2,013 research outputs found

    An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance

    Get PDF
    We prove an optimal Ω(n)\Omega(n) lower bound on the randomized communication complexity of the much-studied Gap-Hamming-Distance problem. As a consequence, we obtain essentially optimal multi-pass space lower bounds in the data stream model for a number of fundamental problems, including the estimation of frequency moments. The Gap-Hamming-Distance problem is a communication problem, wherein Alice and Bob receive nn-bit strings xx and yy, respectively. They are promised that the Hamming distance between xx and yy is either at least n/2+nn/2+\sqrt{n} or at most n/2nn/2-\sqrt{n}, and their goal is to decide which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff (FOCS, 2003), it had been conjectured that the naive protocol, which uses nn bits of communication, is asymptotically optimal. The conjecture was shown to be true in several special cases, e.g., when the communication is deterministic, or when the number of rounds of communication is limited. The proof of our aforementioned result, which settles this conjecture fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a result of C. Borell (1985). To prove this geometric statement, we show that random projections of not-too-small sets in Gaussian space are close to a mixture of translated normal variables

    On the communication complexity of sparse set disjointness and exists-equal problems

    Full text link
    In this paper we study the two player randomized communication complexity of the sparse set disjointness and the exists-equal problems and give matching lower and upper bounds (up to constant factors) for any number of rounds for both of these problems. In the sparse set disjointness problem, each player receives a k-subset of [m] and the goal is to determine whether the sets intersect. For this problem, we give a protocol that communicates a total of O(k\log^{(r)}k) bits over r rounds and errs with very small probability. Here we can take r=\log^{*}k to obtain a O(k) total communication \log^{*}k-round protocol with exponentially small error probability, improving on the O(k)-bits O(\log k)-round constant error probability protocol of Hastad and Wigderson from 1997. In the exist-equal problem, the players receive vectors x,y\in [t]^n and the goal is to determine whether there exists a coordinate i such that x_i=y_i. Namely, the exists-equal problem is the OR of n equality problems. Observe that exists-equal is an instance of sparse set disjointness with k=n, hence the protocol above applies here as well, giving an O(n\log^{(r)}n) upper bound. Our main technical contribution in this paper is a matching lower bound: we show that when t=\Omega(n), any r-round randomized protocol for the exists-equal problem with error probability at most 1/3 should have a message of size \Omega(n\log^{(r)}n). Our lower bound holds even for super-constant r <= \log^*n, showing that any O(n) bits exists-equal protocol should have \log^*n - O(1) rounds

    Some Communication Complexity Results and their Applications

    Get PDF
    Communication Complexity represents one of the premier techniques for proving lower bounds in theoretical computer science. Lower bounds on communication problems can be leveraged to prove lower bounds in several different areas. In this work, we study three different communication complexity problems. The lower bounds for these problems have applications in circuit complexity, wireless sensor networks, and streaming algorithms. First, we study the multiparty pointer jumping problem. We present the first nontrivial upper bound for this problem. We also provide a suite of strong lower bounds under several restricted classes of protocols. Next, we initiate the study of several non-monotone functions in the distributed functional monitoring setting and provide several lower bounds. In particular, we give a generic adversarial technique and show that when deletions are allowed, no nontrivial protocol is possible. Finally, we study the Gap-Hamming-Distance problem and give tight lower bounds for protocols that use a constant number of messages. As a result, we take a well-known lower bound for one-pass streaming algorithms for a host of problems and extend it so it applies to streaming algorithms that use a constant number of passes

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before

    One-Sided Error Communication Complexity of Gap Hamming Distance

    Get PDF
    Assume that Alice has a binary string x and Bob a binary string y, both strings are of length n. Their goal is to output 0, if x and y are at least L-close in Hamming distance, and output 1, if x and y are at least U-far in Hamming distance, where L < U are some integer parameters known to both parties. If the Hamming distance between x and y lies in the interval (L, U), they are allowed to output anything. This problem is called the Gap Hamming Distance. In this paper we study public-coin one-sided error communication complexity of this problem. The error with probability at most 1/2 is allowed only for pairs at Hamming distance at least U. In this paper we determine this complexity up to factors logarithmic in L. The protocol we construct for the upper bound is simultaneous

    Communication Complexity of Permutation-Invariant Functions

    Full text link
    Motivated by the quest for a broader understanding of communication complexity of simple functions, we introduce the class of "permutation-invariant" functions. A partial function f:{0,1}n×{0,1}n{0,1,?}f:\{0,1\}^n \times \{0,1\}^n\to \{0,1,?\} is permutation-invariant if for every bijection π:{1,,n}{1,,n}\pi:\{1,\ldots,n\} \to \{1,\ldots,n\} and every x,y{0,1}n\mathbf{x}, \mathbf{y} \in \{0,1\}^n, it is the case that f(x,y)=f(xπ,yπ)f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}^{\pi}, \mathbf{y}^{\pi}). Most of the commonly studied functions in communication complexity are permutation-invariant. For such functions, we present a simple complexity measure (computable in time polynomial in nn given an implicit description of ff) that describes their communication complexity up to polynomial factors and up to an additive error that is logarithmic in the input size. This gives a coarse taxonomy of the communication complexity of simple functions. Our work highlights the role of the well-known lower bounds of functions such as 'Set-Disjointness' and 'Indexing', while complementing them with the relatively lesser-known upper bounds for 'Gap-Inner-Product' (from the sketching literature) and 'Sparse-Gap-Inner-Product' (from the recent work of Canonne et al. [ITCS 2015]). We also present consequences to the study of communication complexity with imperfectly shared randomness where we show that for total permutation-invariant functions, imperfectly shared randomness results in only a polynomial blow-up in communication complexity after an additive O(loglogn)O(\log \log n) overhead

    On the power of non-local boxes

    Full text link
    A non-local box is a virtual device that has the following property: given that Alice inputs a bit at her end of the device and that Bob does likewise, it produces two bits, one at Alice's end and one at Bob's end, such that the XOR of the outputs is equal to the AND of the inputs. This box, inspired from the CHSH inequality, was first proposed by Popescu and Rohrlich to examine the question: given that a maximally entangled pair of qubits is non-local, why is it not maximally non-local? We believe that understanding the power of this box will yield insight into the non-locality of quantum mechanics. It was shown recently by Cerf, Gisin, Massar and Popescu, that this imaginary device is able to simulate correlations from any measurement on a singlet state. Here, we show that the non-local box can in fact do much more: through the simulation of the magic square pseudo-telepathy game and the Mermin-GHZ pseudo-telepathy game, we show that the non-local box can simulate quantum correlations that no entangled pair of qubits can in a bipartite scenario and even in a multi-party scenario. Finally we show that a single non-local box cannot simulate all quantum correlations and propose a generalization for a multi-party non-local box. In particular, we show quantum correlations whose simulation requires an exponential amount of non-local boxes, in the number of maximally entangled qubit pairs.Comment: 14 pages, 1 figur
    corecore