Modal Data Programming Enables Rapid Medical Machine Learning

    Full text link
    Labeling training datasets has become a key barrier to building medical machine learning models. One strategy is to generate training labels programmatically, for example by applying natural language processing pipelines to text reports associated with imaging studies. We propose cross-modal data programming, which generalizes this intuitive strategy in a theoretically-grounded way that enables simpler, clinician-driven input, reduces required labeling time, and improves with additional unlabeled data. In this approach, clinicians generate training labels for models defined over a target modality (e.g. images or time series) by writing rules over an auxiliary modality (e.g. text reports). The resulting technical challenge consists of estimating the accuracies and correlations of these rules; we extend a recent unsupervised generative modeling technique to handle this cross-modal setting in a provably consistent way. Across four applications in radiography, computed tomography, and electroencephalography, and using only several hours of clinician time, our approach matches or exceeds the efficacy of physician-months of hand-labeling with statistical significance, demonstrating a fundamentally faster and more flexible way of building machine learning models in medicine

    Self-supervised Learning for Electroencephalogram: A Systematic Survey

    Full text link
    Electroencephalogram (EEG) is a non-invasive technique to record bioelectrical signals. Integrating supervised deep learning techniques with EEG signals has recently facilitated automatic analysis across diverse EEG-based tasks. However, the label issues of EEG signals have constrained the development of EEG-based deep models. Obtaining EEG annotations is difficult that requires domain experts to guide collection and labeling, and the variability of EEG signals among different subjects causes significant label shifts. To solve the above challenges, self-supervised learning (SSL) has been proposed to extract representations from unlabeled samples through well-designed pretext tasks. This paper concentrates on integrating SSL frameworks with temporal EEG signals to achieve efficient representation and proposes a systematic review of the SSL for EEG signals. In this paper, 1) we introduce the concept and theory of self-supervised learning and typical SSL frameworks. 2) We provide a comprehensive review of SSL for EEG analysis, including taxonomy, methodology, and technique details of the existing EEG-based SSL frameworks, and discuss the difference between these methods. 3) We investigate the adaptation of the SSL approach to various downstream tasks, including the task description and related benchmark datasets. 4) Finally, we discuss the potential directions for future SSL-EEG research.Comment: 35 pages, 12 figure

    An EEG Signal Recognition Algorithm During Epileptic Seizure Based on Distributed Edge Computing

    Get PDF
    Epilepsy is one kind of brain diseases, and its sudden unpredictability is the main cause of disability and even death. Thus, it is of great significance to identify electroencephalogram (EEG) during the seizure quickly and accurately. With the rise of cloud computing and edge computing, the interface between local detection and cloud recognition is established, which promotes the development of portable EEG detection and diagnosis. Thus, we construct a framework for identifying EEG signals in epileptic seizure based on cloud-edge computing. The EEG signals are obtained in real time locally, and the horizontal viewable model is established at the edge to enhance the internal correlation of the signals. The Takagi-Sugeno-Kang (TSK) fuzzy system is established to analyze the epileptic signals. In the cloud, the fusion of clinical features and signal features is established to establish a deep learning framework. Through local signal acquisition, edge signal processing and cloud signal recognition, the diagnosis of epilepsy is realized, which can provide a new idea for the real-time diagnosis and feedback of EEG during epileptic seizure

    TEMPORAL DATA EXTRACTION AND QUERY SYSTEM FOR EPILEPSY SIGNAL ANALYSIS

    Get PDF
    The 2016 Epilepsy Innovation Institute (Ei2) community survey reported that unpredictability is the most challenging aspect of seizure management. Effective and precise detection, prediction, and localization of epileptic seizures is a fundamental computational challenge. Utilizing epilepsy data from multiple epilepsy monitoring units can enhance the quantity and diversity of datasets, which can lead to more robust epilepsy data analysis tools. The contributions of this dissertation are two-fold. One is the implementation of a temporal query for epilepsy data; the other is the machine learning approach for seizure detection, seizure prediction, and seizure localization. The three key components of our temporal query interface are: 1) A pipeline for automatically extract European Data Format (EDF) information and epilepsy annotation data from cross-site sources; 2) Data quantity monitoring for Epilepsy temporal data; 3) A web-based annotation query interface for preliminary research and building customized epilepsy datasets. The system extracted and stored about 450,000 epilepsy-related events of more than 2,497 subjects from seven institutes up to September 2019. Leveraging the epilepsy temporal events query system, we developed machine learning models for seizure detection, prediction, and localization. Using 135 extracted features from EEG signals, we trained a channel-based eXtreme Gradient Boosting model to detect seizures on 8-second EEG segments. A long-term EEG recording evaluation shows that the model can detect about 90.34% seizures on an existing EEG dataset with 961 hours of data. The model achieved 89.88% accuracy, 92.32% sensitivity, and 84.76% AUC based on the segments evaluation. We also introduced a transfer learning approach consisting of 1) a base deep learning model pre-trained by ImageNet dataset and 2) customized fully connected layers, to train the patient-specific pre-ictal and inter-ictal data from our database. Two convolutional neural network architectures were evaluated using 53 pre-ictal segments and 265 continuous hours of inter-ictal EEG data. The evaluation shows that our model reached 86.79% sensitivity and 3.38% false-positive rate. Another transfer learning model for seizure localization uses a pre-trained ResNext50 structure and was trained with an image augmentation dataset labeling by fingerprint. Our model achieved 88.22% accuracy, 34.99% sensitivity, 1.02% false-positive rate, and 34.3% positive likelihood rate
    • …
    corecore