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ABSTRACT OF DISSERTATION

TEMPORAL DATA EXTRACTION AND QUERY SYSTEM FOR EPILEPSY
SIGNAL ANALYSIS

The 2016 Epilepsy Innovation Institute (Ei2) community survey reported that un-
predictability is the most challenging aspect of seizure management. Effective and
precise detection, prediction, and localization of epileptic seizures is a fundamental
computational challenge. Utilizing epilepsy data from multiple epilepsy monitoring
units can enhance the quantity and diversity of datasets, which can lead to more ro-
bust epilepsy data analysis tools. The contributions of this dissertation are two-fold.
One is the implementation of a temporal query for epilepsy data; the other is the
machine learning approach for seizure detection, seizure prediction and seizure local-
ization. The three key components of our temporal query interface are: 1) A pipeline
for automatically extract European Data Format (EDF) information and epilepsy
annotation data from cross-site sources; 2) Data quantity monitoring for Epilepsy
temporal data; 3) A web-based annotation query interface for preliminary research
and building customized epilepsy datasets. The system extracted and stored about
450,000 epilepsy-related events of more than 2,497 subjects from seven institutes up
to September 2019. Leveraging the epilepsy temporal events query system, we de-
veloped machine learning models for seizure detection, prediction, and localization.
Using 135 extracted features from EEG signals, we trained a channel-based eXtreme
Gradient Boosting model to detect seizures on 8-second EEG segments. A long-term
EEG recording evaluation shows that the model can detect about 90.34% seizures on
an existing EEG dataset with 961 hours of data. The model achieved 89.88% accu-
racy, 92.32% sensitivity and 84.76% AUC based on the segments evaluation. We also
introduced a transfer learning approach consisting of 1) a base deep learning model
pre-trained by ImageNet dataset and 2) customized fully connected layers, to train
the patient-specific pre-ictal and inter-ictal data from our database. Two convolu-
tional neural network architectures were evaluated using 53 pre-ictal segments and
265 continuous hours of inter-ictal EEG data. The evaluation shows that our model
reached 86.79% sensitivity and 3.38% false-positive rate. Another transfer learning
model for seizure localization uses a pre-trained ResNext50 structure and was trained
with an image augmentation dataset labeling by fingerprint. Our model achieved



88.22% accuracy, 34.99% sensitivity, 1.02% false-positive rate, and 34.3% positive
likelihood rate.
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diction, Seizure Localization
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CHAPTER 1. Introduction

Epilepsy is a central nervous system disorder that affects all genders and races and

can occur at any age. An epilepsy patient is diagnosed by having multiple seizures

on multiple occasions. According to the data from the Centers for Disease Control

and Prevention (CDC), 1.2% of the US population had active epilepsy in 2015 [1].

Based on the current study, epilepsy is caused by an electrical disturbance in the

brain, which may lead to uncontrollable behavior and loss of consciousness. The risk

may become higher when the patients are performing daily routines, such as diving

or swimming. More pressingly, the leading cause of epilepsy-related death, Sudden

Unexpected Death in Epilepsy (SUDEP), is a life-threatening risk that may occur

in patients with intractable, frequent, and continuing seizures [2]. Although most

seizures naturally cease with no danger, a system warning within a meaningful lead

time is an effective way to prevent harms. However, for many years, epileptic seizures

have been marked as an “unpredictable” disorder because no available tools were

available to reliably predict seizure onset.

A seizure is a sudden, uncontrolled abnormal brain activity which may lead to signs

such as untypical whole or partial body movements. The gold standard of epilepsy

diagnosis is using an electroencephalogram (EEG) to find special brain wave patterns.

In the recent decades, many long-term brain activities of seizure patients have been

captured by monitoring patients’ electrophysiological status. Two commonly used

EEG types in the clinical settings are scalp EEG and stereoelectroencephalography

(SEEG). EEG records voltage fluctuations resulting from ionic current within the

neurons of the brain [3] while scalp EEG puts the electrodes on the surface of the brain

and SEEG inserts the electrodes deep inside the brain. An EEG recording system

typically consists of tens of EEG electrodes, and each electrode represents a continuing

voltage signal at a specific brain location. The name of each electrode is defined by

1



the location according to a standard international method, the International 10-20

system [4], which uses the Latin alphabet to indicate the area of a brain: Pre-frontal

(Fp), Frontal (F), Temporal (T), Parietal (P), Occipital (O), and Central (C). Even

numbers refer to the right side of a brain and odd numbers refer to the left side of a

brain (see Figure 1.1). Figure 1.2 illustrates the visualization of digital EEG signal

data from channel F3 in three phases: ictal is the duration that a seizure occurs;

pre-ictal is a period before seizure onset, and inter-ictal is the section other than ictal

or pre-ictal.

By analyzing EEG signal waves, experts can identify abnormal patterns before or

during seizures. Since visual inspection is ineffective, automatic algorithms have been

developed for EEG signal classification including seizure detection, seizure prediction,

and seizure localization. Because seizure is sudden and unpredictable, epilepsy care

with long-term EEG monitoring is necessary for seizure control and treatment. As a

result, many prospective EEG datasets especially seizure datasets have been collected

in epilepsy monitoring center (EMU) across the states. With the rapid growth of “big

data”, combining machine learning and data management is becoming a desirable

solution for signal analysis on epilepsy data.

In this dissertation, we describe an end-to-end pipeline for a machine learning

approach on EEG signal analysis. The major components of the temporal events

query module include an ontology guided epilepsy temporal data extraction and in-

tegration system, and a web-based graphical user interface. We also demonstrate

how to use the interface to create a high-quality EEG dataset with a specific task.

Moreover, we introduce automatic algorithms for scalp EEG seizure detection, scalp

EEG seizure prediction and SEEG epileptogenic zone localization. Evaluations for

seizure detection and prediction on long-term EEG are reported.

To begin with, we describe different types of epilepsy temporal data and current

challenges on extraction, management, and retrieval. We also review recent tools for
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EEG annotation visualization and query. Besides, we summarize the related work on

EEG signal classification using machine learning and potential benefit in the clinical

aspect by using such tools. Finally, we highlight the contribution of this dissertation

on the field of epilepsy EEG temporal data processing and analysis.

Figure 1.1: Electrode labeling in International 10-20 system with a 18-Channel
longitudinal bipolar montage.

1.1 Epilepsy Temporal Data

After German physiologist and psychiatrist Hans Berger invented the electroencephalo-

gram and recorded the first segment of the human EEG signal, EEG recording has
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(a) Interictal

(b) Preictal

(c) Ictal

Figure 1.2: Examples of a 30 seconds EEG signal clip of channel F3 in three categories
: (a) Inter-ictal, (b) Pre-ictal, and (c) Ictal. The waves are visualized by SeizureBank [5].

become one of the most convincing methods in the area of clinical neurology. The

EEG signals are the most important temporal data in epilepsy study. Each point

of an EEG recording has no obvious meaning but we can recognize the changes of

frequency and amplitude with a time series of EEG signals. Some detailed abnormal

wave patterns can be identified by experts and used for an epilepsy diagnosis. The

EEG signals data belongs to one type of epilepsy temporal data, all three types are:

• Structured epilepsy temporal data which has a self-defined meaning and a fixed

dimension for each data field, for example, data in the EDF header and report.

• Semi-structured epilepsy temporal data which has no fixed dimension but a well-
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defined meaning for each data field, for example, annotation of the recordings.

• Unstructured epilepsy temporal data, which has neither fixed dimension nor

well-defined meaning for each data field, for example, video and EEG monitor-

ing.

Figure 1.3: Epilepsy data explosion in CSR from February 2016 to September 2019.

An epilepsy temporal information system aims to extract and organize the infor-

mation from the structured and semi-structured epilepsy temporal data for better

describing the EEG signals. A well-described EEG signals dataset can be used for

analyzing and understanding the seizure activities. However, in the case of seizure-

related study, the probability of catching an EEG recording with seizure events is

extremely low because of its short duration and rareness. Nowadays, EMU around

the world is recording continuing EEG data that last for days or weeks. Center for

SUDEP Research (CSR) is a collaboration of expertise from 7 institutions across the

U.S. and Europe. A central database collects epilepsy data from collaborative clin-
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ical sites prospectively. CSR dataset includes EEG signal data of more than 1,000

subjects, which is much larger than the existing public EEG seizure dataset in the

number of patients. Figure 1.3 shows the data explosion in CSR from February 2016

to September 2019. The study contains 450,000 pieces of temporal annotation in-

cluding machine codes and free text come with the EEG signal data. The experts

are prospectively adding annotation by reviewing EEG signal patterns and patients’

monitoring videos.

Combining the large scale epilepsy temporal data of EMUs from multiple insti-

tutions can enhance the data quantity and diversity, but how to control the data

quality is another problem. Moreover, there are no existing temporal functions that

can retrieve the epilepsy information across the subjects or recordings from different

data source sites. To leverage such big EEG signal data into epilepsy research, several

challenges must be overcome, which include but are not limited to:

• Data integration and management. The data format from different sources and

sites may be different. Different experts may also use different terms to annotate

the EEG data. A unified platform for users to upload, curate and explore across

those epilepsy data is necessary for the large scale epilepsy information system.

• Multi-site information extraction. Epilepsy information is collected from three

sources: EDF files (EEG signals and metadata), annotation text files, and sub-

jects’ demographic data from EHRs. To ensure the extracted information is up-

dated, an automatic method is needed to perform recurrence extraction tasks.

Also, the extraction has to consider how to combine and unify the data from

different institutions.

• Time series information retrieval. EEG signals are time-series data and EEG

annotations are timestamp data. One major purpose of Epilepsy information

is to locate EEG signals segments using annotation information, which requires
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an effective algorithm and a human-friendly query interface for complicated

temporal queries.

1.2 EEG Annotation Visualization Tools

EEG annotation is a type of semi-structured temporal data embedded in EEG signals.

An EEG annotation can be either a text description of a time point or a time interval.

The visualization of EEG annotation in a timeline offers an intuitive understanding

of temporal correlation of events during the recording. Existing EEG annotation

visualization is usually an add-on feature of EEG signal visualization tools. The

main purpose of the tool is retrieving the details of EEG signals, while loading or

editing annotation is optional.

Figure 1.4: Use the NSRR EDF Viewer to visualize signals and annotation by
selecting a demand annotation in the right hand side box.

National Sleep Research Resource (NSRR) Cross Cohort EDF Viewer (Figure

1.4) is an EEG visualization tool for EDF files. The EDF Viewer was developed by a
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collaboration between Case Western Reserve University and Brigham and Women’s

Hospital to extend the original Physio-MIMI viewer to an open-source MATLAB

EDF viewer. The viewer enables the user to open an EDF file and a corresponding

sleep annotation file, which contains sleep scoring information. The user can select

the signals to view and a myriad of ways are provided including scrolling through the

signals, clicking on the Hypnogram, and clicking on a specific annotation.

Other EEG visualization software, such as EEGLAB, SigViewer, and MNE (MEG+EEG

Analysis and visualization) also have similar features as the NSRR EDF viewer. Their

common limitations are:

• Other software or external dependencies are required in the local computer

environment;

• EEG signal files need to be prepared in local machine, such files are usually

large in storage; and

• No annotation search function is provided, users may struggle when the number

of annotation is large.

1.3 Machine Learning on EEG Signals

With the large scale Epilepsy data, machine learning is a suitable approach to perform

certain tasks such as building EEG signals classifiers. Three major EEG signals clas-

sification problems are seizure detection, seizure prediction, and seizure localization.

Starting with seizure detection on EEG signals in the 1970s, researchers successfully

extracted relevant seizure features to recognize a seizure from EEG recording [6, 7],

but the early study on EEG-based seizure detection only had 22% accuracy [6]. Other

than time-domain study, EEG signal data is also analyzed in the frequency domain

for classification [8, 9]. In recent years, traditional machine learning methods, such

as support vector machine (SVM) and random forest, made huge progress on seizure
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classification and prediction [10, 11]. In 2018, perfect results (100% accuracy, 100%

sensitivity and 100% specificity) were achieved by an inter-patient model [12]. Ad-

ditionally, deep learning becomes more popular in seizure analysis with large-scale

datasets. In 2014, the American Epilepsy Society, Epilepsy Foundation of America,

National Institutes of Health and Kaggle launched a seizure prediction competition

together to predict seizure with a 1-hour lead time using seizure data from five ca-

nines and two humans [13]. The top 10 submitted solutions, using SVM, random

forest, Convolutional Neural Networks (CNN), etc, achieved sensitivity at 75% and

specificity from 0.33 to 0.75. [14] discovered a specific ictal pattern of channels

with seizure activities in the time-frequency domain and called it a fingerprint of the

epileptogenic zone. Their EZ-Fingerprint model predicted 64 contacts and 58 of them

are inside of patients’ resected areas. By using the resection zone as ground truth,

their model achieved 90.6% positive predictive value and 0.7% false-positive rate.

According to the selection of training data, existing machine learning model on

EEG signals can also be defined by three types: 1) Patient-specific model, which is

trained only by the data from the testing subject; 2) inter-patient model, which is

trained by the data from not only the testing subject but also other subjects’ data;

3) cross-patient model, which is trained only by the data from other subjects. The

cross-patient model is the most challenging one but also the most practical approach

in the real world. A cross-patient model has potential of being immediately applied

to new patients even if they do not have any collect EEG data in the system. The

doctors may benefit from the automatic EEG signal classifiers since the models can

help them to annotate the existing EEG recording or even supporting their decision

making for diagnosis. Patients will also take advantage of seizure alert or seizure

prediction applications. Besides, wearable devices for warning seizures have been

developed and tested [15, 16]. Mobile devices compatible with seizure data offer a

great opportunity for machine learning models to improve epilepsy patients’ daily
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lives. However, current machine learning projects on EEG signals are facing three

challenges:

• Dataset limitations. Public datasets have limited cohort diversity because of

the small number of subjects and from the same resources.

• Subjects variety. Seizure signals vary from patients but most algorithms are

focusing on patient-specific and inter-patient models.

• Long-term Evaluation. Existing models lack reporting their results on continu-

ous long-term EEG monitoring so the performance may differ from real-world

scenarios.

1.4 Contribution

In this dissertation, we introduce an end-to-end pipeline combining data management

and EEG signal analysis for epilepsy study. Figure 1.5 illustrates a conceptual dia-

gram of this dissertation. We developed TeQ, a temporal events query system that

extracts epilepsy temporal information from large-scale cross-site file system and pro-

vides a graphical query interface for EEG signal discovery. The following are three

epilepsy research topics: EpiD for epilepsy detection, EpiP for epilepsy prediction

and EpiL for epileptogenic zone localization. By using TeQ, we created datasets

appropriately and performed robust evaluation for each study.
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Figure 1.5: A concepts overview of this dissertation. TeQ: Temporal events Query.
EpiD: Epilepsy Detection. EpiP: Epilepsy Prediction. EpiL: Epileptogenic zone Lo-
calization.

Comparing to existing methods, our work contributes to the following aspects:

Large-scale temporal information extraction. Our ontology-guided multi-site

epilepsy temporal information system processed 2,497 epilepsy patients with 3169

reports from 7 epilepsy centers across the U.S. and Europe. We extracted 451,076

temporal annotations from 42,239 EEG files. We constructed vocabulary sets includ-

ing 46 standard annotation terms for ontological annotation elements and matched

6,687 annotations for high-quality queries.

Prospective temporal data quality measurements. Our system prospectively

integrates the epilepsy temporal data in CSR once a week. We automatically cal-

culated the data quality measurements for the epilepsy temporal data. The results

show the CSR dataset has 99.12% annotation completeness, 61.71% EEG signals

completeness for all existing monitoring, and 0.85% signal file duplication rate.

Graphical temporal query. Our system provides a web-based temporal query

interface developed by the RoR development framework. Both query widget and
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results are displayed in the graphic. The temporal query canvas can generate all

13 Allen’s interval algebra with minimal user intervention. By using our interface,

users can download the query results in the CSV format for preliminary research or

datasets builds.

EEG signal classification performances. We developed three machine learning

models for EEG signal classification. In the cross-patient case-based testing, our

seizure detection model detected 90.75% lead seizures and achieved 92.23% overall

accuracy, 93.57% specificity, 81.08% sensitivity, and 85.41% AUC in the segment-

based evaluation. Our seizure prediction model reached 86.79% sensitivity and 3.38%

false-positive rate. Our seizure localization model achieved 88.22% accuracy, 34.99%

sensitivity, 1.02% false-positive rate, and 34.3% positive likelihood rate.

Long-term EEG evaluation. We built a long-term EEG evaluation dataset lever-

aging CSR large-scale EEG data volume. The sub-dataset has a high data quality

with a 98.98% EEG signal completeness which is significantly greater than the 59.57%

data completeness of CHB-MIT scalp EEG dataset. Our evaluation results are based

on 2097 hours testing of our seizure detection model and 1506 hours of our seizure

prediction model. The evaluation of our dataset is closer to a real-world situation,

therefore, the results are more convincing.

1.5 Outline

This dissertation is organized as follows: In Chapter 2 we provide background knowl-

edge on epilepsy data sources, multi-site epilepsy data management and EEG signal

classification techniques and material for machine learning methods and development

tools. Next, in Chapter 3, we introduce our ontology-guided multi-site epilepsy tem-

poral data extraction and query system. In Chapter 4-6, we describe the details

of developing our machine learning models for scalp EEG seizure detection, scalp

EEG seizure prediction, and SEEG seizure localization. Finally, in Chapter 7, we
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summarize the dissertation and provide direction for future work.
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CHAPTER 2. Background

In this chapter, we describe the background knowledge and provide a literature re-

view of the data, methods and technology related to the projects. We first describe

four EEG signal datasets used for epilepsy research and EEG signal classification.

Secondly, we review the principles and existing systems for cross-site epilepsy data

management. Next, we provide background information of the machine learning tech-

nology used in this dissertation and existing work on EEG signal classification. Then

we present the challenge of current evaluation data and methods and how we compare

our models with existing work. At last, we acknowledge state-of-the-art development

tools that we used in our implementation.

2.1 Epilepsy Data Sources

Since the first brain wave is recorded by Hans Berger in 1924 [17], both of its ac-

curacy and convenience have been improved. A significant change is that the EEG

data storage had evolved from paper and ink into standardized digital formats. The

digitalization helps researchers using computers to share, visualize, compute and an-

alyze a large amount of EEG data. Today, multiple EEG datasets are available to the

public on the internet [18, 19]. Those datasets have been used in the research area of

diseases (such as epilepsy, Parkinson’s, Alzheimer’s and depression), motor imagery,

emotion recognition, etc.

2.1.1 Public Epilepsy Datasets

University Hospital Bonn Germany. There are three commonly used epilepsy

dataset. First is the seizure dataset from University Hospital Bonn Germany which

contains 500 23.6-sec single channel EEG fragments from 5 healthy volunteers and

5 patients [20]. The original recording used a 128-channel amplifier system and was
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artificially selected to remove body movement noise. The written digital data was

transformed from analog signals at a sampling rate of 173.61 Hz.

CHB-MIT. The second is Children’s Hospital Boston-Massachusetts Institute of

Technology (CHB-MIT) Scalp EEG Database [21, 22]. The recording covered 182

seizures in 192 files from 22 subjects (5 males, ages 3-22; and 17 females, ages 1.5-19).

The sample rate is 256Hz with 16-bit resolution and all the data contains at least 23

EEG channels (24 or 26 in a few cases) [23].

Kaggle. The third one is the dataset used in American Epilepsy Society Seizure

Prediction Challenge on the data science competition platform kaggle.com (Kaggle,

Inc. New York NY, USA) [13, 24]. EEG data from twelve subjects were provided in

the contest. Eight of them were patients’ records that were collected by drug-resistant

epilepsy undergoing intracranial EEG monitoring at Mayo Clinic Rochester; four of

them were canines data from veterinary hospitals at the University of Minnesota and

University of Pennsylvania. In total, 53 seizures were captured from patients and 42

were captured from dogs. Because of the benefits of intracranial EEG, the datasets

were sampled in the rate of 400Hz(four dogs), 500Hz(one patient) and 5000Hz(seven

patients).

2.1.2 Center for SUDEP Research

SUDEP is a life threatening disorder to people who frequently have seizures. Different

estimates indicate that the risk of SUDEP varies from 0.2 to 2.7 cases per 1,000

person-year according to multiple analyzing methods and cohort [25]. Because the

cause of SUDEP is unknown and the factors of seizure vary by patient, epilepsy

remains a future danger to the patients. To understand the epilepsy related disease,

such as SUDEP, it is urgent to build a large scale and rich informative epilepsy

database with high data quality for researchers.

CSR is a National Institute for Neurological Disorders and Stroke (NINDS) funded
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center without walls for collaborative research in Epilepsy. Composed of researchers

from 14 institutions across the United States and Europe, CSR aims at the research

area of SUDEP [26, 27] with extensive and diverse expertise. CSR provides a compre-

hensive, well-integrated retrospective repository of epilepsy-related data, consisting

of bio-physiological signals linked to a risk factor and outcome data for participants

in nearly 2,500 epilepsy patients. Being the largest and most comprehensive dataset

in the epilepsy area, the CSR data has been manually curated with highest qual-

ity levels. It encompasses a wide variety of signals, data collection protocols, and

processing algorithms, thus representing a significant but under-utilized resource of

“big data.” CSR provides thousands of 24-hours rich annotated physiological signal

recordings with European Data Format (EDF) files [28] of an enormous amount of

epilepsy patients with a broad spectrum of age, social, racial, and ethnic.

Table 2.1: A comparison between CSR and other public datasets: University Hos-
pital Bonn Germany seizure dataset, Children’s Hospital Boston-Massachusetts In-
stitute of Technology, and 2014 Kaggle seizure prediction contest dataset. *Only
includes the subjects with annotated seizures.

Dataset UBSD CHB-MIT Kaggle CSR

Subjects number 10 23 12 408*

Seizure number 100 182 95 1622

Sample rate (Hz) 173.61 256 400-5000 200-2000

2.2 Cross-site Epilepsy Data Management

The DIKW pyramid represents the structural relationship between data, information,

knowledge,and wisdom. Each upper layer is the explanation or a higher level repre-

sentation of the lower layer. In epilepsy study, each layer in the DIKW pyramid has
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its own ability to answer different levels of questions from intuitive to difficult, they

are:

• Data. Epilepsy data is the observation or measurement of objects or events. The

data, such as signals, video recording, annotation text and symbols, displays

the basic truth of the research targets.

• Information. Epilepsy information is the structural representation of epilepsy

data, and it explains When, What, and Where information of the data.

• Knowledge. The knowledge of epilepsy domain can answer the “why” question.

For example, the major question for a seizure is how it happens.

• Wisdom. With the existing knowledge, wisdom is developed to focus on the

judgment of potential future events. For instance, forecast the probability of

seizure in the next hours using current data.

An Information system (IS) integrates hardware and software to reduce the work-

load in the transformation from data to wisdom. IS is a network connecting the

components such as data warehouse, database, user interface, and data management

procedures. In particular, an epilepsy information system is a platform designed to

integrate epilepsy data and extract epilepsy information, then it provides an interface

for people to manage information, find knew knowledge, and generate wisdom to pre-

diction or prevent seizures. With the rapid increase of computational power, Artificial

Intelligence (AI) added a new path for epilepsy exploration. Automatic seizure detec-

tion algorithms have been proven accurate with good performance but always come

with a short latency. Practically, a seizure warning needs only a small period of time

before the onset which provides huge protection to the patients. How to effectively

and precisely predict pre-ictal periods before epileptic seizures occur using EEG data

becomes a critical challenge. Thanks to the growth of big data and improvement of
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AI technology, deep learning has become the most popular method for data analysis,

classification, and prediction. Deep learning uses the idea of the human brain to build

a machine neural network system that can learn and improve itself recursively from

a dataset. In recent years, artificial neural networks achieved tremendous success in

image recognition, natural language processing, recommendation systems, and many

other areas.

While many machine learning models have been developed and widely used in

seizure related topics, their performance on a real-world dataset is still questionable

because lack of gold standard. In other words, the quantity and quality of the data

may affect the results significantly for a machine learning model. At this point, a

large scale and powerful epilepsy information system can play a important role. Its

potential achievement includes:

• Ontology-driven EEG annotation integration: extract and map the annotation

generated from different sources to a epilepsy ontology, and link them to EEG

signals.

• Automatic epilepsy information import: insert or update information from

newly added or curated epilepsy data, and provide scalability for data port

in by new data vendors.

• Epilepsy data quality assurance: compute quantitative indicators of epilepsy

data quality for datasets comparison and future improvement.

• Unified epilepsy information management: allow experts making changes on

different sites using a single platform.

• Powerful temporal data retrieval: provide an effective human friendly temporal

query interface to find a group of EEG segments with common event patterns.
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• Customized epilepsy data preparation: store and output selected epilepsy data

from certain cohorts with consumers’ demand.

In this section, we describe principles and existing systems for cross-site epilepsy

data management.

2.2.1 Epilepsy Ontology

Ontology is the philosophical study of being, which describes the relations between

concepts and basic categories of a domain knowledge. Today, ontology plays an im-

portant role in many information systems [29] and applications such as multi-site data

integration, natural language processing, and decision support. In an epilepsy study,

the annotations contain highly specialized epilepsy-specific terms or descriptions. An

epilepsy ontology is a formalized terminology system to represent the knowledge of

the epilepsy domain. With its help, relevant epilepsy information can be extracted

and retrieved from these annotation data in free text. As part of the multi-center

NINDS-funded study on sudden unexpected death in epilepsy (SUDEP), Epilepsy

and Seizure Ontology (EpSO) has been developed for modeling highly specialized

epilepsy and seizure-specific terms [30]. EpSO is used for multiple epilepsy domain

applications, such as patient data entry, epilepsy focused clinical free text processing,

and patient cohort identification.

2.2.2 FAIR Data Principle

With the rapid development of computational science, data sharing is becoming a

primary feature in the big data community. According to FigShare’s latest annual

open data report, 64% of survey respondents indicated their data was shared to the

public during the year of 2018 [31]. During the whole life cycle of data science projects

in average, mining data for patterns and algorithm enhancing only cost 13% of time,

while 82% of time is spent on collecting datasets, cleaning/organizing data, and build-
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ing training sets [32]. How to reduce both labor and time cost on data preparation is

now a big challenge for a big data project. In March 2016, FAIR data principle was

introduced by a consortium of scientists and organizations in the publication “FAIR

Guiding Principles for scientific data management and stewardship” [33], which is a

guideline to improve data sharing on findability, accessibility, interoperability, and

reusability.

2.2.3 Cross-site Epilepsy Data Capture and Integration

Multi-Modality Epilepsy Data Capture and Integration System (MEDCIS) [2] is an

ontology driven data entry and integration System for seven sites in the CSR program.

MEDCIS aims to collect epilepsy data across multiple centers based on a shared

ontology. In general, epilepsy data includes two types: phenotypic data and annotated

long-term monitoring signals. Phenotypical data, which is the patient information

captured by a web-based interface, contains patient demography, patient history,

medication status, patient diagnosis, etc. Epilepsy signal data such as EEG and

ECG are stored in EDF files, and epilepsy annotation data is extracted from free

text content in clinical notes. MEDCIS also provides a web-based query interface

to identify patient cohorts from a diverse source. For instance, a simple query is

“Show all the female patients ages above 60 with generalized tonic clonic seizure from

University Hospital at Case Western Reserve University and Northwestern Memorial

Hospital at Northwestern University.”

SeizureBank [5] provides a cloud-based data repository which contains a large

amount and high diversified seizure-related electrophysiological signal dataset, and an

intuitive web-based system for managing, querying, exporting and visualizing seizure-

related signal data. The features of SeizureBank lead to reduced time, space, and

labor costs of seizure analysis on the large-scale dataset with an efficient data prepa-

ration pipeline and easy-to-use system for data management and visualization. The
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majority of data scientists regard cleaning and organizing data as the least enjoyable

work [32]; however, with SeizureBank, researchers no longer need to spend their time

on data preparation and cleaning and could be more devoted to their major area

of seizure analysis. SeizureBank is used in several seizure-related studies, including

seizure subtype classification and seizure prediction research.

2.2.4 Data Quality Assurance

Data quality assurance is crucial for data reuse in clinical research. For a cross-site

clinical data system, one issue of data quality is the variability in use of standardized

vocabulary [34]. In CSR, the Ontology-driven Patient Information Capture (OPIC)

system is developed for uniform electronic patient data capturing. OPIC provides an

incorporated standardized terminology using EpSO for seven data sources. Ontology-

guided Data Curation for Multisite Clinical Research Data Integration (ODaCCI) [35]

introduces a streamlined data integration and curation workflow for CSR data qual-

ity assurance. Common data elements (CDEs), the data fields selected by epilepsy

domain experts that are common to all individual clinical sites, are extracted by data

source mappings. The system automatically computes completeness and consistency

for all CDEs to evaluate the data quality of each site. Table 2.2 shows the data

completeness report for ten CSEs in CSR. With the help of data quality assurance,

an improvement of completeness has shown from 2016 to 2019 while the total patient

reports number increased more than four times. However, the existing system only

measured the quality of phenotypic data. To expend the capability, we introduce the

data quality measurements for temporal epilepsy data in Chapter 3.
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Table 2.2: Data completeness for ten common data elements in patient reports from
multiple sites.

Concept UH NYU UCLA NW TJU UCL IOWA
2019 2016

Total Total

Age
99.51% 98.58% 100.0% 100.0% 100.0% 98.63% 99.42% 99.46% 97.76%

1618 278 125 448 225 288 170 3152 612

Gender
100.0% 99.65% 100.0% 100.0% 100.0% 100.0% 100.0% 99.97% 92.52%

1626 281 125 448 22525 292 171 3168 643

Drug
91.82% 99.29% 97.6% 96.88% 97.33% 100.0% 94.15% 94.70% 92.09%

1493 280 122 434 219 292 161 3001 640

Semiology
78.97% 99.65% 52.80% 96.65% 96.89% 99.66% 72.51% 85.11% 79.86%

1284 281 66 433 218 291 124 2697 555

Etiology
88.75% 89.36% 8.80% 82.59% 10.67% 73.97% 9.36% 73.59% 79.71%

1443 252 11 370 24 216 16 2332 554

EEG Type
93.05% 13.12% 94.40% 81.92% 11.56% 86.3% 95.91% 78.16% 75.97%

1513 37 118 367 26 252 164 2477 528

Epileptogenic 72.94% 95.04% 34.4% 54.46% 31.56% 99.32% 50.88% 69.08% 70.65%

Zone 1186 268 43 244 71 290 87 3152 491

MRI/CT 60.27% 73.76% 86.4% 91.74% 83.11% 97.6% 88.3% 73.52% 69.35%

status 980 208 108 411 187 285 151 2330 482

Ictal Seizure 66.05% 79.08% 73.6% 72.77% 0% 94.18% 63.74% 71.3% 65.65%

Type EEG 1074 223 92 326 0 275 109 2099 411

Epileptiform 59.35% 86.88% 38.4% 66.74% 72.0% 86.64% 52.63% 65.07% 57.99%

Discharge 965 245 48 299 162 253 90 2062 403

Total reports 1626 282 125 448 225 292 171 3169 695

22



2.2.5 EEG Information Retrieval

The last but not the least component of a cross-site clinical data system is informa-

tion retrieval. How to search for specific signal segments from unstructured and high

volume EEG data remains a challenge for cross-patient epilepsy study. Although

Semi-structured temporal data, such as textuary EEG annotations, can help to de-

scribe the EEG signals, the information can only be retrieved when the related EEG

signals file is read using existing tools. It is difficult to perform cohort discovery or

preliminary analysis on cross-patient study using existing methods.

Current clinical data management system provides two types of temporal query.

The first is structured temporal data query. For example, Research Electronic Data

Capture (REDCap) provides a web-based interface for record query using a query

form with defined input data fields. Users can set restriction on timestamps to search

for records during a specific period. This approach is easy and fast but has func-

tionality limitations on comprehensive temporal query, such as the temporal relation

between two events. The second type of temporal query is syntax-based. “AMAS” is

a temporal query language designed for the medical domain users to search and inter-

pret clinical temporal data [36]. The syntax contains time and logic operator so the

query is flexible to select patients who satisfy the temporal conditions. The learning

process for new user is the challenge to be overcome for syntax-based temporal query.

In Chapter 3, we introduce a new graphical temporal query interface, which is not

only intuitive to use, but also powerful on temporal data query.

2.3 Machine Learning Methods

2.3.1 eXtreme Gradient Boosting (XGBoost)

XGBoost [37] is a scalable end-to-end machine learning system for gradient boosting

machine [37]. The model of XGBoost is decision tree ensemble which consists of

23



a set of classification and regression trees. In practices, a single tree is not robust

enough to solve a problem with high dimensional features, the solution is to combine

the prediction of multiple trees. XGBoost provides a pipeline for fast and accurate

training the tree ensemble model by parallel tree boosting. The system is a portable

library for most supervised machine learning problems, even for a implementation on

billions of examples training with memory-limited settings. In this dissertation, we

used XGBoost to build a seizure detection model described in Chapter 4.

2.3.2 Convolutional Neural Network (CNN)

Inspired by biological neural systems in human brains, artificial neural networks are

developed and widely used in data mining domain. CNN is a popular and powerful

class of deep neural networks, it is commonly applied to the image classification

problem. The ImageNet project is a large-scale hierarchical image database for use

in visual object recognition machine learning research. More than 14 million images

have been human-labeled by the project to annotate the objects in the pictures [38].

A trimmed 1000-category ImageNet dataset used in a famous annual competition is

now known as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

VGG [39] is one of the winner model based on CNN. One improvement from previous

models is using convolutional layers with smaller filter size (3X3), and the model can

be improved by adding more layers. The disadvantage of VGG is the number of the

parameters is large(>500 million) because the network is “very deep”, so training may

take longer time than other models. ResNet [40], the winner of ILSVRC 2015, aims to

learn the residual representation functions instead of learning the signal representation

directly. Unlike the traditional stacked-layer models, it adds shortcuts in the network

to make the learning more efficient. ResNeXt [40] is developed from ResNet by

including the idea of inception: split, transform and merge.
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2.3.3 Transfer Learning

Transfer learning is a machine learning problem that applies existing models on re-

lated tasks. A transfer learning method includes four steps: 1) select base dataset;

2) train the base model; 3) reload and modify the base model; 4) fine-tune the pa-

rameters by the target dataset. In the EEG signal analysis field, it has been used

for EEG classification between subjects [41]. Studies also show that transfer learning

can be applied to detect seizure with accurate and robust results [42, 43]. Transfer

learning has two advantages: 1) reusing pre-trained model can significantly reduce the

training time and the requirement of hardware because step 1 and 2 are skipped; 2)

when target dataset is small, it can still achieve the good performance if the datasets

are similar. In this project, we implemented a transfer learning experiments between

image classification and EEG signals classification. The pre-trained dataset is the Im-

ageNet challenge dataset, and the target dataset is the time-frequency data for scalp

EEG and SEEG. The approach efficiently achieved high performance by leveraging

state-of-the-art CNN architectures and the large pre-trained dataset. Our transfer

learning models are described in Chapter 5 and Chapter 6.

2.4 EEG Signal Classification

About 3.47 million people in the U.S. are potentially affected by seizure everyday [1],

the importance of seizure detection and prediction has been noticed by researchers.

However, no significant sign can be captured by human eyes to make a prediction

before the seizure occurs. In recent years, machine learning methods had been used

in many areas and a lot of successful applications had been developed, such as speech

recognition, natural language processing, and computer vision [44–46]. Machine learn-

ing provides a possible solution for a reliable prediction of seizure.
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2.4.1 EEG Signal Data Processing

EEG signal data, a period of the recording of brain neurons activities, is now one of

the most widely used methods in epileptic seizure studies. Many automatic techniques

are developed to recognize different epileptic events by analyzing the EEG signals,

for example, EEG-based seizure detection. EEG signal data processing is necessary

before seizure detection algorithm development for two reasons:

First is the dataset unbalance for ictal and non-ictal. In the CHB-MIT database,

one seizure occurred every five hours on average, and the number enlarged to every

15 hours for the data of randomly selected 23 patients in CSR. Most published works

used downsampling to reduce the number of non-ictal samples. [47] [48] and [49]

random selected a amount of non-ictal samples accordingly. [50] [51] [52] and [53]

only selected non-ictal the closest to the seizures. [12] randomly extracted two non-

ictal samples every one hour. Upsampling for ictal samples by the overlapped sliding

window was also used in [53].The training ictal and non-ictal ratio varies from 1:1

[47, 51, 52] to 1:12 [50].

The second reason is that EEG recording usually has a high sampling frequency.

For the scalp EEG dataset used in this paper, the CHB-MIT dataset has 256Hz

and the CSR dataset has 200 Hz. To fit the seizure detection model, feature ex-

traction is implemented to large-scaled EEG signals for fast decision making. Two

efficient methods are using the raw (time domain) signals [47, 49, 50] and frequency

doamin [47, 48, 50, 54]. Statistic measurements, such as mean, median, variance,

skewness, kurtosis, etc., are used in such extraction methods. Some image-based fea-

tures, a transformation of spectrogram to RGB data, for example, are also popular

because of the rapid growth of deep learning. [12] used signal decomposition tech-

niques including Empirical Mode Decomposition (EMD), Discrete Wavelet Transform

(DWT) and Wavelet Packet Decomposition (WPD) to expand features in sub-band

of signals. Autoencoder [51, 52] is another method to reduce the data size without
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losing important signal features.

2.4.2 Seizure Detection

The goal of EEG-based seizure detection is to recognize a period of ictal activities

with high accuracy and sensitivity and produce several false detections as low as

possible. Thanks to existing EEG recording with labeled seizures, big data analysis

using machine learning for automatic seizure detection had made big progress in recent

years. An early study on EEG-based seizure detection only had 22% accuracy [6].

In 2018, perfect results (100% accuracy, 100% sensitivity and 100% specificity) were

achieved by an inter-patient model [12].

Existing models’ implementation varied by the machine learning techniques they

used. [47] built a k-nearest neighbor (k-NN) model, a traditional machine learning

cluster algorithm. [51] used another popular model: Support vector machine (SVM).

In [12] four algorithms, k-NN, SVM, random forest (RF), and multilayer perceptron

(MLP), were used to train with features. Their results claimed that SVM and RF

are better than the other algorithm. MLP is a class of feedforward artificial neural

networks, and [52] also used neural networks but on time-frequency features. Deep

learning is the most state-of-the-art machine learning area, [49, 54] used a convolu-

tional neural network (CNN). [48] combined CNN with another deep learning model

long short term memory (LSTM), and [53] built a CNN model on features from

different views (multi-view learning).

2.4.3 Seizure Prediction

Seizure prediction using EEG data started from 40 years ago. In recent years, machine

learning methods had been used in many areas and a lot of successful applications

had been developed, such as speech recognition, natural language processing, and

computer vision [44–46]. Machine learning provides a possible solution for a reliable
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prediction of seizure.

Another problem for seizure prediction is that researchers have very limited access

to seizure datasets from real patients [55]. For example, in the 2014 kaggle seizure

prediction competition, datasets provided are from 5 canines and 2 human subjects.

Their goal is to build a classifier that can identify whether a clip of ten minutes EEG

recording is a pre-ictal or inter-ictal segment. They defined pre-ictal as 65 minutes to

5 minutes period before seizure onset. In total, 505 teams joined the competition and

submitted 17,856 classifications of the unlabeled test data. The top 10 submitted

solutions, using SVM, random forest, Convolutional Neural Networks (CNN), etc,

achieved sensitivity at 75% and specificity from 0.33 to 0.75.

Most deep learning seizure prediction methods train and evaluate models using

the data of a single patient because a study shows that seizure prediction is a patient-

specific problem [21]. However, in the real world, the seizure occurrence for a specific

patient is rare and capturing enough seizure data, especially for a period before a

seizure, is difficult. A practical solution is to use a sliding window to generate training

samples. The disadvantage is sometimes the sliding step needs to be very small to

balance the dataset. The consequence is the whole dataset is filled with repeated

information, which may over-fit the model and reduce the prediction performance.

2.4.4 Epileptogenic Zone in Epilepsy

In 1993, Luders et al. [56] defined the epileptogenic zone as “the area of cortex that is

necessary and sufficient for initiating seizures and whose removal (or disconnection)

is necessary for complete abolition of seizures”. Epilepsy Patients will be completely

seizure-free after removal of epileptogenic zone. However, the epileptogenic zone can

not be certainly identified before the surgeries renders the patient seizure free, so

locating the epileptogenic zone is still a major challenge in clinical practices. Another

challenge is the epileptogenic zone has no direct preoperative measurement. Existing
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clinical method requires multiple tests and presurgical evaluations to define epilep-

togenic zone as overlap of a list of cortical zones: irritative zone, ictal-onset zone,

epileptogenic lesion, etc [57].

A machine learning pipeline to locate the epileptogenic zone using Stereoelectroen-

cephalography (SEEG) signals was developed by Grinenko et al. [14]. The authors

discovered a specific ictal pattern of channels with seizure activities in the time-

frequency domain and called it a fingerprint of the epileptogenic zone. The pattern

includes three characteristics: 1) sharp transients or spikes; 2) multi-band quick ac-

tivity concurrent; 3) suppression of lower frequencies. To extract such features, they

applied the Morlet wavelet transform to SEEG data near seizure onset. After filter-

ing, ridge detection, and masking, they extracted or computed frequency, timing, and

areas to describe the processed data. Finally, an SVM classifier was trained using a

dataset consists of 17 patients’ SEEG data. Their results showed the fingerprint pat-

terns exist in 15 of 17 patients. Their EZ-Fingerprint model predicted 64 contacts and

58 of them are inside of patients resected areas. By using the resection zone as ground

truth, their model achieved 90.6% positive predictive value and 0.7% false-positive

rate. The limitations of current machine learning approach are: 1) The pipeline is

not fully automatic because users need to manually mark features including start

and end of the fast activities; 2) Some restriction on the shape of seizure. For exam-

ple, the seizure must have gamma activities longer than three seconds. In Chapter

6, we introduce a fast and automatic deep learning approach for epileptogenic zone

localization.

2.5 Evaluation of EEG Signal Classification

An EEG signal classification problem is to determine a period of EEG signals which

belongs to a pre-defined class. Usually, the class number of a classifier for EEG signals

is two. For instance, the classes for seizure detection are “is a seizure” and “not a
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seizure”. After the classifier or model is trained, we need an evaluation to show its

performance. In this section, we describe how to construct evaluation datasets and

what are the common used evaluation measurements for EEG signal classification.

2.5.1 Evaluation Data

In a machine learning project, the collected dataset needs to be split into three parts

for different purpose: a training set, a validation set and an evaluation (testing) set.

The training set is used to fit the model and the validation set is used to tune model

hyper-parameters while training. After training, the final model will be tested on the

evaluation set. Both the validation set and evaluation set should be a complete unbi-

ased set of training with no data leaking to each other. The difference is that the final

model will benefit from the validation set so we recognize the validation set as part

of the training set. The second column in Table 2.3 illustrates the split ratio between

the train sets and evaluation set for 9 published seizure detection methods. Because

of the limitation of data samples, recent works are using k-fold ross-validation, where

k indicates the repeat number during the testing. If k=10, then the split ratio is 9:1

which means the model is validated 10 times and at each time the testing set is 10%

of all data. When the evaluation is cross-patient on N subjects, it equals to a N-fold

ross-validation with a split ratio of N-1:1.

Another feature of seizure related classification dataset is the imbalance of seizure

and non-seizure. However, the machine learning implementation shows improved

performance on balanced dataset [58]. As shown in the fourth column in Table 2.3,

most seizure detection studies balance the distribution of seizure and non-seizure

data to or close to 1:1. To achieve the ratio, they subsampled the non-seizure data by

random selection or extracting a certain period of signals. As a result of subsampling,

the evaluation set may have a side fact that the non-seizure data is only a small

percentage in the EEG recording which limits the coverage of the evaluation. In
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Table 2.3: The data collection method of 9 published seizure detection methods.

Method Split Non-SZ subsampling SZ:Non-SZ Non-SZ usage(%)

Kiranyaz et al. 2014 [50] 3:1 close to seizure 1:12 5.87

Fergus et al. 2015 [47] 4:1 random 1:1 1.99

Xun et al. 2015 [51] 1:1 close to seizure 1:1 2.19

Thodoro et al. 2016 [48] N-1:1 random 1:4 0.40

Yuan et al. 2018 [52] 1:1 close to seizure 1:1 2.19

Zhou et al. 2018 [54] 5:1 x x x

Park et al. 2018 [49] x x 1.32:1 4.33

Alickovic et al. 2018 [12] 9:1 per hour random 1:2 3.1

Tian et al. 2019 [53] 4:1 close to seizure x x

this work, we also evaluate our model using continuous long-term EEG signals which

provide significant larger coverage of the collected dataset.

2.5.2 Evaluation Measurements

After applying the final model to the evaluation set, we can build a confusion matrix to

describe the complete performance of the model. For a binary classification problem,

we have positive samples and negative samples. Four counts of sample numbers are

listed in the matrix: 1)True positive (TP); 2) True negative (TN); 3: False positive

(FP); 4) True negative (TN). We can calculate the following common used evaluation

measurements based on the four counts:

• Accuracy = TP + TN
TP + TN + FP + FN

;

• Precision = TP
TP + FP

;

• Recall (Sensitivity) = TP
TP + FN

;

• F1 Score = 2 × Precision×Recall
Precision + Recall

;

Considering the imbalance of positive and negative in the real-world scenarios,

those measures may lead to false sense of achieving high accuracy, precision and
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recall as listed in the example in Table 2.4. We need an evaluation on the proportion

of negative samples that are mistakenly predicted as positive, so we have:

• Specificity (False Positive Rate) = FP
FP + TN

;

In Table 2.4, the model’s specificity and sensitivity is always 80% and 100% what-

ever the positive negative ratio is. A receiver operating characteristic (ROC) curve

is plotted by a group of sensitivity and specificity pairs at various thresholds. With

the plotting of the ROC curve, we can calculate the Area Under Curve (AUC) as a

combination of sensitivity and specificity.

Table 2.4: The evaluation measurements for the same model on different evaluation
sets.

Evaluation Set TP FN FP TN Accuracy (%) Precision (%) Recall (%)

Balance 5 0 1 4 90 83.88 100

Imbalance 5 0 9 36 82 35.71 100

During a continuous long-term monitoring, the False Positive Rate (FPR) or False

alarm rate is also defined as the number of FP per hour in average. From a patient’s

view, however, the numbers are not intuitive to the method’s performance when

actually using it. In Figure 2.1, the seizure detection model A and B have three

false alarms for each so their FPRs are the same, but their performances differ by

the distance between the alarms. If the patient receives a one-hour special care every

time the alarm raises, model A will cost about three times more unnecessary attention

on the patient. To address this challenge, we introduce a case-based evaluation for

seizure detection which in addition to traditional segment-based evaluation. We split

the long-term EEG signals into multiple cases with duration no more than one hour.

A non-ictal case does not contain any ictal data and an ictal case only contains ictal
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data. A non-ictal case test passes only if no alarm occurs and an ictal case test passes

if a alarm successfully triggered. Using the case-based evaluation, we can calculate

the non-ictal pass rates from model A and B are 66.67& and 88.89%.

(a) Seizure detection model A

(b) Seizure detection model B

Figure 2.1: 10-hour continuous evaluations of seizure detection model A and seizure
detection model B. Both of the models have three false alarms and one correct detec-
tion.

2.6 Development Environments

Our pipeline is built with modern computer software tools. In this section, we list

three applications that are used for developing three major components: database for

EEG metadata, data selection interface, and seizure prediction model.

2.6.1 Ruby on Rails

Ruby on Rails is a popular web development framework with two major guiding prin-

ciples: “Don’t Repeat Yourself” and “Convention Over Configuration” [59]. “Don’t

Repeat Yourself” is a principle in software engineering and is stated as “Every piece

of knowledge must have a single, unambiguous, authoritative representation within a
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system” [60]. By reusing code as much as possible, a Rails project is easy to extend

the features, avoid bugs and reduce the work load of maintenance. The “Conven-

tion” of Ruby on Rails is a pre-build “Rails” for users to follow the best route of

web development. The designed “Rails” make default settings rather than requiring

manual configuration. Ruby on Rails is an open-source framework so its community

is quite responsible and friendly. In addition, the programming language of Ruby on

Rails is Ruby which is enjoyable to write and read. RubyGems, the package manager

for Ruby programs and libraries, can easily extend the functionalities of application

according to developers’ design. All the features of Ruby on Rails indicate its biggest

goal is to help development to be faster and more efficiently.

Model-View-Controller (MVC) is an architectural pattern that is used for Ruby

on Rails projects. Model is the kernel part of the architecture, it manages the logic

and states of the application objects data. View is the upper layer of the pattern,

it displays the information of model in particular representation and the interactive

components to respond users’ behaviors. Controller is in the middle of Model and

View to set up communication between them. Controller accepts input from users

through View and applies commands for Model, then updates the representation of

View accordingly. For example, my EEG annotation query tool has the structure

of MVC. EDF file model stores the EEG metadata of each EDF files, and EEG

annotation model stores the information of each annotation. The controller acquires

user query variables including patient ID, annotation name, and duration from view

and implements computation on model data and the View can display the query

results on the webpage.

2.6.2 MySQL

MySQL is a free and open source relational database management system. It was

original owned by the Swedish company MySQL AB and was acquired by Oracle
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in 2010. MySQL is commonly used in data driven web applications because of its

performance and flexibility. A database in MySQL is composed by a number of

tables. In each table, a cell represents a data value, a row represents a single record,

and a column represents a data field. Records can be identified by the primary key

of the table, and tables are connected by foreign keys. MySQL also provides a query

language which makes database operations including insertion, deletion, updating and

searching more efficient. We use MySQL as our database of EEG metadata because:

1) Ruby programming language has the application programming interface (API)

which includes a library of accessing MySQL, and Ruby on Rails uses MySQL as its

default database system; 2) our data model does not contain complicated relation

between tables so that a time consuming join query can be avoid; 3) As an embedded

tool of MEDCIS, we use the same database system for a better query performance.

2.6.3 TensorFlow

TensorFlow [61] is one of the most commonly used machine learning platform. It

is an open source software and was released by Google in 2015. As of Dec 2018,

TensorFlow is the third most starred repository and has the fourth most folks on

Github, the largest host of source code in the world [62]. TensorFlow includes a large

amount of mathematical functions for artificial intelligence projects such as support

vector machines and artificial neural networks. The basic component of TensorFlow

is a directed acyclic computational graph which consists of tensors, nodes and edges.

Tensor is a vector with N-dimension or a matrix of N rows in a simple way. The nodes

represent operations and the operation results are tensors. Each edge represents the

flow from an output of a node to an input of a node. In this project, we used

TensorFlow to build deep learning and transfer learning and trained the model using

my labeled EEG signal dataset.
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CHAPTER 3. Temporal Query for Epilepsy Dataset

3.1 Motivation

Epilepsy study is broad and comprehensive involving many scientific disciplines and

areas of exploration related to seizure disorder. Since the reason of seizure triggering

are still unknown, collecting epilepsy data, such as Electroencephalography (EEG),

magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and

positron emission tomography (PET), becomes necessary for future analysis. The

number of epilepsy cases per year is more than 200,000 in the U.S. Although epilepsy

is a common disease in the population (up to 10% of people worldwide have one

seizure during their lifetime [63]), a seizure can vary in frequency, for example, it may

happen once a year or several times per day. More importantly, a seizure typically

lasts for less than two minutes, which causes the seizure data to be rarer compared to

the non-seizure data. Some special cases related to epilepsy are much more difficult

to capture. For example, SUDEP (about 1 in 1,000 people with epilepsy) patients are

all fatalities so no more data can be captures after the patients being diagnosed with

SUDEP. The solution is to collect data from multiple sites to increase the number

of captured cases which significantly benefits researches on rare diseases including

SUDEP. Nowadays, numerous universities and clinical centers worldwide are provid-

ing programs for epilepsy study. Leveraging epilepsy data collected from 7 epilepsy

centers, scientists and physicians collaborated on The Center for SUDEP Research

(CSR) to understand the rare and deadly disease. Informatics and Data Analyt-

ics Core for CSR is a majority component to build bridges between each institution

and to provide an utilized ontology-based platform for data collection, curation, and

sharing.

At each epilepsy center, An epilepsy monitoring unit (EMU) is an inpatient unit

designed to evaluate, diagnose, and treat seizures by specialists. Depending on the
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epilepsy patient’s status, the patient usually stays three to seven continuous days in

the EMU. During a visit, the patient is performed long-term video-EEG monitoring,

which continues for 24 hours or more. The patient can move, sleep, watch television,

talk and participate in other normal activities while both of his/her EEG signals and

video are recorded. The long-term video-EEG monitoring provides the connection

between continuous behavioral observation and brain activities of epilepsy patients.

The neurologists later can annotate the EGG data according to the signals and video.

Because EEG signals and video files are storage-consuming and processing such large

files is time-consuming, the annotation files for epilepsy data are an efficient way to

describe a period of epilepsy recording especially for a large cohort or a multi-source

dataset. Preliminary research can be done based on annotation information without

acquiring and processing the complete large dataset. Furthermore, researchers may

filter the dataset by selecting subjects or recording periods on specific study topics.

The existing epilepsy datasets, such as the CHB-MIT scalp EEG dataset, Ameri-

can Epilepsy Society Seizure Prediction Challenge dataset on Kaggle, and University

of Bonn EEG dataset, are widely used for epileptic events classification. Both datasets

from the American Epilepsy Society Seizure Prediction Challenge and the University

of Bonn are highly prepared datasets for EEG analysis and do not contain dependent

on annotation files. A well-prepared dataset is usually preprocessed by categories

and split into small segments with constant length. University of Bonn EEG dataset

contains EEG data from five non-epilepsy subjects and five epilepsy subjects with

no temporal information but pre-labeled with five inter-patient categories: A) scalp

EEG recording from the five healthy volunteers with eyes open; B) scalp EEG record-

ing from the five healthy volunteers with eyes closed; C) intracranial EEG recording

within the epileptogenic zone during interictal from the five epilepsy patients; D)

intracranial EEG recording from the hippocampal formation during inter-ictal from

the five epilepsy patients; E) intracranial EEG recording during ictal from the five
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epilepsy patients. Users can retrieve the information by the data label from Table 3.1.

The Kaggle dataset of the American Epilepsy Society Seizure Prediction Challenge

used a similar way by describing the data using filenames and file directories. For

example, filename “Patient 1 interictal segment 0001.mat” indicates the EEG data

of this file is recorded from 0 to 10 minutes from Patient1’s interictal period. The

advantage of the two datasets is that they are ready to use and the information pro-

vided to researchers is clear and straight forward. Such datasets are built for specific

purposes but limit the possibility of expansion.

Table 3.1: Retrieve information from University of Bonn EEG dataset using la-
bels. The four characteristics are not in common for all labels and they are used to
distinguish between each other.

Label Subjects EEG type Location Events

A non-epilepsy Scalp Surface eyes open

B non-epilepsy Scalp Surface eyes open

C epilepsy Intracranial Epileptogenic zone Interictal

D epilepsy Intracranial Hippocampal formation Interictal

E epilepsy Intracranial With ictal activities Ictal

CHB-MIT scalp EEG dataset is a lower level EEG dataset with minimum pre-

processing so it obtained more original information from the monitoring. One type

of information is temporal information which is important for time-series data, for

example, EEG signals. In the CHB-MIT scalp EEG dataset, the temporal data

includes file start time, file end time, seizure start time and seizure end time. Every

subject has a summary file which stores the temporal data for each EEG file. From

the four temporal data, we can compute multiple basic measurements for the EEG

data, for instance, the duration of the total monitoring time, the duration of a seizure,

the gap between files, the time distance of seizures, etc. By using the appropriate

38



measurements, we can extract specific data period from the whole dataset. One use

case could be extracting all lead seizures by defining a lead seizure to be a seizure

with no other seizures within one hour period before it. The temporal measurements

can also be used for evaluating the quality of the dataset. For example, the long-term

video-EEG monitoring should be continuous but a gap between two files is too long

because of potentially missing files.

The size of three EEG datasets mentioned above is relatively small compared to

the EEG data size in a real-world epilepsy center, which may contain hundreds of

subjects. Besides, the dataset from an epilepsy center contains much more informative

temporal data, especially annotation data. Since the temporal information of EMUs’

EEG datasets is continuously growing, a temporal query system for large scale cross-

site epilepsy datasets becomes useful for retrospective epilepsy research. However,

there are four challenges:

• How to retrieve temporal information from multiple sources using different ter-

minology;

• How to efficiently extract and store unstructured text annotation for information

retrieval;

• How to build a user-friendly interface for temporal query purpose;

• How to intuitively display the query results for temporal data.

3.2 Dataset

The epilepsy dateset captured and integrated by MEDCIS from seven clinical sites,

they are University Hospitals-Case Medical Center (UH-CMC), Ronald Reagan Uni-

versity of California Los Angeles (UCLA) Medical Center (RRUMC-Los Angeles),

the National Hospital for Neurology and Neurosurgery (NHNN, London, UK), New
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York University (NYU), Thomas Jefferson University (TJU), Northwestern Memorial

Hospital (NMH Chicago), and The University of Iowa (IOWA). The dataset consists

of two types of files: EDF files for signals recording (EEG, EKG, blood pressure, etc.),

and the text files for annotations. All the data files are de-identified before storage

and compressed into zip files. The details of file format and structure are described

in the following:

Table 3.2: EDF header structure

EDF Header

EDF File Metadata EDF Signal Metadata

Name Type Size (bytes) Name Type Size (bytes)

Version Integer 8 Label String 16

Local Patient Identification String 80 Transducer Type String 80

Local Recording Identification String 80 Physical Dimension String 8

Start Date of Recording dd.mm.yy 8 Physical Minimum Float 8

Start Time of Recording hh.mm.ss 8 Physical Maximum Float 8

Number of Bytes in Header Integer 8 Digital Minimum Integer 8

Reserved N/A 44 Digital Maximum Integer 8

Number of Data Records Integer 8 Prefiltering String 80

Duration of a Data Record (seconds) Float 8 Samples Per Data Record Integer 8

Number of Signals Integer 4 Reserved Area N/A 32

Zip files – Zip is one of the most wildly used file format for data compression.

All epilepsy data files for each of the patient visit are compressed into a Zip file which

named with a de-identified study ID (study identifier, or patient report identifier). A

single zip file may contain multiple EDF file and annotation text file pairs.

EDF files – Epilepsy signal data is stored in EDF format. A EDF file consists of

an EDF header and a series of signal records.

EDF header – EDF header represents the signal records metadata which can

be split into two parts: metadata for the study, and metadata for each channel of

signals. Table. 3.2 lists the EDf header elements details.
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EDF signal data – Following with the EDF header is the EDF signal data that

are stored in digits on after another in the order of signal channels listed in the EDF

header. With start time of recording (ts), duration of a data record (d), samples per

data record (s), and the index of a signal in channel (i), the timestamp t of each

signal point can be calculated by the formula t = ts + i× d
s
.

Annotation text files – Each EDF file has a paired annotation text file which

has the same base file name. In an annotation file, each row is a signal event with

two elements: a relative time and a text annotation. The relative time can be used

to calculate the absolute signal event time with the start time of recording from the

EDF header. The experts manually reviewed and annotated the signal data with

seizure events.

3.3 EEG Temporal Data Extraction

The general architecture of an ontology-driven information extraction system [29] is

shown in Figure 3.1. We adapt the model to extract epilepsy annotation information

from CSR data. The workflow is shown in Figure 3.2. The OPIC concepts are gen-

erated by EpSO for multi-site patient information capturing. The curation terms are

provided by the experts who are annotating the epilepsy data. The combined termi-

nology along with the specific task rules are used for matching the input annotation

text. The input annotation text comes from annotation files with the time relative to

the recording start time, which can be extracted from the EDF files. Each annota-

tion time can be computed by the two-time values. Finally, the structural annotation

records are generated and stored in the database.

By the reason that CSR is an on-going project and integrates new epilepsy data

from its sites weekly, we build a rake task to automatically extract and store EDF and

annotation information into the annotation database. Rake task enables developers

to run their own Ruby code in a Rails project and to execute tasks periodically.
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During the extraction process, the data quality dimensions can be measured for the

input epilepsy data. The possible measurements include:

• completeness: determines if data is missing or unusable. For example, certain

values in an EDF file are not available, or there is missing annotation file for

an EEG recording;

• correctness: determines if data recorded the correct value. For example, the

recording start time should be a specific time but not 00:00:00;

• consistency: determines if data conflicts with other data values. For example,

a seizure phase appears after seizure end;

• duplication: determines if data repeats. For example, two same annotation

records appear at the same time.

Ontology

File CorpusHierarchical
Terminology

Extraction Rules

Input 
Data

Task Knowledge

Extraction Module

Information

Figure 3.1: The general architecture of an ontology-driven information extraction
system.
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OPIC Concepts

Curation Terms

Hierarchical
Annotation Concepts

EEG DATA

Annotation Files

Rule Matching

EDF Files

Annotation Relative Time

EDF Start Time

Annotation Time

Annotation Record

Annotation 
Database 

Figure 3.2: Ontology-driven annotation information extraction for CSR.

3.4 Temporal Query

In this section, we describe a full-stack method to query temporal annotation infor-

mation. In general, temporal queries include timestamp queries and interval queries.

A timestamp query retrieves all objects at a specific timestamp. An interval query

retrieves all objects in a window of multiple consecutive timestamps. In most epilepsy

researches, people want to find a specific annotation, for instance, find all “Clinical

Seizure Onset” for patient A. The query is a single annotation query, which only

implements a search in the annotation text dimension. Because our annotation sys-

tem is ontology-guided, each concept has its unique ID. The feature transfers a single

annotation query to an integer query instead of a string matching.

A more complicated situation is a multi-annotation query. For example, find
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Figure 3.3: Ontology vocabulary for EEG annotation.

“Clinical Seizure Onset”, “Clinical Seizure End”, “Sign of Four” that “Sign of Four”

is during “Clinical Seizure Onset” and “Clinical Seizure End”. In this case, not

only concepts matching is needed, but also relations between concepts have to be

considered. Allen’s interval algebra is a calculus for temporal reasoning that was
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introduced by James F. Allen in 1983, the calculus includes 7 base relations: before,

meet, overlap, starts, during, finish, equal. Since the time of an annotation can be

a timestamp, we define a timestamp as a interval with the same start time and end

time. Then, the system translate the query in human language to a syntax of Allen’s

interval algebra. In the multi-annotation query example, the syntax is:

{ Sign of Four } [ during ] ({ Clinical Seizure Onset } [ before ] { Clinical Seizure End })

The syntax is an infix expression which can be converted to an prefix expression:

{ Sign of Four } { Clinical Seizure Onset } { Clinical Seizure End } [ before ][ during ]

Or it can be represented by a expression tree in Figure 3.4

Sign of Four

During

Before

Clinical Seizure
Onset

Clinical Seizure
End

Figure 3.4: Expression tree representation for: “Sign of Four” is during “Clinical
Seizure Onset” and “Clinical Seizure End”.

With the input of annotations and their time, a program can be implemented

to tell if any combination satisfies the expression. The list of such annotation com-

binations is the results of the query. In epilepsy studies, the query could not only

be a temporal query or an annotation query, but a two dimensional query. A two
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dimensional query example is: find all annotations between “Clinical Seizure Onset”

and “Clinical Seizure End” that “Sign of Four” is during such duration.

One of the two dimensional query topics is the spatio-temporal query, in which

the two dimensions are space and time. Historical Rectangle Tree (HR-tree) is a

data structure to resolve spatio-temporal problems. An HR-tree represents different

versions of a R-tree at different timestamps. The advantage of the HR-tree is efficient

timestamps query because the problem can be reduced to a R-tree problem. The

disadvantage is that duplication of a whole rectangle is needed when one of the inside

object changes, which increases the space cost.

ti ti+1

After

Timestamps

Clinical Seizure
Onset

Clinical Seizure
End

Sign of Four

DuringAfter

Clinical Seizure
Onset Nil Sign of Four

During

Nil

Figure 3.5: Example of a historical expression tree.

In order to efficiently use the epilepsy information, it is important to develop a

human friendly user interface for the backend system. Our interface design could save

researchers’ time on exploring the information system. Query is the major function

for the interface. The query interfaces implemented in the following directions have

three different input types:

• Syntax-based query, such as Google and database query language. The interface

is simple because the only necessary input area is a text box. The query can
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be powerful because users are able to modify most of the query, but building a

query may be difficult if it is complicated.

• Structural query, such as shop websites. The inputs are usually given choices or

limited to ranges according the value type. The developers can control the query

inputs and avoid unexpected errors. The disadvantage is when the number of

required input values is large, building a query may be inefficient.

• Graphic based, for example, graphic query interfaces for databases. Building

query is intuitive for users because the query input exactly matches the results.

However, more interface designing and development time may needed.

Our interface is a combined structural and graphical query interface and the

graphic based query inputs are translated to Syntax-based query statements in the

backend. We follow three principles for a information system user interface design:

• Efficient query builder. The number of clicks and typing for query input should

be as small as possible;

• Informative results display. The results need to show all the information that

users demand, and certain information can be found in a short time.

• Intuitive operation instruction. Without a user manual, the users can operate

the functions by intuition.

As of January 2018, 1,309 study cases had been recorded and uploaded to the CSR

system. We constructed a MySQL database for storing file information of 42,071 EDF

files and 631,215 annotation records. My annotation query tool database design is

shown in Figure 3.6. The EDF file information includes EDF file name, recording

start date/time, and recording duration. It also contains two foreign key fields: pa-

tient study ID and database ID. Patient study ID links to the patient information in
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MEDCIS, and database ID indicates the medical center where the recording comes

from.

Figure 3.6: CSR temporal annotation query database design.

After the user finishes drawing the graphic query on the widget canvas, clicking

the search button will start the query algorithm in the backend. The results will be

displayed by subjects. The visualization of results will be very similar to the query

widget, they will use the same rendering methods. Other features of the interface

includes:

• Customized cohort: Users can select specific study subjects or groups for query;
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• Annotation curation: Users can suggest improvement of the annotation data;

• Save and manege queries: Users can save a query for further review;

• Export query results: the results detail can be downloaded as a CSV file, and

the users may use it for other analysis or processing;

3.5 Results

3.5.1 CSR Temporal Data Quality

In this study, we build a temporal query system on epilepsy data from seven clinical

sites in CSR. The system connects to the CSR data integration platform and updates

the temporal data weekly. We report the results using the September 4th, 2019 version

that recruited 2497 patients and 3169 reports. The report number is larger than the

patient number because a patient may visit an epilepsy center for more than one

time. Among the 2497 patients, 1076 are from UH, 271 from NYU, 125 from UCLA,

393 from NW, 225 from TJU, 189 from UCL, and 170 from Iowa. Table 3.6 lists the

EDF files completeness of patients and reports by different sites. The measurement

indicates how many patients and reports have related EEG signal files uploaded to

the system. As of September 4th, 2019, 125 patients from UCLA have no signals

data so we did not include UCLA in the results of EDF file-related data quality

measurements. TJU has the highest completeness rate of 74.07% by patients and

63.56% by reports and UH has the largest EEG signal dataset which contains 754

patients.

Table 3.4 indicates the data quality for collected EEG signal files in CSR. Almost

all existing EEG signal files have attached annotation files with 99.12% completeness.

However only NW and IOWA achieved perfect or nearly perfect completeness on

recording start time for EDF files. Other sites have about 20% files with missing

datetime information. Besides completeness, only six EDF files of all have incorrect
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Table 3.3: EEG signal files completeness for patients and patient reports from
multiple sites

Measurement UH NYU UCLA NW UCL TJU IOWA Total

By Patients
70.07% 48.71% 0.0% 39.19% 74.07% 24.0% 44.12% 52.42%

754/1076 132/271 0/125 154/393 140/189 54/225 75/170 1309/2497

By Reports
54.43% 47.16% 0.0% 35.49% 63.56% 21.98% 43.86% 45.91%

885/1626 133/282 0/125 159/448 143/292 60/273 75/171 1455/3169

start datetime in their header.

Table 3.4: Data quality measurement for EEG signal files from multiple sites

Measurement UH NYU NW UCL TJU IOWA Total

Annotation 98.29% 100.0% 99.99% 100.0% 100.0% 100.0% 99.12%

Completeness 21505 1564 9659 1551 7265 695 42239

Datetime 73.74% 83.89% 99.99% 76.21% 78.79% 100.0% 81.44%

Completeness 16134 1312 9659 1182 5724 695 34706

Datetime 73.72% 83.89% 99.99% 76.14% 78.79% 100.0% 81.43%

Correctness 16129 1312 9659 1181 5724 695 34700

Total Files 21880 1564 9660 1551 7265 695 42615

We extracted 451,076 temporal annotations from 42239 files. 6687 of them matched

46 standard vocabulary in our ontological annotation list that are used for data cura-

tion. As shown in Table 3.5, four sites (NW, TJU, UCL, IOWA) have zero error rate

on these curation annotations. The major two errors types are typos and merged

annotations. The annotation duplication is displayed by a proportion of repeated

annotation work which may have done on about 6% annotations.

In table 3.6, we computed completeness and duplication on every patient’s mon-

50



Table 3.5: Data quality measurement for EEG annotations from multiple sites

Measurement UH NYU NW UCL TJU IOWA Total

Annotation 92.86% 94.33% 100.0% 100.0% 100.0% 100.0% 95.04%

Correctness 4172 183 691 29 386 894 6355

Standard Annotations 4493 194 691 29 386 894 6687

Annotation 96.75% 97.95% 82.97% 99.98% 95.99% 99.42% 94.53%

Duplication 228555 38966 66400 16876 58107 17518 426422

Total Annotation 236231 39781 80030 16880 60534 17620 451076

itoring and combined the results by each site. UH and NW have ≥ 80% valid EEG

signals coverage during the monitoring. UCL and IOWA have lower than 5% cover-

age. All sites have low duplication rate on stored EEG signal files, the highest is NW

with 5.92%.

Table 3.6: Long-term EEG monitoring data completeness and duplication

Measurement UH NYU NW TJU UCL IOWA Total

Completeness
80.1% 67.76% 84.69% 51.25% 4.43% 4.79% 61.71%

2222.9 203.26 446.19 97.95 42.51 6.65 3019.47

Duplication
0.29% 0.17% 5.92% 0.99% 0.0% 0.0% 0.85%

7.93 0.5 31.2 1.89 0.0 0.0 41.51

Total Monitoring Days 2775.1 299.97 526.87 191.13 960.78 138.86 4892.71

3.5.2 Temporal Query User Interface Design

In the frontend, we build a web-based query interface using the RoR development

framework. The screenshot of the graphic temporal annotation query webpage is

displayed in Figure 3.7. The interface consists of six components: 1) label of current
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patient number in the system; 2) site selection; 3) temporal query widget; 4) results

summary; 5) button for downloading the results in a CSV file; 6) timeline display of

results by patients.

Figure 3.7: CSR Temporal annotation query interface.

The core of the interface is the temporal query widget. The widget displays a

timeline where the time increases from left to right. Two types of temporal annotation

can be added to the widget: timestamp annotation and interval annotation. The

timestamp annotation is a box that represents a single name: “Onset of Generalized
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Tonic Phase” and “Onset of EEG Suppression” in the example. The pointer marks

its position in the timeline. The interval annotation is a box with a start annotation

on the left and an end annotation on the right. In this example, the interval means a

pattern starts from “EEG Onset” or “Clinical Onset” and ends with “Clinical Seizure

End” or “EEG Seizure End”. The left edge of the interval represents the start time

and the right edge indicates the end time of the interval. The position of two boxes

expresses the relation of the annotations, and users can change the position to build

all seven types of Allen’s interval algebra. In the query widget, the functions for users

include:

• Add: double click the empty area, then a pop-up window will let users input

the information of the annotation;

• Select: click an annotation box will select the annotation;

• Delete: click the red cross after selecting an annotation will remove it from the

timeline;

• Edit: double click an annotation will let users edit the annotation information

in a pop-up window;

• Drag: move when mouse is down on an annotation will change the position of

the annotation;

• Zoom in/out: users can change the scale of the timeline window.

The users can select one or more pre-loaded subset from seven sites in CSR, or

they can build their subset with patient ID by clicking the blue plus button. When

the user finishes creating the query pattern and clicks the “Search” button, area four

will display the summary of the results include total query time, number of patients

have the query pattern and the total number of the match pattern. Division six shows
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the timeline of detailed results for each patient with a pattern. Three functions are

implemented for the resulting timeline:

(1) Zoom out. Users can enlarge the scale of the timeline. Figure 3.8 shows an

example of the zoom out function. The patient has four matched patterns from July

28th, 2013 to August 1st, 2013.

Figure 3.8: An example of zoom out function.

(2) Zoom-in. Users can shorter the scale of the timeline to see the detail of a

pattern. Figure 3.8 shows an example of the zoom-in function. The window size is

five seconds and the pattern lasts for about 2 seconds.

Figure 3.9: An example of zoom in function.

(3) Show all annotations nearby. Users can enable the display of all annotations

in the period of the current time window. As shown in 3.10, if the user only queries
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standard annotations, it will only display the nearby annotations that match the

vocabularies in the ontology. As shown in Figure 3.11, if the user only queries all

annotations, it will display all the nearby annotations in the database.

Figure 3.10: An example of showing all standard annotations.

Figure 3.11: An example of showing all annotations.
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3.5.3 Customized Epilepsy Dataset Builder

Users can download the query results in the CSV format using the button at the red

number five in Figure 3.7. The file includes selected annotations and patterns with

their DateTime, the stored file, and the relative time in the file. Another function

is adding a period before or after the pattern and the interface can automatically

indicate the part of file which contains the data by demands. An use case example of

the temporal query interface is the seizure detection study we will introduce in the

next chapter. We want to find all patients with annotated start and end of seizures,

and we need the data to be as complete as possible so we can simulate a long-term

EEG monitoring testing. As a result, we randomly selected 23 patients that match

our requirements as our dataset. Table 6.1 shows the data quality of completeness

of our dataset and a widely used dataset CHB-MIT scalp EEG dataset. Our dataset

contains about 500 more recording hours and has 98.98% completeness, which is

significantly greater than the data completeness of the CHB-MIT scalp EEG dataset.

The evaluation of our dataset is closer to a real-world situation so the results are

more convincing.
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Table 3.7: The completeness comparison between the CHB-MIT scalp EEG dataset
and a 23-patient subset of the CSR dataset.

Subject Completeness
Data Monitoring

Subject Completeness
Data Monitoring

Duration Duration Duration Duration

CHB-1 89.03% 40.55 h 45.55 h CSR-1 98.93% 112.46 h 113.68 h

CHB-2 86.92% 35.27 h 40.57 h CSR-2 99.95% 66.12 h 66.15 h

CHB-3 46.42% 38.0 h 81.87 h CSR-3 99.95% 94.85 h 94.9 h

CHB-4 96.17% 156.06 h 162.27 h CSR-4 99.47% 65.69 h 66.04 h

CHB-5 99.79% 39.0 h 39.09 h CSR-5 99.97% 139.63 h 139.67 h

CHB-6 74.77% 66.73 h 89.25 h CSR-6 95.34% 110.36 h 115.75 h

CHB-7 99.72% 67.05 h 67.24 h CSR-7 99.94% 120.47 h 120.54 h

CHB-8 75.84% 20.01 h 26.38 h CSR-8 99.93% 49.04 h 49.07 h

CHB-9 99.56% 67.87 h 68.17 h CSR-9 99.43% 71.02 h 71.43 h

CHB-10 29.69% 50.02 h 168.49 h CSR-10 99.41% 74.32 h 74.76 h

CHB-11 35.76% 34.79 h 97.3 h CSR-11 98.53% 77.46 h 78.62 h

CHB-12 70.84% 23.69 h 33.45 h CSR-12 98.93% 70.47 h 71.23 h

CHB-13 54.43% 33.0 h 60.63 h CSR-13 96.67% 166.91 h 172.66 h

CHB-14 61.79% 26.0 h 42.08 h CSR-14 99.95% 44.49 h 44.51 h

CHB-15 63.21% 40.01 h 63.3 h CSR-15 100.0% 44.6 h 44.6 h

CHB-16 99.82% 19.0 h 19.03 h CSR-16 98.11% 75.3 h 76.75 h

CHB-17 24.09% 21.01 h 87.2 h CSR-17 99.97% 132.0 h 132.04 h

CHB-18 40.55% 35.63 h 87.88 h CSR-18 99.95% 120.39 h 120.46 h

CHB-19 33.06% 29.93 h 90.53 h CSR-19 99.89% 118.06 h 118.19 h

CHB-20 42.18% 27.6 h 65.44 h CSR-20 99.95% 99.8 h 99.86 h

CHB-21 58.93% 32.83 h 55.71 h CSR-21 99.55% 70.53 h 70.85 h

CHB-22 40.83% 31.0 h 75.93 h CSR-22 96.83% 117.36 h 121.2 h

CHB-23 56.62% 26.56 h 46.9 h CSR-23 99.87% 56.24 h 56.31 h

CHB-Total 59.57% 961.64 h 1614.24 h CSR-Total 98.98% 2097.57 h 2119.27 h
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3.6 Discussion

In this chapter, we present a temporal data extraction and query system for cross-site

epilepsy dataset. Because the input data of the system has a commonly used format,

like EDF for EEG signals and TXT for annotation files, it is adaptable to other EEG

dataset for temporal information extraction, data quality measurements, and epilepsy

events query. The standard query term dictionary is scalable for specific research

topics by adding new terms to a terminology file, the system can automatically update

the ontology structure. Our system is the first among epilepsy data systems to provide

a graphical temporal query interface, which is a fast and accurate solution for cohort

discovery and pattern discovery on large scaled CSR epilepsy data.

Since epilepsy data collection in CSR is an on-going project, the completeness

shows differently for the seven individual sites in Table 3.6. We also found mis-

matching problems for EDF files and annotations files. If the naming formats of

EDF and annotation files are inconsistent, the pairing will fail which results in miss-

ing signal files or missing annotation files. The curation based on the data quality

measurements will correct the errors in the future.

Another limitation of our work is that we extracted 46 standard annotation terms

for curation and matched total 6,687 annotations from the dataset. It is only a small

proportion of total 451,076 pieces of annotations we collected. In the interface shown

in Figure 3.7, we add a button in area two that can disable “search curated annotation

only”, so the users can still query all the free-text originally stored in the annotation

files. Search by string matching will cause longer query time and the quality of the

free-text is unknown.
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3.7 Conclusion

Our ontology guided multi-site epilepsy temporal information system processed 2,497

epilepsy patients with 3,169 reports from seven epilepsy centers across the U.S. and

Europe. We extracted 451,076 temporal annotations from 42,239 EEG files. We con-

structed vocabulary sets including 46 standard annotation terms for ontological anno-

tation elements and matched 6,687 annotations for high-quality queries. Our system

prospectively integrates the epilepsy temporal data in CSR once a week. We auto-

matically calculated the data quality measurements for the epilepsy temporal data.

The results show the CSR dataset has 99.12% annotation completeness, 61.71% EEG

signals completeness for all existing monitoring, and 0.85% signal file duplication rate.

Our system provides a web-based temporal query interface developed by the RoR de-

velopment framework. Both query widget and results representation are displayed in

the graphic. The temporal query canvas can generate all 13 Allen’s interval algebra

with minimal user intervention. By using our interface, users can download the query

results in the CSV format for preliminary research or building their datasets.
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CHAPTER 4. Seizure Detection on Scalp EEG Data

4.1 Motivation

According to the 2013 Institute of Medicine (IOM) report, 27% patients with poorly

controlled epilepsy have accidents and injuries in a two-year period. Fatal acci-

dents and injuries are the reasons for 6 and 20 percent of all deaths of people with

epilepsy [64]. A system for seizure alert or seizure detection may prevent such acci-

dents and injuries by notifying others when a seizure happens. A potential application

of a reliable seizure detection tool will be long-term monitoring of seizures, whether

using wearable devices or in the Epilepsy Monitoring Unit (EMU). By the reason

that the non-seizure period takes the majority of time during long-term monitoring,

a reliable seizure detection not only means high seizure detection rate (sensitivity)

but also requires a low false alarm rate to prevent patients from panic and keep them

relax in their daily routines.

For decades, brain activities of epilepsy patients have been systematically captured

by monitoring patients’ electrophysiological signals including Electroencephalography

(EEG). EEG records voltage fluctuations resulting from ionic current within the neu-

rons of the brain [3]. The long-term EEG monitoring is the EEG data recorded

continuously for a long period (the average recording time per subject for the two

used datasets are 41.8 hours and 91 hours). Using such long-term EEG signals, es-

pecially in the evaluation, removes the barrier between technical development and

clinical implication in the EEG research area. A long-term EEG monitoring can be

split to 4 phases by seizures: 1) The ictal phase is the duration between the start

of a seizure and end of the seizure; 2) The pre-ictal phase is the period before the

start of a seizure; 3) The post-ictal phase is the period after the end of a seizure; 4)

The inter-ictal phase is the duration between a post-ictal phase and a pre-ictal phase.

Figure 4.1 displays the visual representation of random selected EEG signals from
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two datasets used in this work. The screenshots are captured from a 30-second EEG

recording, and the original signals are the voltage differences between each electrode

pair listed on the left side of each image. The human can identify ictal segments by

eye observation. For example, spikes before the seizure onset, quick activities when

the seizure begins, and rapid amplitude changes. In current epilepsy studies, The

long-term EEG monitoring needs to be manually annotated or curated by certified

neurologists, which is both labor-consuming and time-consuming. An automatic,

effective and precise seizure detection tool for long-term EEG recordings can help

neurologists to quickly identify seizures. The tool may also change the procedure

for annotating the EEG monitoring, a pre-annotated seizure list can be preliminarily

generated before the EEG data being handed to neurologists. Considering the data

explosion may happen to the EEG recordings, the automatic annotation tool can

quickly transform the data into information to improve existing epilepsy research.

Another challenge for EEG-based seizure detection is that the EEG signal char-

acteristics from each subject are unique like fingerprints. Training the model with

features extracted across the cohort and testing on a new subject is a difficult task,

which requires the features to be common measurements that can distinguish seizure

and non-seizure but not different subjects. Moreover, most existing methods are

segment-based, one limitation is that the EEG channels used for the model are fixed.

If one or multiple of the channels contain significant noises or abnormal signals, or

the EEG monitoring lacks certain channels, the data may not be applied to the model

or the detection quality of the algorithm may be reduced.

In this chapter, we developed an automatic channel-based cross-patient seizure

detection model using two long-term EEG signal dataset: Children’s Hospital Boston-

Massachusetts Institute of Technology (CHB-MIT) with 23 patients and random se-

lected 23 patients from the Center for SUDEP Research (CSR) [26]. Our contributions

are the following:
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• We built an automatic channel-based seizure detection model using 8-second

segmentation and 135 features extracted from 961 hours (CHB-MIT) and 2093

hours (CSR) EEG signal data.

• We performed a cross-patient training strategy and three evaluation methods:

channel-based, segment-based, and case-based. The model is tested on the 195

seizure cases and 98.73% of the non-seizure period, which is significantly larger

than the testing of existing work.

• Our seizure detection model improved the seizure detection rate from 85% to

90.75% on the CHB-MIT dataset comparing to previous cross-patient model

and achieved 92.23% overall accuracy, 93.57% specificity, 81.08% sensitivity,

and 85.41% AUC on the segment-based evaluation.

4.2 Datasets

The first dataset is the Children’s Hospital Boston-Massachusetts Institute of Tech-

nology (CHB-MIT) Scalp EEG Database [21]. The recording covered 182 seizures in

192 files from 23 pediatric subjects (5 males, ages 3-22; and 17 females, ages 1.5-19).

The sample rate is 256Hz with 16-bit resolution and all the data contains at least 23

EEG channels (24 or 26 in a few cases). For each subject, a summary file annotated

start time and end time and all recorded seizures. CHB-MIT Scalp EEG Database is

one of the most used EEG data for epileptic seizure detection research. In this study,

we implemented our model on the CHB-MIT dataset and compared our performance

with current work. The details of each patient from the CHB-MIT dataset are shown

in the left part of the Table 6.1.

The second dataset we used in this work is from the CSR database, which contains

patients of SUDEP or with a high risk of epilepsy death. The EDF data from CSR

usually includes more than 60 channels of signals, such as EEG signals, EKG signals,
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(a) An inter-ictal example of CHB-1 (b) An inter-ictal example of SCR-16

(c) An ictal example of CHB-1 (d) An ictal example of CSR-16

Figure 4.1: EEG signal examples of subject CHB-1 (a and c), and CSR-16 (b and
d). The red lines in (c) and (d) indicate the annotated time of seizure onsets.

blood pressure, peripheral capillary oxygen saturation (SpO2), etc. The electrodes

for the EEG recording were placed using the international 10-20 system. Unlike

CHB-MIT data, the original CSR data is monitored with a referential montage. We

transformed the referential montage to the same bipolar montage as which used in

the CHB-MIT dataset. Besides, because the EEG data in CSR are collected from

different sites, the recording configurations (for example, sample rate and electrodes

positions) may not be the same. In this study, we randomly select 23 subjects with

scalp EEG recording to make the two datasets similar in size. The sub-dataset of

CSR contains EDF files recorded by the 200Hz sample rate and have the same 23
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channels used in the CHB-MIT dataset. Each patient contains at least one annotated

seizure. The details of each patient from CSR dataset are shown in the right part of

Table 6.1

Table 4.1: The details of collected data of 23 patients from the CHB-MIT dataset
and 23 patients from the CSR dataset. SZ = number of seizures, LSZ = number of
lead seizures.

Subject SZ LSZ Age Duration Subject SZ LSZ Age Duration

CHB-1 7 5 11 40:33:8 CSR-1 8 6 29 112:27:36

CHB-2 3 3 11 35:15:59 CSR-2 3 3 76 66:7:5

CHB-3 7 6 14 38:0:6 CSR-3 5 2 31 94:51:1

CHB-4 4 3 22 156:3:54 CSR-4 4 4 28 65:41:11

CHB-5 5 4 7 39:0:10 CSR-5 10 10 66 139:37:48

CHB-6 10 10 1.5 66:44:6 CSR-6 4 4 28 110:21:12

CHB-7 3 3 14.5 67:3:8 CSR-7 6 3 24 120:28:1

CHB-8 5 5 3.5 20:0:23 CSR-8 4 4 34 49:2:9

CHB-9 4 4 10 67:52:18 CSR-9 4 4 31 71:1:14

CHB-10 7 7 3 50:1:24 CSR-10 4 4 32 74:19:8

CHB-11 3 3 12 34:47:37 CSR-11 2 2 x 77:27:25

CHB-12 40 10 2 23:41:40 CSR-12 5 5 72 64:28:15

CHB-13 12 7 3 33:0:0 CSR-13 7 2 29 166:54:32

CHB-14 8 5 9 26:0:0 CSR-14 3 2 43 44:29:15

CHB-15 20 14 16 40:0:36 CSR-15 3 3 62 41:56:0

CHB-16 10 3 7 19:0:0 CSR-16 6 4 36 75:17:48

CHB-17 3 3 12 21:0:24 CSR-17 5 5 24 132:16:0

CHB-18 6 5 18 35:38:5 CSR-18 4 2 29 120:50:2

CHB-19 3 3 19 29:55:46 CSR-19 1 1 50 118:3:23

CHB-20 8 4 6 27:36:6 CSR-20 1 1 38 99:48:2

CHB-21 4 4 13 32:49:49 CSR-21 1 1 29 70:31:48

CHB-22 3 3 9 31:0:11 CSR-22 3 3 25 117:21:31

CHB-23 7 5 6 26:33:30 CSR-23 1 1 49 56:14:14

CHB-Total 182 119 N/A 961:38:20 CSR-Total 138 76 N/A 2097:34:12
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4.3 Pre-processing

Our work only focused on classification on two classes of data: ictal segments and

inter-ictal segments. For this work, we define:

• A segment is an 8-second window of EEG data containing multiple channel

signals;

• An ictal segment is a window containing at least 4 seconds data inside of lead

seizure onset and end duration;

• An inter-ictal segment is a window containing no data inside of seizure onset

and end duration.

Here, a lead seizure is the first seizure after a 1-hour non-seizure period. If two

seizures are close to each other, less than 1 hour as we defined, we drop the second

seizure data. By applying this rule, we selected 119 out of 182 seizures from the

CHB-MIT dataset, and 76 out of 94 seizures from the CSR dataset. The number of

lead seizures for each subject is shown in Table 6.1.

The epilepsy seizure data from both of the CHB-MIT dataset and CSR dataset

includes two parts. One is the digital signal data, which is stored as EDF files, while

the other is annotation data, which is stored as text files. An EDF file consists of

an EDF header that stores metadata for the EEG signals, following the digital data

for each channel; the other one is an annotation file contains rows of annotations in

the corresponding EDF file. For the CHB-MIT dataset, seizures are clear annotated

one by one with start and end time in the corresponding files. For the CSR dataset,

each row of an annotation file includes a timestamp and comprehensive annotation

texts which are not limited to seizure onset and seizure end. Part of the text data is

curated annotations using a standard annotation terminology. We only extract the

terms of seizure start and end to locate the period of ictal segments.
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Finally, using the seizure temporal information, we extracted continuous ictal and

inter-ictal data as described, and split them into 8-second segments using a sliding

window. To balance the number of ictal segments and inter-ictal segments during

training, we use 3 sliding window steps: 1 seconds for ictal segments; 8 seconds for

pre-ictal(1 hour before seizure onset) and post-ictal(1 hour after seizure end); and 30

seconds for other inter-ictal segments that are at least 1 hour away from ictal.

(a) An inter-ictal signal DWT example (b) An ictal signal DWT example

Figure 4.2: EEG signal DWT examples of 8-second EEG signal segment from channel
P3-O1 from subject CHB-1. In both (a) and (b), the first row is the original 256Hz raw
signal. From the second row to last row are sub-band coefficients: cD1(128Hz-256Hz),
cD2(64Hz-128Hz), cD3(32Hz-64Hz), cD4(16Hz-32Hz), cD5(8Hz-16Hz), and cA5(1Hz-8Hz).

Most EDF files from CHB-MIT dataset use a montage with 20 channels: ‘FP1-

F7”, “F7-T7”,“T7-P7”, “P7-O1”, “FP1-F3”, “F3-C3”, “C3-P3”, “P3-O1”, “FP2-

F4”, “F4-C4”, “C4-P4”, “P4-O2”, “FP2-F8”, “F8-T8”, “T8-P8”, “P8-O2”, “FZ-

CZ”, “CZ-PZ”, “T7-FT9”, “FT10-T8”. The duplicate channels “T8-P8”,“P7-T7”

was removed from processing. By the reason of 60Hz electrical artifacts, we applied

a band filter with frequency between 57Hz and 63Hz to the original signal data. For

an 8-second EEG signal segment with 22 channels, we extracted 135 features from

each channel as describe in the following:

Raw signal. Raw signal is the original data collected from a montage channel.

Each segment contains 2048 data points. For raw signal, we calculated 15 features:

1) median; 2) mean; 3) mean-minimum; 4) the 5th percentile of value; 5) the 25th
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percentile of value 6)the 75th percentile of value 7) the 95th percentile of value; 8)

the entropy of the distribution for signal values with occurrence probability; 9)the

number of signal zero crossings; 10) the number of signal mean value crossings; 11)

standard deviation; 12) variance; 13) root mean square; 14) kurtosis; 15) skewness.

Discrete wavelet transform (DWT) coefficients. We applied 5-level DWT

on the raw EEG signal. At every level, the input is decomposed into two sub-band

with halved frequency range: approximation coefficients A for the lower frequency

band and detailed coefficients D for the higher frequency band. The data point

number for both sub-band coefficients are reduced to half. Figure 4.2 shows two

examples of 5-level decomposition on ictal signal and non-ictal signal using DWT.

We calculated 15 features in every sub-band which are the same as the 15 features

for the raw signal.

Frequency domain features. We transformed the raw signal into two types

of frequency domain data. The first one is Power Spectral Density (PSD), which

describes the distribution of spectral energy on frequencies. The second one is Fast

Fourier Transform (FFT), which converts signal amplitude in the time domain to

amplitude in the frequency domain. For the two frequency domain data series, we

computed the top five peaks of energy/frequency and amplitude/frequency pairs as

features.

Autocorrelation. The last transforming process is calculating the correlation of

the raw signal with a time delay version of itself. The high autocorrelation shows the

signal is similar to its copy after a gap of time. We computed all correlation/delay

time pairs of the raw signal and extracted the first five correlation peaks as our

features.
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Table 4.2: CHB-MIT dataset testing results.

Channel-based Segment-based Case-based

Subject acc spe sen AUC acc spe sen AUC acc spe sen

CHB-1 95.37 97.66 79.74 97.18 97.95 98.4 94.88 96.63 92.42 91.52 100

CHB-2 97.81 99.05 80.36 98.71 99.31 99.43 97.71 98.57 95.45 95.12 100

CHB-3 95.05 97.32 81.23 97.19 96.98 96.84 97.8 97.32 83.92 81.63 100

CHB-4 97.37 98.88 58.95 96.04 95.8 97.9 85.26 91.58 94.82 94.33 100

CHB-5 92.9 97.33 70.77 94.13 94.85 95.99 89.17 92.57 77.58 75.47 100

CHB-6 97.89 99.17 80.78 98.00 95.48 97.37 57.42 67.39 84.61 88.09 70

CHB-7 97.87 99.39 77.49 96.21 98.51 99.16 89.94 94.54 96.66 96.29 100

CHB-8 78.87 81.30 74.31 86.79 85.67 80.45 95.45 87.95 29.72 18.75 100

CHB-9 87.2 86.91 91.83 96.44 84.6 83.85 96.79 90.31 63.63 58.62 100

CHB-10 81.71 82.48 75.44 89.04 95.28 96.05 88.99 92.52 85.11 82.5 100

CHB-11 86.8 93.87 67.36 91.54 79.31 72.41 98.27 85.34 26.82 21.05 100

CHB-12 84.38 86.45 79.11 86.55 87.59 92.07 77.99 80.02 88.28 88.12 90

CHB-13 68.9 76.43 37.17 57.61 81.52 84.81 51.29 59.15 74.19 75 74

CHB-14 69.39 73.34 22.37 46.38 67.54 71.6 19.21 45.40 35.56 30 80

CHB-15 70.37 94.09 36.71 73.73 86.47 99.35 54.24 66.79 92.55 94.59 85

CHB-16 90.72 93.87 32.35 78.58 94.19 97.29 57.23 67.26 83.33 94.73 66.67

CHB-17 90.04 92.64 77.34 94.28 95.44 95.89 93.24 94.56 93.10 92.30 100

CHB-18 92.93 99.15 44.72 86.34 96.14 99.25 71.83 85.53 93.75 93.02 100

CHB-19 96.3 98.4 78.83 98.04 97.91 98.95 89.12 94.03 91.67 90.91 100

CHB-20 88.84 95.46 45.02 70.35 94.91 98.4 71.85 85.12 96 95.23 100

CHB-21 92.85 95.99 58.65 91.45 97.93 98.55 91.13 94.84 88.63 87.5 100

CHB-22 97.19 98.65 82.1 98.09 98.93 99.16 96.62 97.88 95 94.59 100

CHB-23 94.52 97.85 78.69 95.38 98.91 98.83 99.3 99.06 89.65 86.36 100

All 88.92 92.85 65.71 87.74 92.23 93.57 81.08 85.41 81.63 80.36 90.75
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4.4 EEG Signal Classification

In this work, we applied eXtreme Gradient Boosting (XGBoost) [65] supervised ma-

chine learning technique for ictal and non-ictal classification. It provides a highly

efficient implementation of gradient boosting framework: predicting by using an

ensemble of multiple classifications and regression trees. The model uses features

sub-sampling and adding regulation in the cost function to avoid overfitting. An ap-

proximate algorithm for split find is used for speeding up with lower memory usage.

It also supports parallel computing to reduce training time costs.

In our processed channel-based dataset, one sample is a feature array of size 135

which is calculated from an 8-second signal segment of an EEG channel. Every

sample is labeled by “ictal” and “non-ictal”. We first used a grid search for the

hyperparameters fine-tuning on a sub-dataset, then trained the model with the whole

dataset. The total collected numbers of ictal and non-ictal samples in the CHB-MIT

dataset are 11,282 and 70,124. The total collected numbers of ictal and non-ictal

samples in the CSR dataset are 6,711 and 177,533.

To evaluate the performance of each model, we used leave-one-out validation. For

each testing subject, we train the model using all segment data from other subjects.

We implemented three types of testing on the model. The first one is segment-based

testing, which is a commonly used testing method in previous studies. Every pro-

cessed segment from the testing subject is applied to the seizure detection model.

According to model’s prediction, we calculated four metrics: 1) Accuracy = the num-

ber of correct segment prediction/ number of total testing segments; 2) Specificity =

the number of correct non-ictal segment prediction/ number of total non-ictal testing

segments; 3)Sensitivity = the number of correct ictal segment prediction/ number

of total ictal testing segments; 4) Area under the curve (AUC) = the area percent-

age under the Receiver Operating Characteristics(ROC) curve with true positive rate
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against the false-positive rate using threshold from 0 to 1. The next one is the channel-

based testing. Since our model makes a weak prediction on each channel, the same

four metrics can be calculated for all channel results.

The last testing is based on EEG recording cases. A full EEG recording from a

patient can be split into four categories: 1) Ictal cases: from 4 seconds before seizure

onset to 4 seconds after seizure end; 2) Pre-ictal cases: from 1 hour before seizure

onset to 2 minutes before seizure onset; 3) Post-ictal cases: from 2 minutes after

seizure end to 1 hour after seizure end; 4) all periods other than ictal, pre-ictal and

post-ictal are inter-ictal cases. A single case may be naturally divided into multiple

cases because there are gaps between EDF files. An 8-second sliding window with a

1-second sliding step is implemented during case testing. An ictal case is evaluated

as pass if any 8-second segment in the case is predicted as positive by the model.

A non-ictal case (inter-ictal, pre-ictal, and post-ictal) is counted as pass if none of

all 8-second segments in the case is predicted as positive by the model. The case-

based testing is an upper view of model detection performance on long-term EEG

monitoring. We calculated three metrics for case-based testing: 1) Accuracy = the

number of passed cases/ number of total testing cases; 2) Specificity = the number of

passed non-ictal cases/ number of total non-ictal cases; 3)Sensitivity = the number

of passed ictal cases/ number of total ictal cases.

Accuracy is used to evaluate the overall correct labeling rate of the model. Speci-

ficity shows the performance of the model when recognizing non-ictal data. Higher

specificity implies a lower false detection rate. Sensitivity expresses the accuracy of

the model when facing ictal data. Higher sensitivity implies a low rate of missing

detection. The AUC indicates the ability of the model to distinguish the ictal and

non-ictal class.
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4.5 Result

The aim of this study is to build a channel-based classifier of ictal and non-ictal EEG

signals that can be applied to long-term seizure detection on EEG monitoring. The

model was evaluated using the CHB-MIT dataset and CSR dataset on three types.

The channel-based and segment-based evaluation used all ictal, pre-ictal and post-

ictal data, and part of inter-ictal data (extracted every 30 seconds). The case-based

evaluation used all recorded EEG data except the 2-min gap between pre-ictal and

ictal, and between ictal and post-ictal.

The experimental results of each patient in the CHB-MIT dataset are listed in

Table 4.2. The last row displays the overall measures of the database. Measures

of channel-based and segment-based testing are the average of every subject’s re-

sults, and the measurements of case-based are calculated by the accumulative case

count of all the subjects. Because the number of ictal labels and non-ictal labels

are unbalanced, the values of accuracy and specificity are very close. The segment-

based model is the ensemble of a channel-based model, so the overall segment-based

performance is improved from channel-based. The accuracy and specificity show con-

sistency in almost every subject. 18 of 23 subjects results in specificity above 90%

on segment-based testing. however, the sensitivity varies with the subject because of

different seizure characteristics. While subjects 1,2,3,8,9,11,17,21,22,23 were observed

with sensitivity above 90%, subject 14 only has 19.21% sensitivity. Case-based test-

ing shows the model’s performance on continuous EEG recording. The case-based

specificity is extremely sensitive to false positives, one false detection can fail the

whole non-ictal testing case. Meanwhile, the testing allows missing detection of ictal

segments, which leads to an increment of sensitivity comparing to segment-based test-

ing. 17 Subjects detected 100% seizure during the long-term testing and 10 subjects

obtained ≥90% overall accuracy.
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Table 4.3: CSR dataset testing results.

Channel-based Segment-based Case-based

Subject acc spe sen AUC acc spe sen AUC acc spe sen

CSR-1 94.78 97.2 73.49 93.58 97.56 98.99 84.79 91.89 89.36 89.73 87.5

CSR-2 95.85 97.85 37.31 84.39 97.61 99.49 41.78 70.64 86.96 85 100

CSR-3 96.96 98.42 20.89 81.24 98.27 99.78 19.51 59.65 86.67 92 60

CSR-4 96.32 97.87 63.01 90.28 98.22 99.45 71.66 85.55 92.59 95.65 75

CSR-5 96.5 98.07 65.31 90.54 97.89 99.07 74.09 86.58 88.14 85.71 100

CSR-6 98.28 99.34 52.22 94.34 99.13 99.73 71.89 85.81 97.06 96.67 100

CSR-7 91.64 95.65 31.7 73.14 93.97 98.89 19.81 59.35 77.5 79.41 66.67

CSR-8 98.94 99.81 76.51 98.49 99.4 99.98 84.26 92.12 100 100 100

CSR-9 88.43 88.92 38.92 77.72 95.09 95.51 50.7 73.11 68.97 68 75

CSR-10 97.75 98.5 38.28 94.02 98.74 99.41 45.26 72.33 90.91 89.66 100

CSR-11 98.62 99.48 57.49 95.44 98.8 99.52 64.62 82.07 82.61 80.95 100

CSR-12 94.91 98.26 45.07 85.60 96.62 99.49 53.23 76.36 87.5 85.18 100

CSR-13 87.01 88.72 24.82 70.25 88.37 90.14 34.24 56.83 66.67 63.83 85.71

CSR-14 93.94 94.18 23.68 83.37 93.26 93.4 42.5 82.94 57.89 50 100

CSR-15 92.07 97.91 3.17 68.36 93.78 99.69 3.24 51.46 85.71 96.55 33.33

CSR-16 97.7 98.85 62.33 91.51 98.9 99.96 66.39 83.17 100 100 100

CSR-17 96.09 97.34 14.01 76.90 97.38 98.29 29.23 63.76 78.94 75 100

CSR-18 96.5 97.04 13.51 77.40 96.34 96.69 29.41 63.05 75 78.57 50

CSR-19 98.36 99.44 44.44 86.74 98.79 99.78 48.82 74.30 95 94.73 100

CSR-20 99.2 99.89 54.97 89.37 99.35 99.94 61.84 80.89 100 100 100

CSR-21 79.92 80.26 71.62 86.45 84.52 84.74 83.78 84.28 85.71 83.33 100

CSR-22 97.46 99.46 50.68 92.65 98.68 99.85 91.89 85.46 96 95.45 100

CSR-23 98.87 99.91 66.81 95.92 99.24 99.96 76.92 88.44 100 100 100

All 95.05 96.62 44.79 85.99 96.52 97.90 54.34 76.09 85.69 85.78 85.53
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Table 4.3 reports the model performance results of each patient in the CSR

dataset. Comparing to the CHB-MIT dataset, the results show a more varied detec-

tion quality due to multiple data sources of the CSR dataset. Such a reason results

in low average sensitivity of 54.34% for segment-based testing. On the contrary, good

results still obtained on specificity (averaging 96.62% and 97.90% for channel-based

and segment-based). The robust performance on non-ictal data is proved in the case-

based evaluation: during the 2093 hours testing, the pass rate of non-ictal cases is

85.78%. Perfect results were obtained for subjects 8, 16, 20, and 23 (about 280 hours

total recording length), which means all seizures were detected and no false alarm

occurred.

4.6 Discussion

In this work, we developed an automatic channel-based cross-patient seizure detection

model on EEG signals. The model has two potential usages from clinical aspect, one

is a embedded component in EMU for real-time seizure alarming, another usage is

automatic marking of seizures on unannotated EEG signal files to fasten the manual

annotation process. Our work provides a new evaluation methods and results using

continuous long-term EEG recordings in CSR dataset, which can be a benchmark for

future seizure detection study using EEG signals.

We compared the performance on seizure detection of our method with the results

of other existing methods. Table 4.3 lists the comparison result, all measures are the

results of the segment-based evaluation. Nine papers using the CHN-MIT database

were included and their methods are briefly described in the background section.

Since the only other cross-patient method used one long segment for each seizure

(segment = case under the circumstance), our average case-based sensitivity 90.75%

is higher than theirs. Comparing with inter-patient and patient-specific models, even

our task is more challenging, our model’s performance still ranks in the middle. From
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another aspect, our model was tested on almost the whole recording from the dataset,

which significantly overcomes other testing data usage ratio from 0.4% to 5.87%. Our

evaluation based on long-term data simulates the model performance on real-world

EEG monitoring.

Our cross-patient model shows the seizure detection methods may result in varied

performance on different. One limitation of our model is that our model did not

consider the variety between subjects. Future work can be utilizing the demographic

data of subjects to cluster subjects into different cohorts. Then improved model can

be built based on the cohort. Besides, seizure types may be an important feature to

affect seizure detection quality. A more precise seizure type-specific model may have

better performance.

Table 4.4: Comparison table for testing results on CHB-MIT dataset.

Study acc spe sen AUC Model Type Non-ictal Data Tested(%)

Kiranyaz et al. 2014 [50] x 89.01 94.71 x patient-specific 5.87

Fergus et al. 2015 [47] x 88 88 93 inter-patient 1.99

Xun et al. 2015 [51] 77.07 x x 88.8 inter-patient 2.19

Thodoro et al. 2016 [48] x x 85 x cross-patient 0.4

Yuan et al. 2018 [52] 96.61 x x 98.47 inter-patient 2.19

Zhou et al. 2018 [54] 97.5 96.9 98.1 x inter-patient x

Park et al. 2018 [49] 85.6 91.7 80.6 x inter-patient 4.33

Alickovic et al. 2018 [12] 100 100 100 x inter-patient 3.1

Tian et al. 2019 [53] 98.3 96.7 99.1 x patient-specific x

This work 92.23 93.57 81.08 85.41 cross-patient 98.73

4.7 Conclusion

In this chapter, we propose a channel-based model for automatic cross-patient seizure

detection based on the EEG signal. We trained and tested our model using two scalp

EEG datasets: 1) a widely used public epilepsy dataset CHB-MIT dataset containing

119 lead seizures and 961 hours EEG data; 2) a diverse cross-site epilepsy dataset
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CSR dataset including 76 lead seizures and 2093 hours EEG recording. We extracted

135 features from each 8-second channel signals using signal processing methods like

DWT, autocorrelation, PSD, and FFT and used such features with labels to train

an XGBoost model. The model is evaluated using 195 seizure cases and 98.73%

of the non-seizure period, which is significantly larger than the testing of existing

work. The case-based testing results show that our model detected 90.75% lead

seizures, and achieved 92.23% overall accuracy, 93.57% specificity, 81.08% sensitivity,

and 85.41% AUC in the segment-based evaluation. The results show our cross-patient

performance of accuracy and specificity is among the top patient-specific and cross-

patient models from the currently proposed works.
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CHAPTER 5. Seizure Prediction on Scalp EEG Data

5.1 Motivation

Epileptic seizures have been marked as an “unpredictable” disorder because no prac-

tical tool was available to reliably predict seizure onset in real time [55].

For decades, long-term brain activities of epilepsy patients have been systemat-

ically captured by monitoring patients’ electrophysiological signals including Elec-

troencephalography (EEG). EEG records voltage fluctuations resulting from ionic

current within the neurons of the brain [3]. Recent approaches use time-frequency

analysis for epilepsy studies. Time-frequency approach transforms EEG data into

spectrogram, a heat map of the spectrum of signal frequencies varying with time.

Figure 5.1 displays the visual representation of EEG spectrogram images from 15

bipolar montage channels. The images are generated from a 30-second EEG record-

ing, and the original signals are the voltage differences between each electrode pair.

The human eyes can identify ictal segments by finding areas of high power with high

frequency, but it remains hard to distinguish pre-ictal from inter-ictal segments. How

to effectively and precisely detect pre-ictal period before epileptic seizures using EEG

data is an important challenge.

Since the 1970s, researchers successfully extracted relevant features to recognize

a seizure from EEG recordings [6, 7]. EEG signals are also analyzed in the frequency

domain for classification [8, 9]. Additionally, traditional machine learning methods,

such as support vector machine (SVM) and random forest, made progress on seizure

classification and prediction [10, 11]. In recent years, deep learning gains popularity

in seizure analysis with large-scale datasets. In 2014, the American Epilepsy Society,

Epilepsy Foundation of America, National Institutes of Health and a data science com-

petition platform kaggle.com (Kaggle, Inc. New York NY, USA) together launched

a competition to predict seizure with 1-hour lead time using seizure data from five
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Figure 5.1: An example of 15-channel spectrogram images. For each image, the x-axis
is frequency and the y-axis is time. A red point indicates higher energy at the time and
frequency, and the blue means a lower energy point. At around 60Hz, a power line exists
in most images. Such noise is eliminated during data pre-processing.

canines and two humans. Two artificial neural networks (ANN) methods appeared in

the final top 10 [13]. Convolutional neural networks (CNN) with spectrogram is used

to classify pre-ictal and non-ictal EEG segments and achieved high performance on

patient-specific models [66]. In addition, wearable devices for warning seizures has

been developed and tested [15, 16]. Mobile devices capturing seizure data offer great

opportunities for researchers to implement seizure prediction algorithms.

However, current seizure prediction work has two limitations: 1) although many

public seizure datasets consist of long periods of recording, the pre-ictal data is rela-

tively small because the number of recorded seizure episodes is small; 2) multi-channel

epilepsy data is larger than the data used in typical machine learning studies. The

processing and training of such data are more complicated and time consuming.
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In this work, we developed an efficient transfer learning model to extract and pre-

process EEG data, train from a base model, and evaluate the trained model using 17

patients’ data from the Center for SUDEP Research (CSR) [26]. Our contributions

are the following:

• We built transfer learning prediction models using two pre-trained deep learning

architectures and the training time is significant reduced;

• We performed a multi-channel input evaluation with a decision queue using

channel voting;

• Our transfer learning models reached 86.79% sensitivity and 3.38% false-positive

rate, which indicated the transfer learning setup achieved high prediction per-

formance using patient-specific data.

5.2 Datasets

The dataset we used in the work is from the CSR database, which contains 408

subjects with 1,622 annotated seizures. The CSR data includes more than 60 channels

of signals, such as EEG signals, EKG signals, blood pressure, peripheral capillary

oxygen saturation (SpO2), etc. Because the EEG data in CSR are collected from

different sites, the recording configurations (for example, sample rate) are not the

same. We only used the data from the largest branch in the CSR dataset, University

Hospital of Cleveland. Our work only focused on classification of two classes of data:

pre-ictal segments and inter-ictal segments. For this work, we define:

• Pre-ictal segments are EEG recordings in the one-hour period before a lead

seizure onset with a five minutes gap;

• Inter-ictal segments are selected from the period at two hours after a seizure

onset and two hours before a seizure onset.
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Here, a lead seizure is the first seizure after a 1.5-hour non-seizure period. An

example of pre-ictal segments and inter-ictal segments extraction is illustrated in

Figure 5.2. To better distinguish pre-ictal data from ictal signals, we added a 5

minutes gap between a pre-ictal segment and the seizure onset point. In the example,

we did not extract the pre-ictal segment during the period between Seizure Onset 2

and Seizure Onset 3 because the gap between the two seizure is less than 1.5 hours.

We did not extract the inter-ictal segment during the period between Seizure Onset 1

and Seizure Onset 2 because the gap between the two seizure is less than 4 hours. By

the reason that part of the patients’ data is split into pieces by non-recording period,

we did not include seizures that occurred in the first hour of a continuous recording.

We randomly select 20 subjects’ data from the database, each one contains at least

three seizures and recorded with a sample rate of 200Hz. According to our lead seizure

definition, 3 patients only have 1 pre-ictal segment, so we removed them from our

final results.

Figure 5.2: An example of our pre-ictal segments and inter-ictal segments extraction
method. The horizontal black line is the timeline. The vertical red lines indicate the start
points of seizure. The red dashed boxes cover the periods of the pre-ictal segments, and the
green dashed box covers the period of the inter-ictal segment.

Data statistics of the 17 patients from CSR dataset are shown in Table 6.1. The

total pre-ictal segments used in the experiment are 53. The average EEG recording

length from the 17 patients is above 88 hours. The epilepsy seizure data from the

CSR dataset is stored in two parts: digital signal data is stored as EDF files while
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Table 5.1: The summary of the 17 patients randomly selected from the CSR dataset.

Patient Seizure number Lead seizure number Total recording time (Hours)

Patient1 4 4 74.29

Patient2 4 4 77.43

Patient3 7 2 166.9

Patient4 5 2 112.44

Patient5 3 3 66.11

Patient6 14 2 44.48

Patient7 4 3 132

Patient8 5 2 94.85

Patient9 4 3 65.68

Patient10 8 5 139.62

Patient11 5 4 110.34

Patient12 3 3 41.93

Patient13 6 2 120.47

Patient14 4 3 49.03

Patient15 6 4 64.45

Patient16 4 4 71.02

Patient17 6 3 75.28

Total 92 53 1506.32

annotation data is stored as text files. An EDF file consists of an EDF header which

stores metadata for the EEG signals, following the digital data for each channel. An

annotation file contains rows of annotations in the corresponding EDF file, each row

includes a timestamp and an annotation term. All the files for a visit are compressed

into a zip file. In CSR dataset, the annotation files stored comprehensive text data,

which includes curated annotations using a standard annotation terminology. To

generate our training and testing datasets for this work, we first read all annotation

files, then loaded and stored all time stamp of “seizure onset” and “seizure end”

annotations. Next, we used the timestamps to locate the seizures from start to stop,
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which is the period of ictal. Finally, using the seizure temporal information, we

extracted pre-ictal and inter-ictal data as described, and split them into 30-second

sliding window clips. To evaluate the performance of each model, we used k fold

validation, where k is the number of lead seizures for each patient. Each testing

dataset includes a 1-hour pre-ictal segment and a 5-hour inter-ictal segment. The

other pre-ictal segments and inter-ictal segments are used for the training process.

Because the total time of inter-ictal segments is always large than the total time of

pre-ictal segments, we used 15 seconds as sliding step length to enlarge the size of

training pre-ictal data and use no overlap for inter-ictal data. 80% of training pre-ictal

clips and the same number of training inter-ictal clips for each patient are fed to train

the patient-specific models, and 80% of training data are used for model validation

during training. As a result, query, unzipping, and data extraction becomes time-

consuming procedures. To build a more researcher-friendly seizure data platform, we

developed the SeizureBank as described.

5.3 Pre-processing

The CSR data uses referential montages that the channels share a reference electrode.

We first selected and translated the CSR referential montages to 15-channel bipolar

montages, and then split them into 5 groups: a) “FP1-F7”, “F7-T7”, “T7-P7”; b)

“FP1-F3”, “F3-C3”, “C3-P3”; c) “FP2-F4”, “F4-C4”, “C4-P4”; d) “FP2-F8”, “F8-

T8”, “T8-P8”; e) “Fp1-FZ”, “FZ-CZ”, “CZ-PZ”. Each group is an input channel and

the output is a channel vote. Then we used Short-time Fourier Transform (STFT) to

generate the time-frequency domain data after splitting data into 30-second clips for

each channel in each group. Because the sampling rate of our dataset is 200Hz, the

spectrogram image only covers the frequency from 1 to 100Hz. Also, we removed the

frequency between 57Hz and 63Hz because the common high power noise is around

60Hz.
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5.4 Classification Model

We developed a transfer learning model to classify 30 seconds EEG spectrogram im-

ages into two categories: Pre-ictal or Inter-ictal. The source data is a time-series

multi-channel EEG recording. We processed (including data corp, frequency filter-

ing, and the short-time Fourier transform) the data into multi-channel spectrogram

images. For the transfer learning model, we choose VGG19 and ResNeXt50 as the

base model to extract the spectrogram image features, and added fully connected

layers on the top of the base model, then output a prediction of pre-ictal or inter-ictal

classification. After our transfer learning model is trained, we implemented a decision

queue as a status checking window to make a final decision: warning or safe, which is

a more intuitive result for a continuous testing stream. With the benefits of transfer

learning and the decision queue, the system can make a continuous seizures warning

during a pre-ictal period, and indicate safe status during an inter-ictal period.

Data preprocessing creates five 3-channel spectrogram images for each 30-second

EEG data. Every image is labeled with pre-ictal or inter-ictal. For a patient with

k lead seizures, we first selected the first pre-ictal segment and randomly select a 5-

hour continuous inter-ictal segment as the testing data, then use other (k-1) pre-ictal

segments and rest inter-ictal segments as the training. To balance the training data,

we randomly selected a set of non-continuous inter-ictal data so that the number of

the two classes is the same. We repeated the training process for k times, so k testing

models were built for the patient with k lead seizures. The pre-trained model weights

using ImageNet dataset were loaded and froze at the start of the training process.

VGG19 and ResNeXt50 are the two pre-trained models we used in the experiments.

The top of the transferred model was replaced with 3 customized fully connected

layers and output the probability of each category. Every model is trained for 25

epochs, and we selected the weight with the highest training accuracy for evaluation.
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Figure 5.3: An example of prediction decision queue with threshold of 8. At the top is
the time-series prediction results of input clips using pre-ictal detection model. The dotted
box displays the status of the prediction decision queue at t1,t2 and t3, and the solid line
boxes on the left show the final prediction results at t1,t2 and t3.

Instead of using general 1-input and 1-output model, our model used a channel

voting strategy with 5-input and 5-output. For each given 30 seconds EEG data, we

can generate 15 spectrogram images using EEG montage, and then split them into 5

input channels, each channel contains 3 images. Next, our model can output 5 votes

for each input channel. If more than two of the outputs vote to pre-ictal, we mark

it as red for the prediction; if the pre-ictal vote number equals to 2, we mark it as

white; if all 5 votes are inter-ictal, we mark it as green. Then the output will be

a series of flags with red, white, and green. If we decide the final results according

to every single flag, a wrong pre-ictal prediction (false positive) will lead to a wrong

seizure warning even if the wrong prediction occurs only once. To reduce the chance

of reporting wrong pre-ictal warning by our model, we added a decision phase after

the training process. As shown in Figure 5.3, the decision phase produced a series

of flags. We used a prediction decision queue to make a final decision. The queue
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is constructed with a small memory that stores recent vote results of pre-ictal and

inter-ictal. The total number of red flags in the queue is calculated and a warning

will be triggered when the number is above a threshold.

Figure 5.3 displays an example of how the final prediction is made by the prediction

decision queue. In our experiments, the size of the decision queue is 10 and threshold

of red flags in the queue is 8. At time t1, two pre-ictal prediction (red) occurs, but six

outputs are inter-ictal. Under this circumstance, the number of red flags is 2, so the

final decision is safe. Similarly, at time t2, more red flags entered into the queue but

the number was still under the threshold, so the final decision is neutral. Finally, at

time t3, eight outputs in the queue are red and two are white, then the final output

turns to a seizure warning. For our evaluation, in a pre-ictal testing segment, if a

warning decision is made, then the coming seizure is predicted. On the contrary,

an unsuccessful seizure warning is counted if no seizure occurs during the pre-ictal

testing period.

We used labeled continuous EEG data from 17 patients in the CSR dataset for the

testing. The total number of tested lead seizure is 53, and the total tested inter-ictal

duration is 265 hours. To evaluate the performance of our seizure prediction methods,

we calculated two commonly used metrics in the previous seizure prediction research.

They are Sensitivity and False Positive Rate (FPR). Their formulas are listed in the

following:

• Sensitivity = Number of Warned Seizures
Number of Total Seizures

;

• FPR = False Positive Number
Total Prediction Number

;

Sensitivity equals to the true positive rate of the testing. In our case, sensitivity

is the ratio of the correct final warning decision and total seizure number. FPR

equals to the ratio of the total number of incorrect warnings and the total possible

decision numbers during testing inter-ictal segments. Based on the requirements we

84



mentioned, our expectation will be the results of high sensitivity and low FPR. The

details of the evaluation results are shown in the next section.

Table 5.2: The performance of the transfer learning with two base models: VGG19,
ResNeXt50. Two measurements are Sensitivity and FPR (False Positive Rate).

Truong [66] VGG19 ResNeXt50

Subject Sen (%) FPR (%) Sen (%) FPR (%) Sen (%) FPR (%)

Patient1 75 4.44 100 2.43 100 1.54

Patient2 75 3.70 100 2.58 100 0.77

Patient3 50 1.41 100 6.25 100 0.0

Patient4 100 0 100 6.67 100 2.58

Patient5 100 0.82 100 0.0 100 1.03

Patient6 50 4.34 0.0 4.62 0.0 2.87

Patient7 66.67 1.0 66.67 0.0 33.33 0.0

Patient8 100 6.12 50 3.54 100 0.98

Patient9 66.67 1.22 66.67 0.0 100 3.89

Patient10 40 0.28 80 0.34 80 4.75

Patient11 75 2.97 75 5.37 100 3.71

Patient12 100 7.42 100 6.15 100 4.04

Patient13 100 7.07 50 0.14 100 0.17

Patient14 100 7.04 66.67 0.40 66.67 2.24

Patient15 100 5.71 100 4.64 100 4.95

Patient16 100 0.0 100 0.23 100 0.17

Patient17 100 2.78 100 4.06 100 6.43

Average 79.25 3.16 83.02 2.79 88.67 2.13
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5.5 Result

Our experiments have been developed using TensorFlow version 1.6. The testing en-

vironments are macOS High Sierra operating system, 2.7GHz Intel Core i5 CPU, and

8GB RAM. Testing speed can be improved by using higher-end hardware and GPUs

in the future. From a total 20 random selected patients from CSR, we eliminated 3

of them with only one lead seizure. The results from 17 patients are shown in this

section.

Seizure warning performance. Table 5.2 displays the evaluation results from

selected 17 patient from the CSR dataset. Both models perform excellent on almost

half of the patients (1, 3, 4, 5, 12, 15, 16, and 17), they predicted every seizure during

the test. However, for patient 6, neither of the models caught the two testing seizures.

In general, both VGG19 and ResNeXt50 model produced low FPR (3.4% and 3.38%

on average), and ResNeXt50 model performed slightly better on sensitivity, which is

86.79% on average.

Figure 5.4 shows the real-time monitory history of two testing examples. The

x-axis is the index of the continues 30-second sliding inputs, the y-axis is the value

of two results’ representation (probability and the number of positive votes from 5

input channels) at of each input. The probability (the blue line) is calculated by

averaging the softmax output of positive (pre-ictal) from 5 channels, it ranges from

0-100%. The positive count (red bars) is the sum of the number of channels that

output positive predictions. On the left end part of Figure 5.4a, even with a short

period of low average positive probability, a correct warning is generated because of

a list of continuing outputs with positive vote larger or equal to 2. In Figure 5.4b, we

can see many spikes of high probability points, but no incorrect warning is generated

because they are filtered by the decision queue.
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(a) Pre-ictal testing

(b) Inter-ictal testing

Figure 5.4: Monitoring of the evaluation results of patient 2 using ResNeXt50 transfer
learning model : (a) a 1-hour pre-ictal testing segment, (b) A 2.5-hour inter-ictal testing
segment.

5.6 Discussion

Clinical significance. In this work, We introduced a transfer learning approach to

predict seizures using EEG signals in the time-frequency domain. Since epilepsy is

“unpredictable” and the complete reasons that trigger a seizure is still unclear. Our

results show a possible solution by recognizing abnormal pre-ictal EEG signals. The
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lead time of our seizure prediction allows patients and doctors to prepare for the

coming seizures which could reduce the risk of injures or death in real lives.

Definition of pre-ictal period. There is no formal definition of pre-ictal in the

seizure prediction domain. Lead time before seizure can be from minutes to hours.

How to determine a desirable lead time of seizure onset is an on going question. If

the lead time is too short, the prediction problem is closer to a detection problem. If

the time is too long, the biological mechanism may be uncoupled.

Training efficiency. One advantage of transfer learning is the significantly reduced

training time if using the pre-trained parameter weights. For each testing model,

we set the maximum training epoch number to 25. In other words, the model only

learned the whole dataset 25 times, which is much less than the usual training process

for the same architectures without pre-loaded weights.

Trigger of the seizure warning. In this work, we used an intuitive structure and

prediction decision queue to control the final results after using the trained model. A

more intelligent function can be developed in this part for a better result. However,

even the best model may predict a false result. Because of the importance of the high

sensitivity, ignoring a positive answer is always critical for seizure prediction.

Transfer learning fine-tuning. During the training process, we loaded the Im-

ageNet pre-trained weight directly and only trained the top fully connected layers.

By the reason that ImageNet classification and EEG spectrogram classification have

differences, fine-tuning of the pre-trained weights is a potential way to improve the

result.

Prediction quality. Another limitation is that our work only performed the predic-

tion within the 1-hour pre-ictal period by given a “True or False” answer. Predicting

seizure in one hour period provides a time delay for doctors and patients to use medi-

cal methods that can prevent seizure. However, a more precise prediction of the time

before a seizure is more important and useful. For example, if a 60-minute lead time
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seizure warning occurs when a patient is driving, the patient may choose to drive to

a safe place, for example, home or hospital; on the other hand, if the warning is a

5-minute lead time seizure warning, the patient needs to stop the vehicle as soon as

possible. In addition, a warning indicates a potential seizure “in 60 minutes” and

“exactly after 60 minutes” is different. “In 60 minutes” means an uncertain period of

time, while “exactly after 60 minutes” requires very high accuracy. In this project,

we reduced the “exactly” problem to the prediction of a seizure within 5-minute lead

time and provide a method to output a reliable prediction under one minute by par-

tially analyzing a EEG segment. Next step is to precisely calculate the probability

of a coming seizure, for instance, weather forecast, which is more reasonable in real-

world cases. Moreover, estimating the exact time before the seizure onset is another

future work.

5.7 Conclusion

In this chapter, we proposed a framework, including data pre-processing, a multi-

channel input transfer learning approach using pre-trained models, and a prediction

decision queue using multi-channel voting. We trained a patient-specific model with

the deep learning approach from the CSR EEG database leveraging CSR’s large-scale

labeled epilepsy patient data. A seizure prediction evaluation was performed using

53 pre-ictal EEG signal segments and 265 hours inter-ictal EEG data. Our results

showed that after 25 epochs training, the transfer learning model using ResNeXt50

pre-trained model reached 86.79% sensitivity and 3.38% false-positive rate, which

indicated the transfer learning setup for patient-specific seizure prediction is efficient

and convincing.
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CHAPTER 6. Seizure Localization on Stereoelectroencephalography

Data

6.1 Motivation

The ultimate goal for the epilepsy study is to find the reason for seizures and pre-

vent it from happening again. In the clinical site, surgeries include vagus nerve

stimulation (VNS), focal cortical resection, lobectomy, hemispherectomy and corpus

callosotomy [67], may be the part of the treatment. If the resected area contains the

brain part that leads to initiating the seizures, the patient will be seizure-free at least

for years. The epileptogenic zone by definition is “the area of cortex that is necessary

and sufficient for initiating seizures and whose removal (or disconnection) is necessary

for the complete abolition of seizures” [56]. How to fast and accurately locate the

epileptogenic zone remains a big challenge for epilepsy patient treatment.

Nowadays, the epilepsy monitoring unit (EMU) provides evaluation and diagnosis

to locate the seizure activities in the brain. By the reason that seizures demonstrate

differently among types and individuals, sometimes determination of the resection

zone becomes crucial and challenge. Increase the surgeries’ successful rate can reduce

the pain for patients and the risk of brain damage. Stereoelectroencephalography

(SEEG) is the gold standard for seizure localization in epilepsy studies. Neurologists

and neurosurgeons can recognize seizures by looking at the time domain SEEG signals.

Figure 6.1 represents SEEG signals from two different channels at the same time. The

neurologists annotated the start time (red dotted line in the middle) of the seizure

according to the seizure activity occurs in the red color channel. After diagnosis and

the surgery, if the patient became seizure-free, we can infer the epileptogenic zone

is inside the resection zone. The data of such seizure-free patients are valuable for

prospective studies related to seizure localization.
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Figure 6.1: Time domain SEEG signals of two channels in a 40-second window. The
channel in green is outside the epileptogenic zone and the channel in red is outside
the epileptogenic zone. The red dotted line in the middle denotes the start point of
the seizure.

Many studies are exploring convincing epileptogenic zone localization methods by

state-of-the-art SEEG processing technologies and algorithms. Grinenko et al. Fig-

ure [14] developed a pipeline to locate the epileptogenic zone using SEEG signals. The

authors discovered a specific ictal pattern of channels with seizure activities in the

time-frequency domain and called it a fingerprint of the epileptogenic zone. The pat-

tern includes three characteristics: 1) sharp transients or spikes; 2) multi-band quick

activity concurrent; 3) suppression of lower frequencies. Figure 6.2 illustrates two

time-frequency images. Figure 6.2b displays a fingerprint example in the dataset of

our work. As a comparison, Figure 6.2a illustrates an example of a non-epileptogenic

zone signal without the three characteristics. To extract such features, they applied

the Morlet wavelet transform to SEEG data near seizure onset. After filtering, ridge

detection, and masking, they extracted or computed frequency, timing, and areas to

describe the processed data. Finally, an SVM classifier was trained using a dataset

consists of 17 patients’ SEEG data. The results show the fingerprint patterns exist in

15 of 17 patients. Their EZ-Fingerprint model predicted 64 contacts and 58 of them

are inside patients resected areas. By using the resection zone as ground truth, their

model achieved 90.6% positive predictive value and 0.7% false-positive rate.

With the clear definition, the well shaped fingerprint can be easily identified by
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(a) Wavelet image of green signal in Fig-
ure 6.1

(b) Wavelet image of red signal in Fig-
ure 6.1

Figure 6.2: Time-frequency domain representation for SEEG signals in a 40-seconds
window. The x-axis is the time axis ranges from 0 - 40 seconds and the y-axis is the
frequency axis ranges from 0 - 200Hz.

machine learning algorithms. The challenge is to recognize the “bad” samples as

shown in Figure 6.3. The fast activity can be barely seen in Figure 6.3a and Fig-

ure 6.3b lacks pre-ictal pikes. To overcome this problem, we introduce a deep learning

approach for the seizure localization based on image classification. In this study, we

propose a method to locate channels inside epileptogenic zone using SEEG signals.

Our major contribution includes:

• We developed a “one-click” batch processing pipeline to pre-process SEEG data,

extract time-frequency features, predict results for each channel, and save out-

put as a image.

• We built a transfer learning model using a pre-trained ResNext50 structure and

trained with image augmentation.

• Our model achieved 88.22% accuracy, 34.99% sensitivity, 1.02% false positive

rate, and 34.3% positive likelihood rate.
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(a) Unclear fast activity. (b) Unclear spikes.

Figure 6.3: Two “bad” fingerprint examples.

6.2 Datasets

In this study, we used SEEG data of five patients from Memorial Hermann Hospital

at the Texas Medical Center, which is the primary hospital affiliate of McGovern

Medical School at UTHealth. Memorial Hermann Hospital at the Texas Medical

Center has one of the region’s largest and most comprehensive EMU. The state-of-

the-art EMU provides long-term video-EEG monitoring for adult patients. All five

patients have performed craniotomies for treatment and four of five became seizure-

free after their surgeries. A special case is Patient-1. The patient had two surgeries,

the first resection included three channels was not fully successful because it did not

avoid the seizures. After another resection with three more channels inside the area,

the patient is now seizure-free. The only case with seizures remaining after resection

is Patient-5.

We extracted one seizure for each subject recorded before the surgery. The start

time of seizures and resection areas were marked by neurologists. The EEG signal

files for processing are stored in the EDF format.
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Table 6.1: The details of collected data of five patients.

Subject sampling rate seizure free channels channels in resection area

Patient-1 1000Hz Y 172 6

Patient-2 2000Hz Y 190 3

Patient-3 2000Hz Y 134 47

Patient-4 2000Hz Y 118 14

Patient-5 1000Hz N 157 23

6.3 Pre-processing

The entire pre-processing for EEG signals is shown in Figure 6.4. The whole procedure

builds our channel-based experiment dataset includes the training data and testing

data. Using the input of the EDF files, we first extracted the EEG signal in 40-

second segments at seizure onset. For each seizure, we also extracted a 40-second

segment one minute before the extracted seizure onset segment. Then we applied

artifact removal and continuous wavelet transform on every channel and normalize

the data with the pre-ictal wavelet coefficients. Finally, we created the channel-based

wavelet image dataset. To enlarge the training set and to enhance the robustness of

the deep learning model, we generated new augmented images from each image used

for training. In this section, each step is described in detail as following.

6.3.1 Channel-based Segmentation

In this study, we focus on analyzing the signals near the start of seizures and aim

to build a classifier for channels with seizure activities and channels without seizure

activities. The whole processing is channel-based, which means we process the EEG

signal from each channel independently. Figure 6.5 shows a segmentation example on
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Figure 6.4: Workflow of SEEG signal data pre-processing.

channel RSMA2-RSMA3 from Patient-1. We extracted two parts from the original

recording, one is the ictal signal and another is the pre-ictal. Ictal segment (in the red

dotted rectangle) represents the rapid brain activity change from 20 seconds before

the seizure starts and 20 seconds after the seizure starts. The pre-ictal segment (in

the blue dotted rectangle) represents the background brain activity before the seizure

starts, which is usually much more stable than the seizure activities. Here, we chose

the pre-ictal segment from 120 seconds to 80 seconds before the seizure onset to avoid

typical spikes close to the seizure. Before CWT, we implemented electrical artifact

removal using a band stop filter at 60Hz, 120Hz and 180Hz.
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Figure 6.5: Channel-based segmentation on channel RSMA2-RSMA3 from Patient-
1.

6.3.2 Time-frequency Image Generation

The next step is transforming the SEEG signal data from the time domain to the

time-frequency domain, and save the transformed features as images. Unlike seizure

detection and seizure prediction, seizure localization is not necessary to be a real-time

task. so we used continuous wavelet transform, which is computation-consuming but

provides more details than FFT and DWT. We chose Morlet wavelet and set w0=8

for the trade-off parameter between time resolution and frequency resolution.

A common feature for EEG data is most of the signal energy is in lower frequencies

so the wavelet coefficients always have a much larger value for lower frequencies.

In Figure 6.5, the left, and right wavelet images are originally transformed from

signal data. The bright (high energy) areas are at the bottom of the image for both

the ictal segment and the pre-ictal segment. To emphasize the change but not the

absolute value of energy at different frequencies, we performed normalization of the
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ictal segment with the pre-ictal segment. At frequency f , we have the normalized

wavelet coefficients list for the ictal segment:

normalized ictal coefficient(f) = ictal coefficient(f) − mean(pre−ictal coefficient(f))
standard deviation(pre−ictal coefficient(f)

After normalization, if a significant energy change occurs at higher frequencies,

it can be recognized in the time-frequency representation (the middle wavelet image

in Figure 6.5). The example is from a channel inside a resected area, the processed

image shows important features of seizure activities include pre-ictal spikes, quick

activities, and low-frequency suppression. To better feed to the deep learning model

we used in this study and to reduce the time for model training, we reshaped and

down-sampled the original wavelet image with the size from 200x400 to 128x128.

6.3.3 Image Augmentation

We collected 771 channel-based samples from five seizures. 93 channels of them are

inside the resected area, so we label them as positive in this study. Similarly, The

data from channels that are outside the resected area are labeled as negative samples.

The ratio of positive samples and negative is 1:7.29. To balance the dataset, we

implemented five image augmentation methods on positive labeled data. The five

methods are:

• Horizontal shift: moving all pixels of the image to left or right.

• Vertical shift: moving all pixels of the image up or down.

• Zoom in: interpolating pixel values in the center part of the image.

• Zoom out. adding new pixels values outside the image.

• Brightness reduce: darkening all pixels of the image.

Figure 6.6 shows five generated images by performing five augmentation meth-

ods on an original wavelet image. Figure 6.6 (a) is the normalized wavelet image
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processed using channel RSMA2-RSMA3 of Patient-1. The horizontal shift is imple-

mented at the segmentation step during pre-processing. As displayed in Figure 6.4,

the augmented signal segments are created by sliding the ictal signal segment window

to left and right. In our experiments, we used a sliding step of one second, and the

total sliding length is five seconds in both directions. The other four methods are

used on the processed wavelet images. All augmentation results of the four types are

created by a randomly selected parameter in a range. The vertical shift range is 10%

to 30% of the image height. The zoom-in method makes the center area 10% to 30%

larger or closer. The zoom-out method makes the area in the original image 10% to

30% smaller or further away. The brightness reduces the method darkens the image

between 20% to 50%.

Another advantage of image augmentation is the enlarged image dataset can im-

prove the generalization ability of the model. Considering we only have five collected

seizures, the total sample number is relatively small compared to a typical deep learn-

ing task. Using image augmentation, we increased the total image sample from 771

to 14,916.

6.4 Classification Model

The aim of this study is to build a classification model to automatically identify the

epileptogenic zone using SEEG signals near the onset of seizures. We introduce a

deep learning approach to the problem. Our model uses a wavelet RGB image with

size 128x128x3 as the input, the output is a prediction to weather the signal of the

image is inside of the epileptogenic zone or not. Our experiment includes two deep

learning structure. The first one in Figure 6.7 is a stacked three-layer convolutional

neural network. Each layer contains a convolutional layer, a max-pooling layer, and

a batch normalization layer. The second structure in Figure 6.8 is using a transfer

learning method as a feature extractor. The transfer learning structure is ResNext50
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(a) Original image. (b) Horizontal shift. (c) Vertical shift.

(d) Zoom in. (e) Zoom out. (f) Brightness reduce.

Figure 6.6: Examples of five augmentation methods performed on a original wavelet
image. The image is created by signals from channel RSMA2-RSMA3 of Patient-1.

with weights pre-trained using the ImageNet dataset. Both deep learning structures

are connected to two stacked fully connected layers with a two-class classification

output.

For comparison, we trained a model using EZ-Fingerprint on our dataset. We

ran the EZ-Fingerprint MatLab application to extract features and build an SVM

model using their pipeline. We also include the pre-trained EZ-Fingerprint model

introduced in [14] using seizures from 17 patients. Its testing results are shown in the

next section.

We evaluated our model using the leave-one-out method to avoid data leaking

99



Figure 6.7: Stacked CNN model structure.

Figure 6.8: Transfer learning model structure using ResNext50.

between the training and testing set. We selected one subject for testing and the

other four patients for training and repeat the process five times. The testing set for

the selected subject is built using 11 segments: 1) 40 seconds segment with the seizure

start time at the center of the image; 2) five left shift segments with a sliding step of 1

second; 3) five right shift segments with a sliding step of 1 second. A channel will have

a prediction probability at each segment. We computed the average probability for

every channel. If the probability is higher than 0.6, we count the channel as positive.

For the training set, we implemented two different labeling methods: 1) manually

label positive to the image with shape similar to a fingerprint; 2) label positive to

the channels inside the resected areas. We created two training sets: 1) a smaller

and unbalanced dataset only includes original and horizontal shift wavelet images; 2)

a larger and balanced dataset using all the augmentation methods. Besides, we add

weight to positive samples in the smaller dataset. During training, we used 20% of
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the training data to validate the model at the end of every epoch. The validation

step can avoid the over-fitting problem by early stop when the validation loss starts

increasing.

Since there is no ground truth for the epileptogenic zone, we assume that the

resected area of patients is the same as the epileptogenic zone. If the model prediction

is inside of the resection, we assume it is a TP (True Positive). On the contrary, if the

model prediction is outside of the resection, we assume it is an FP (False Positive).

We also define that the FN (False Negative) is non-epileptogenic zone prediction

inside of the resection and TN (True Negative) is non-epileptogenic zone prediction

outside of the resection. With the number of TP, FP, FN, and TN, we can compute

four measurements for evaluation:

Accuracy = TP + TN
TP + FP + FN + TN

Sensitivity = TP
TP + FN

False Positive Rate (FPR) = FP
FP + TN

Positive likelihood Ratio (PLR) = Sensitivity
FPR

We use PLR to show the combined performance of sensitivity and FPR. The

higher PLR means the more increased probability for the model to find channels inside

resection area. By the reason that the channel number in the resected area varies from

subjects, we summary the results on multiple testing subjects by directly average the

value of accuracy, sensitivity, and false-positive rate. For instance, Patient-2 has 3

channels in resection and Patient-3 has 47 channels in resection. If a model predicts

2 positives on each case, the sensitivity by definition equals 2x2/(3+47) = 8%, which

does not show that the model performs well on Patient-3. Instead, we calculate the

sensitivity equals to (2/3 + 2/47)/2 = 35.46%.
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6.5 Result

The goal of this work is to develop a deep learning model that can distinguish channels

inside the epileptogenic zone from channels outside the epileptogenic zone by the

time-frequency images. Table 6.2 shows the experiments results on the models using

different structures, with/without augmentation and labeling methods. The model

resnext50-a-fp performs best on Accuracy, FPR, and PLR. Although model cnn-na-

r and cnn-a-r has better sensitivity, the two models have much higher FPR. The

measurement PLR combines sensitivity and FPR to show the confidence level for

positive predicted by a model.

Table 6.2: Model performance comparison. cnn: convolutional neural network
model. resnext50: resnext50 transfer learning model. na: unbalanced non-
augmentation dataset. a: balanced augmentation dataset. fp: labeling using
fingerprint wavelet pattern. r: labeling using resection zone.

Model Acc (%) Sen (%) FPR (%) PLR

cnn-na-fp 85.35 33.93 3.63 9.35

cnn-na-r 81.36 38.34 13.43 2.85

cnn-a-fp 86.02 31.64 4.92 6.43

cnn-a-r 80.22 36.70 16.67 2.2

resnext50-na-fp 87.65 27.19 1.73 15.72

resnext50-na-r 86.24 12.5 1.12 11.16

resnext50-a-fp 88.22 34.99 1.02 34.3

resnext50-a-r 86.74 15.35 1.73 8.87

We compared the performance between EZ-Fingerprint and this work, the results

are listed in Table 6.3. The results include four patients who are seizure-free after

surgeries. The EZ-Fingerprint model trained on the dataset in this study only pre-

dicted one positive for all 4 seizures, which indicates the model may underfit on the
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dataset. The pre-trained EZ-Fingerprint model shows similar performance on our

data to the performance in the previous study [14]. They reported 15.26% sensitivity

and 0.7% FPR evaluated on their 17 patients dataset, and the same model averages

21.37% sensitivity and 1.33% FPR in this study. Our proposed model resnext50-

a-fp overcomes the EZ-Fingerprint model at all aspects overall. The 34.3 PLR is

also higher than the PLR of the EZ-Fingerprint model, which is 21.37/1.33 = 20.04.

Breaking down the results by subjects, our model can predict equal or more chan-

nels inside the resection zones and only performed worse on FPR for Patient-1 by

predicting one more channel outside the resection area.

Table 6.3: Performance comparison between EZ-Fingerprint and this work.

Subject Model # Inside # Outside Acc (%) Sen (%) FPR (%)

Patient-1

EZ-FP 0 0 96.51 0 0

EZ-FP pre-trained 3 1 97.67 50 0.6

resnext50-a-fp 4 2 97.67 66.67 1.2

Patient-2

EZ-FP 0 0 98.42 0 0

EZ-FP pre-trained 1 7 95.26 33.33 3.74

resnext50-a-fp 1 0 98.95 33.33 0

Patient-3

EZ-FP 0 0 64.93 0 0

EZ-FP pre-trained 1 0 65.67 2.13 0

resnext50-a-fp 2 0 66.42 4.26 0

Patient-4

EZ-FP 1 0 88.98 7.14 0

EZ-FP pre-trained 0 1 87.29 0 0.96

resnext50-a-fp 5 3 89.83 35.71 2.88

Average

EZ-FP 0.25 0 87.21 1.785 0

EZ-FP pre-trained 1.25 2.25 86.47 21.37 1.33

resnext50-a-fp 3 1.25 88.22 34.99 1.02

On the four seizure-free patients, our proposed model gave 17 positive (sum of
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numbers inside left circle in 6.9) and EZ-Fingerprint gave 14 positive (sum of numbers

inside right circle in 6.9). The two methods have an agreement on five positive

predictions. In the five channels, four (80%) of them are inside the resection zone.

Based on the current dataset, we can say if a channel is predicted as positive by both of

the machine learning methods, it has a high probability to be inside the epileptogenic

zone. Only one of the disagreed positive predictions made by EZ-Fingerprint is inside

the resection zone while our model predicted eight more channels inside the resection

area than EZ-Fingerprint did. The difference shows the deep learning model can

catch more features from the time-frequency images so it can recognize more true

positive samples. As shown in the bottom half of 6.9, the EZ-Fingerprint model has

two times false positive on disagreed predictions. Because all of the four patients are

seizure-free, the false-positive channels should not be inside epileptogenic zones.

Figure 6.9: Venn diagram of overall performance for EZ-Fingerprint and this work.
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6.6 Discussion

Clinical significance. In this study, we introduced an epileptogenic zone localization

methods using SEEG signals leveraging wavelet transform and deep learning. Existing

clinical method requires multiple tests and presurgical evaluations to estimate the

epileptogenic zone for resection. Our method together with multiple approaches may

contribute to decide and reduce the resection area. Our model shows a 34.99% recall

on electrodes in the resected area. The resected area is larger than or equal to the

epileptogenic zone for a seizure-free patient, so the real recall may be higher than

the results of the experiment. In our dataset, Patient-1 had two surgeries, the first

one with three resected channels was not successful, and the second one with another

three channels leads the patient to seizure-free. We can claim that the second resection

contains a more important area that causes seizures. According to the results, we

found the prediction agreement by both models has a high probability inside the

epileptogenic zone. In the Patient-1 case, two of four agreed channels are inside the

resection zone of the second surgery, one in the resection zone of the first surgery and

one outside both resection areas. It indicates that our model made a better choice of

resection than the real resected area in the first surgery. If the results of our model

were considered, the success rate of the surgeries may be increased. For case Patient-5

in 6.4, the two outside resection agreements may include the real epileptogenic zone

but need further proof.

Usability and running time. A Matlab-based application using the algorithm in

[14] had been released to the public. The whole pipeline can be processed using a

graphic user interface so it is friendly to neurologists. However, the program includes

many manual works like selecting the start and endpoint of quick activities. Our

pipeline is more straight forward because the deep learning model extracts the from
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Table 6.4: Case study on Patient-1 and Patient-5.

Subject Model # inside # outside # resection # outside agreement

Patient-1 EZ-FP pre-trained 1 3
3 3

Surgery 1 resnext50-a-fp 1 5

Patient-1 EZ-FP pre-trained 3 1
6 1

Surgery 1&2 resnext50-a-fp 4 2

Patient-5
EZ-FP pre-trained 0 24

23 2
resnext50-a-fp 0 3

the images automatically. Besides, our program is faster on the pre-processing. The

running speed performance comparison is shown in 6.5. Our pipelines differ on the

order of processing: our pipeline implements artifact removal before CWT but EZ-

Fingerprint does in a reversed way.

Table 6.5: Process running time of the two pipelines. The testing machine is Mac-
Book Pro 2015 with 2.7GHz Intel Core i5 CPU, and 8GB RAM.

Process EZ-Fingerprint This work

CWT 709 seconds 437 seconds

CWT + ICA Artifact Removal 5488 seconds 511 seconds

Dataset size of this work. A limitation of this work is the size of the dataset. We

reported our preliminary experiments on five subjects. Future work will include more

SEEG data. Because seizure signal varies from subjects, more subjects involved in

the study can improve the performance and generalization ability of our deep learning

model.

6.7 Conclusion

In this study, we developed a “one-click” batch processing pipeline to pre-process

SEEG data, extract time-frequency features, predict the results for each channel, and

106



save the output as an image. The core of this work is a deep learning method for

seizure localization based on image classification. Our experiment shows a transfer

learning model performs best. The model uses a pre-trained ResNext50 structure and

was trained with an image augmentation dataset labeling by fingerprint. Our model

achieved 88.22% accuracy, 34.99% sensitivity, 1.02% false-positive rate, and 34.3%

positive likelihood rate. The results indicate an improvement in seizure localization

from previous work.
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CHAPTER 7. Conclusions and Future Work

In the last chapter, we first summarize our work in the dissertation and then conclude

our contribution to each chapter. At last, we provide possible improvements in our

methods and potential direction for future work.

7.1 Conclusions

Our goal of this dissertation is to provide a time-saver solution for current epilepsy

researchers. We also report our experiments on EEG data analysis on a large cross-site

database. We developed an end-to-end pipeline for the machine learning approach

on EEG signal classification. The multi-site input data is the CSR epilepsy data

collected from seven individual epilepsy centers. In Chapter 3, we described how

our system extracts epilepsy temporal information from EMU patient reports, EEG

signal files in EDF format, and annotation text files. The system includes a graphical

interface for temporal data query and visualization for epilepsy cohort discovery. In

Chapter 4, we introduced an automatic channel-based cross-patient seizure detection

model and evaluated it on two scalp EEG datasets using continuous long-term EEG

signals. In Chapter 5, we built a transfer learning model for patient-specific real-time

seizure prediction. Finally, in Chapter 6, we provided a deep learning approach for the

cross-patient seizure localization model leveraging the epileptogenic zone fingerprint

technique. Comparing to existing methods, our work contributes to the following

aspects:

Large-scale temporal information extraction. Our ontology-guided multi-site

epilepsy temporal information system processed 2,497 epilepsy patients with 3,169

reports from 7 epilepsy centers across the U.S. and Europe. We extracted 451,076

temporal annotations from 42,239 EEG files. Moreover, the prospective system is

scalable for new incoming epilepsy data and new independent sites. We constructed
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vocabulary sets including 46 standard annotation terms for ontological annotation

elements and fuzzy matched 6,687 annotations for high-quality queries. Annotation

data, EDF header data, and patient report data make the temporal data system a

comprehensive information database for epilepsy study.

Prospective temporal data quality measurements. Our system prospectively

integrates the epilepsy temporal data in CSR once a week. We automatically cal-

culated the data quality measurements for the epilepsy temporal data. The results

from September 4th, 2019 version show the CSR dataset has 99.12% annotation com-

pleteness, 61.71% EEG signals completeness for all existing monitoring, and 0.85%

signal file duplication rate. The phenotypic data quality measurement shows improve-

ment from an older version of February 2016, which indicates the measurements can

enhance the data quality of a prospective dataset.

Graphical temporal query. Our system provides a web-based temporal query

interface developed by the RoR development framework, which provides the first

graphical temporal query system in the epilepsy research area. Both of our query

widget and results representation are displayed in the graphical timeline. Users can

build a query by creating time points and intervals of annotation and drag them to

demand order. The temporal query canvas can generate all 13 Allen’s interval algebra

with minimal user intervention. By using our interface, users can download the query

results in the CSV format for preliminary research or building their datasets, which is

a fast and accurate solution for cohort discovery and pattern discovery on large-scaled

CSR epilepsy data.

EEG signal classification performance. We developed three machine learning

models for EEG signal classification. For seizure detection, we extracted 135 fea-

tures from each 8-second channel signals using signal processing methods like DWT,

autocorrelation, PSD, and FFT and used such features with labels to train an XG-

Boost model. The model is evaluated on 195 seizure cases and 98.73% of the non-
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seizure period, which is significantly larger than the testing of existing work. The

case-based testing results show that our model detected 90.75% lead seizures, and

achieved 92.23% overall accuracy, 93.57% specificity, 81.08% sensitivity, and 85.41%

AUC in the segment-based evaluation. Our seizure prediction approach consists of

a multi-channel transfer learning model and a prediction decision queue using multi-

channel voting. A seizure prediction evaluation was performed using 53 pre-ictal

EEG signal segments and 265 hours inter-ictal EEG data. Our results show that

after 25 epochs training, the transfer learning model using ResNeXt50 pre-trained

model reached 86.79% sensitivity and 3.38% false-positive rate. We also developed a

“one-click” batch processing pipeline for seizure localization. The model uses a pre-

trained ResNext50 structure and was trained with an image augmentation dataset

labeling by fingerprint. Our model achieved 88.22% accuracy, 34.99% sensitivity,

1.02% false-positive rate, and 34.3% positive likelihood rate. The results indicate an

improvement in seizure localization from previous work.

Continuous long-term EEG evaluation. Our work provides a new evaluation

method using continuous long-term EEG recordings leveraging CSR large-scale data

volume. By using the data quality measurement, we built a sub-dataset that has high

data coverage with a 98.98% EEG signal completeness which is significantly greater

than the 59.57% data completeness of CHB-MIT scalp EEG dataset. Our evaluation

results were based on 2,097 hours testing for our seizure detection model and 1,506

hours for our seizure prediction model. Our more completed dataset is more ideal to

simulate a real-world situation so the evaluation of our dataset is more convincing.

The evaluation results on the continuous long-term EEG data can truly reflect the

model performance during daily use, which can be a benchmark for future seizure

detection methods on EEG signals.
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7.2 Future Work

In this section, we describe the limitation of our work in the dissertation and possible

solutions for improvement.

7.2.1 A More Powerful Cloud-based EEG interface

In Chapter 3, we developed an interface that can provide a graphics-based annotation

visualization for epilepsy temporal data. The web application allows users to access

the large-scaled SCR data without installing any other software and downloading any

data. Our work has potential to be combined with other cloud-based EEG visualiza-

tion tools [5] and MRI readers. The more powerful interface will be convenient for

EEG signal exploration and for experts to curate the annotations. Another aspect

is that a software can be developed for automatically auditing the existing errors to

improve data quality. From the measurements, we can locate the potential errors,

but manual curation is still time-consuming. A potential approach can be creating

new ontological annotations or curating existing free-text annotations to standard

terminology using natural language processing methods. Moreover, our seizure de-

tection algorithm has shown good performance on detecting the seizure activities, so

the model has the potential to automatically mark seizure onset and end annotation,

but further experiments are needed.

7.2.2 EEG Signal Quality Assurance

In Chapter 3, we introduced data quality measurements for epilepsy temporal data.

For EEG signals, we only measured the length of each EDF file and the total coverage

of each long-term monitoring. Future work of the temporal data quality can be done

regarding the EEG signal quality. The EEG signal, especially scalp EEG, may contain

certain artifacts that can be hardly removed like muscle activity and eye movement.
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In a worse situation, part of EEG signals are damaged so such a period of data does

not contain any valuable information. Measuring the signal quality is crucial for

future EEG analysis to avoid the “Garbage in garbage out” problem. It is possible to

build an EEG signal classifier to recognize bad signals. Existing methods [68] provide

multiple solutions for different purposes but lack of evaluation on long-term real EEG

signal. Because labeling artifacts manually is labor-consuming, an automatic artifacts

identifier or removal will be essential for the improvement of EEG signal quality.

7.2.3 Features Enhancement on EEG Signal Analysis

The machine learning methods we described in Chapter 4 and 6 are trained with

the cross-patient dataset. Since brain activities vary from subjects, considering the

subjects’ variance is a potential point to improve the performance of classifiers. With

the increment of hardware’s computational ability, more data can be used in future

research. We can enhance the feature by using more data other than signals, for

instance, patients’ phenotypical data, seizure types, seizure frequency, etc. But with

more features used, the dataset will be divided into smaller groups with fewer samples.

Future work will investigate the performance of new machine learning approaches like

few-shot learning and meta-learning. Another new approach for EEG signal feature

extraction uses a discrete Pade spectrogram to find new brain wave patterns [69]. For

projects such as seizure localization, the number of data samples may be the bottle-

neck for deep learning models. Using the spatial features as the location of electrodes

to generate a larger set of combinations of channels can increase the dataset size.

When the dimensions of feature increases, the feature selection methods can be also

implemented to filter out equivalent features and bad features.
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