
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

11-1-2010

Some Communication Complexity Results and their Applications Some Communication Complexity Results and their Applications

Joshua E. Brody
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Brody, Joshua E., "Some Communication Complexity Results and their Applications" (2010). Dartmouth
College Ph.D Dissertations. 34.
https://digitalcommons.dartmouth.edu/dissertations/34

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/34?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Some Communication Complexity Results and their
Applications

Dartmouth Computer Science Technical Report TR2011-699

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by

Joshua Brody

DARTMOUTH COLLEGE
Hanover, New Hampshire

November, 2010

Examining Committee:

(chair) Amit Chakrabarti, Ph.D.

Peter Winkler, Ph.D.

Prasad Jayanti, Ph.D.

Emanuele Viola, Ph.D.

Brian W. Pogue, PhD
Dean of Graduate Studies

Abstract

Communication Complexity represents one of the premier techniques for proving lower bounds

in theoretical computer science. Lower bounds on communication problems can be leveraged

to prove lower bounds in several different areas.

In this work, we study three different communication complexity problems. The lower

bounds for these problems have applications in circuit complexity, wireless sensor networks,

and streaming algorithms.

First, we study the multiparty pointer jumping problem. We present the first nontrivial

upper bound for this problem. We also provide a suite of strong lower bounds under several

restricted classes of protocols.

Next, we initiate the study of several non-monotone functions in the distributed functional

monitoring setting and provide several lower bounds. In particular, we give a generic adversar-

ial technique and show that when deletions are allowed, no nontrivial protocol is possible.

Finally, we study the Gap-Hamming-Distance problem and give tight lower bounds for

protocols that use a constant number of messages. As a result, we take a well-known lower

bound for one-pass streaming algorithms for a host of problems and extend it so it applies to

streaming algorithms that use a constant number of passes.

ii

Acknowledgements

I am extremely indebted to my advisor, Amit Chakrabarti, who spent the last five years patiently

transforming me into a (hopefully) competent researcher. I thank him for the research guidance,

support, and mentorship.

Peter Winkler has been an excellent source of problems, puzzles, ideas, and inspiration. I

am greatful for the positive influence he’s been on my academic development. I’d also like to

thank my other thesis committee members, Prasad Jayanti and Emanuele Viola, for their time,

consideration, and helpful comments.

The results in this thesis are the result of several collaborations. I thank my coauthors for

the works presented in this thesis: Chrisil Arackaparambil, Amit Chakrabarti, Oded Regev,

Thomas Vidick, and Ronald de Wolf. I’m also greatful to Sergey Bratus, David Kotz, Anna

Shubina, and Elad Verbin for successful collaborations on other research.

I thank past and current members of the Dartmouth Theory Reading Group, including (but

not limited to) Umang Bhaskar, Vibhor Bhatt, Scott Drysdale, Lisa Fleischer, Chien-Chung

Huang, Ranganath Kondapally, and Afra Zomorodian. I am proud to be a part of such a reading

group and excited to see the research it sparks in the future.

I’m also greatful to several fellow graduate students, including Brandon Kerr, Peter John-

son, Elena Davidson Strange, Sandra Van Ginhoven, Christopher Masone, Jon Denning, Joe

Cooley, Danny Milisavljevic, and Meghan Mella, who made life as a graduate student more

than just writing papers and taking classes.

Finally, I would like to thank my parents Ronald and Suzy Brody for their encouragement

and support and my most wonderful best friend and fiancée Scout Sinclair for her everlasting

love.

iii

Contents

1 Introduction 1

1.1 Our Contributions . 2

1.2 Main Technical Contribution . 5

2 Multiparty Pointer Jumping 8

2.1 Introduction . 9

2.1.1 The Pointer Jumping Problem and Previous Results 10

2.1.2 Our Results . 12

2.1.3 Relation to Dynamic Data Structures 15

2.1.4 Organization . 17

2.2 Preliminaries and Notation . 17

2.3 Sublinear Upper Bounds . 18

2.3.1 The PRS Protocol . 19

2.3.2 A 3-Player Protocol . 23

2.3.3 A k-Player Protocol . 26

2.3.4 A k-Player Protocol for M̂PJk . 29

2.4 Lower Bounds for Myopic Protocols . 30

2.5 An Upper Bound for Myopic Protocols . 35

2.6 Randomizing the Lower Bound . 38

iv

2.7 Collapsing Protocols: A Lower Bound . 41

2.8 Collapsing Protocols: An Upper Bound . 44

2.9 Concluding Remarks . 50

3 Distributed Functional Monitoring 51

3.1 Introduction . 52

3.2 Formal Definition . 55

3.3 Lower Bounds for Non-Monotone Functions 56

3.4 Frequency Moments Without Deletions: New Bounds 61

4 Gap Hamming Distance: The First Multi-Round Lower Bound 68

4.1 Introduction . 69

4.2 Basic Definitions, Notation and Preliminaries 75

4.3 Main Theorem: Multi-Round Lower Bound 78

4.3.1 Some Basics . 78

4.3.2 The Round Elimination Lemma . 79

4.3.3 The Lower Bound . 82

4.4 Tight Deterministic One-Way Bounds . 84

4.5 One Round Randomized Lower Bound . 86

4.6 Concluding Remarks . 89

4.7 Proofs of Technical Lemmas . 89

5 Improving the Gap Hamming Distance Lower Bounds Through Better Round

Elimination 94

5.1 Introduction . 95

5.1.1 The Communication Complexity of the Gap Hamming Distance Problem 95

5.1.2 Our results . 97

v

5.1.3 Applications to Streaming . 99

5.2 Preliminaries . 101

5.2.1 Problem Definition . 101

5.2.2 Concentration of Measure . 103

5.3 Main Result . 105

5.3.1 Proof Outline . 106

5.3.2 The Main Reduction Step . 108

5.4 A Simple Combinatorial Proof . 111

6 Conclusions 114

vi

Chapter 1

Introduction

Computational complexity theory studies the powers and limitations of computation and seeks

to classify problems in terms of the amount of resources needed to solve them. In short, it is the

study of what computers can and cannot do. The analysis of algortihms considers particular

solutions for problems and analyzes how much of a particular resource (e.g. space, time, etc.)

the solution uses. For particular kinds of problems, there are often general techniques for

solving a problem or analyzing the algorithm. Such techniques include greedy algorithms,

dynamic programming, divide and conquer, and linear programming. In contrast, relatively

few general techniques exist for proving lower bounds in complexity theory.

Communication complexity represents one of the most general and useful techniques for

proving lower bounds. In a communication complexity problem, input is split between multiple

players PLR1, PLR2, . . ., who wish to compute some function of the input. As no single player

sees the entire input, players must communicate together to solve the problem. A protocol de-

scribes how players communicate to determine the correct output. One wishes to evaluate how

much communication must be exchanged to jointly compute the function. The cost of a pro-

tocol is the worst-case amount of communication sent. The communication complexity is the

minimum cost of any protocol that correctly computes the function. Usually, the primary goal

1

is to prove lower bounds on the communication that must be sent. By itself, communication

complexity is natural and mathematically interesting. However, its true power and beauty lie in

its abstraction—lower bounds on communication problems often capture the innate hardness of

other problems in computer science, including problems which do not involve communication.

Indeed, researchers have used reductions from commmunication complexity to prove lower

bounds in several areas, including circuit complexity [CFL83, KW90, HG91, BNS92, BT94],

data structures [Ajt88, MNSW98, PT06], and streaming algorithms [AMS99, IW03]. It is this

flexibility and wide application to other areas of computer science that makes communication

complexity such a rich and important subfield.

1.1 Our Contributions

We focus our work on three communication complexity problems.

Multiparty Pointer Jumping. In the multiparty pointer jumping problem (MPJk), there

are k players, and the input is divided into k pieces, one piece per player. The first piece is

an index i ∈ [n]; the kth piece is an n-bit string x, and the rest of the pieces are functions

f2, . . . , fk−1 : [n] → [n]. The goal in this problem is to compute MPJk(i, f2, . . . , fk−1, x) :=

x[fk−1 ◦ · · · ◦ f2(i)]. Of particular interest here are one-way, number-on-the-forehead (NOF)

protocols, where PLRi, the ith player, sees all inputs except the ith piece, and where each player

sends a single message, and the messages are sent in the order PLR1, PLR2, . . . , PLRk−1. PLRk

outputs the answer. A sufficiently strong lower bound for the communication complexity of

deterministic protocols for MPJk would have major implications in circuit complexity. Specifi-

cally, it would place MPJk outside of ACC0.

The complexity class ACC0 comprises all polynomial-size, constant-depth circuits that use

only AND and OR gates. It is easy to show via a counting argument that there exist boolean

functions that lie outside this class; however, proving that an explicit function lies outside

2

ACC0 remains a tantalizing open problem. A line of research in the early nineties [Yao90,

HG91, BT94] showed that if f ∈ ACC0 then f has a polylogarithmic NOF communication

protocol for a polylogarithmic number of players. Thus, showing a nΩ(1) lower bound on MPJk

for any k = polylog(n) players is enough to place MPJk outside ACC0.

In Chapter 2, we give a surprising sublinear o(n) upper bound for MPJk for all k ≥ 3. Our

protocol builds on the work of Pudlák, Rödl, and Sgall [PRS97], who give an o(n) protocol

for MPJperm
3 , a restricted version of the problem where there are only three players and f2, the

middle piece of the input is restricted to be a permutation. This contradicts a long-standing

Ω(n) lower bound conjecture. Intuitively, an Ω(n) lower bound seemed reasonable, because

while each player knows about most of the input, he doesn’t know which piece of input is

important. From any player’s point of view, there are n different pieces of information he

could send information about. It was reasonable to expect that to make any progress, each

player would need to send Ω(1) information about each piece, and hence the communication

would be Ω(n). Indeed, in the case of two players, this Ω(n) bound was proved in [Abl96].

Our upper bound refutes the intuition that this lower bound extends to MPJk for k > 2 players.

In Section 2.4, we consider the communication complexity of several restricted protocols that

compute MPJk. In a myopic protocol, each PLRi is allowed to see all behind him, but only a

single layer ahead of him; that is, he sees only inputs 1, . . . , i−1, and layer i+1. In a collapsing

protocol, PLRi sees only the composition of layers of inputs, i.e., PLRj sees fj−1 ◦ · · · ◦ f2(i)

and x ◦ fk−1 ◦ · · · ◦ fj+1. In these restricted models of communication, we show very strong

lower bounds. Specifically, we show that in any myopic protocol, some player must send n/2

bits, and that in any collapsing protocol, some player must send at least n − O(log n) bits. A

portion of these results is joint work with Amit Chakrabarti.

Distributed Functional Monitoring. In this problem, each of a series of k sensors receives

a stream of data and communicates with a central coordinator, who wants to continuously

monitor a function of the global state of the system. The goal is to minimize the amount

3

of communication sent between the coordinator and the sensors. This problem captures the

main cost bottleneck in modern wireless sensor networks—sensors are now strong enough to

perform significant computation locally; but power is costly, and communicating with a central

server drains the battery. Cormode, Muthukrishnan, and Yi [CMY08] formalized the model

and gave upper and lower bounds for monitoring frequency moments. In Chapter 3, we extend

their work, by providing a suite of lower bounds, and by considering nonmonotonic functions.

In particular, we provide a general adversarial lower bound technique and use it to show that for

many nonmonotonic functions, the sensors can essentially do nothing better than send all input

to the coordinator whenever it arrives. In [ABC09], we give an efficient protocol for monitoring

empirical entropy, thus showing that for other nonmonotonic functions, good upper bounds are

possible.

Gap Hamming Distance. In the Gap Hamming Distance problem (GHD), Alice and Bob

each have n-bit strings, and they wish to determine whether the Hamming distance between

their inputs is large (i.e., more than n/2 +
√

n) or small (i.e., less than n/2 −
√

n). The

problem is interesting because of its connection to a host of data stream problems. Indyk and

Woodruff [Woo04, IW03] defined the problem, made the connection to streaming algorithms,

and gave an Ω(n) lower bound for randomized one-way protocols. As a result, Indyk and

Woodruff achieved tight space lower bounds for one-pass streaming algorithms that approxi-

mate the kth frequency moment Fk of a data stream. Unfortunately, because the lower bounds

for GHD held only for one-way protocols, the lower bound said nothing about multiple-pass

streaming algorithms. Proving lower bounds for multiple-round protocols that computed GHD

was a long-standing open problem, both in communication complexity and in streaming algo-

rithms. In Chapter 4, we show an Ω(n) lower bound for GHD for any O(1)-round protocol. As

a result, we extend the one-pass streaming lower bound to a lower bound for algorithms that

use a constant number of passes. Later, in Chapter 5, we give a new lower bound, exponentially

improving the lower bound’s dependence on the number of rounds. The proof of the new lower

4

bound is also much simpler. These results are joint work with Amit Chakrabarti. Chapter 5 is

also joint work with Oded Regev, Thomas Vidick, and Ronald de Wolf.

1.2 Main Technical Contribution

From a technical perspective, an important contribution of this thesis is to prove strong Round

Elimination Lemmas (RELs). The Round Elimination Lemma has been an important and well

known technique in the literature for proving lower bounds in communication complexity.

The classic round elimination lemma was implicit in [Ajt88, Xia92, Mil94] and formalized

in the work of Miltersen, Nisan, Safra, and Wigderson [MNSW98]. Their formulation is for

randomized protocols and works for any boolean function f : X × Y → {0, 1}. The lemma

works by generalizing f to a direct-sum style problem Pm(f), where Alice’s input consists

of m strings x1, . . . , xm ∈ X and Bob’s input consists of y ∈ Y , an index i ∈ [m], and

x1, . . . , xi−1, and the goal is to compute f(xi, y).

Miltersen et al. showed that if there is a k-round protocol for Pm(f) in which Alice speaks

first and sends much fewer than m bits, then there is a (k−1)-round protocol for f in which Bob

speaks first and the error is not too much more than in Pm(f). Intuitively, since Alice sends

� m bits, she must not reveal much information about xj for some j. By fixing Alice’s first

message and this j, the problem f(xj, y) remains difficult. The error increase in the elimination

lemma of Miltersen et al. was multiplicative—the error increased from δ to O(
√

δ). Later, Sen

and Venkatesh [SV08] gave an improved round elimination lemma that increased the error by

a small additive term.

Round elimination lemmas have been particularly effective in proving space/query lower

bounds for static data structures and space/pass tradeoffs in streaming algorithms. Ajtai [Ajt88]

used a round elimination argument to get cell probe lower bounds for the static predeces-

sor problem. Subsequent authors ([Xia92, MNSW98, BF99, SV08]) gave improved bounds.

5

Pǎtraşcu and Thorup [PT06] used a cell probe elimination lemma to obtain optimal query/space

tradeoffs for static data structures that support predecessor queries. Chakrabarti [Cha07] and

Viola and Wigderson [VW07] each used party elimination lemmas to prove lower bounds on

the one-way complexity of MPJk. Guha and McGregor [GM08] employ pass elimination to at-

tain pass/space tradeoffs for streaming algorithms. While many of these results go by different

names (probe elimination, party elimination, pass elimination, . . .) all of them fall under the

rubric of elimination lemmas. Other examples include [CCGL03, Gol09, PV10].

Our Contributions. Our round elimination lemmas depart from the direct-sum structure

of the classical elimination lemma. Instead, we focus on a more general notion that if there is

a “good” k-round protocol, then there is a “good” (k−1)-round protocol. Then, we reduce to

a base case that has a few number (often zero) of rounds and derive a contradiction by proving

that there are no “good” protocol with that many rounds. What it means for a protocol to be

“good” depends on the problem, and identifing the nature of the goodness is half the battle and

often requires generalizing the problem. We note our contributions below.

In Chapter 2, we generalize the multiparty pointer jumping problem to work on settings

where i ∈ [m] for some m ≤ n, and the second piece of the input is a function f2 : [m]→ [n].

In our round elimination step, we decrease m as we reduce the number of players. This result

stands out because the communication complexity we achieve is tight up to second-order terms,

in contrast to the classic round elimination lemmas, which lose constant factors (or more) each

time the lemma is invoked.

In Chapter 4, we use a round elimination lemma to solve the Gap Hamming Distance

problem, solving as a result a long-standing open problem in data stream algortihms. While

we do not employ a direct-sum style elimination argument, we fail to avoid the exponential

dependence on k that commonly occurs with such arguments. In fact, our dependence on

k is actually much worse than exponential—we show that any k-round protocol must have

communication at least n/2O(k2). In Chapter 5, we prove a new, simpler, round elimination

6

lemma that yields an Ω̃(n/k2) lower bound. This improves on previous bounds for all k =

O(n1/4/ log n) and is the first round elimination argument for general protocols where the

lower bound is nontrivial for k = ω(log n) rounds. This result departs from the standard round

elimination lemma in another important aspect. Typical round elimination arguments construct

a (k−1)-round protocol by starting with a k-round protocol and fixing the first message to

maximize the size of the “message set”, i.e., to maximize the number of inputs on which Alice

sends this message. Then, a (k−1)-round protocol is created by leveraging the size of this first

set. Our lemma crucially exploits the geometry of the input space in addition to the size of the

first set.

7

Chapter 2

Multiparty Pointer Jumping

We study the one-way number-on-the-forehead (NOF) communication complexity of the k-

layer pointer jumping problem. This classic problem has connections to many areas of com-

plexity theory. Perhaps most importantly, a sufficiently strong lower bound on the communi-

cation complexity would place multi-party pointer jumping outside ACC0. A burst of recent

research suggested an Ω(n) lower bound for constant k. Our first result is a surprising o(n)

upper bound for the problem that holds for all k ≥ 3, dashing hopes for such a lower bound.

On the lower bound side, we first consider myopic protocols, where players see only one

layer ahead, but can still see arbitrarily well behind. We show an exact lower bound of n

bits in this model. Furthermore, when a protocol is charged for the maximum communication

sent by a single player rather than the total communication, we show a n/2-bit lower bound,

independent of the number of players, as well as a n log(k−1) n(1 − o(1)) lower bound for a

(non-Boolean) version of the problem. Both of these bounds are tight up to (1± o(1)) factors.

Finally, a closer look at the protocol that achieves our upper bound shows that all but one

of the players are collapsing, i.e. their messages depend only on the composition of the layers

ahead of them. We consider protocols where all players are collapsing and show a strong

n−O(log n) maximum communication lower bound holds in this case.

8

2.1 Introduction

Multi-party communication complexity in general, and the pointer jumping problem (also

known as the pointer chasing problem) in particular, has been the subject of plenty of recent re-

search. This is because the model, and sometimes the specific problem, bears on several aspects

of computational complexity: among them, circuit complexity [Yao90, HG91, BT94], proof

size lower bounds [BPS05], space lower bounds for streaming algorithms [AMS99, GM07,

CJP08], and space/time tradeoffs for dynamic data structures [Pǎt10]. The most impressive

known consequence of a strong multi-party communication lower bound would be to exhibit

non-membership in the complexity class ACC0; details can be found in Beigel and Tarui [BT94]

or in the textbook by Arora and Barak [AB07]. Vexingly, it is not even known whether or not

ACC0 ⊇ NEXP.

The setting of multi-party communication is as follows. There are k players (for some

k ≥ 2), whom we shall call PLR1, PLR2, . . . , PLRk, who share an input k-tuple (x1, x2, . . . , xk).

The goal of the players is to compute some function f(x1, x2, . . . , xk). There are two well-

studied sharing models: the number-in-hand model, where PLRi sees xi, and the number-on-

the-forehead (NOF) model, where PLRi sees all xj such that j 6= i. Our focus in this chapter

will be on the latter model, which was first introduced by Chandra, Furst and Lipton [CFL83].

It is in this model that communication lower bounds imply lower bounds against ACC0. We

shall use C(f) to denote the deterministic communication complexity of f in this model. Also

of interest are randomized protocols that only compute f(x) correctly with high probability:

we let Rε(f) denote the ε-error randomized communication complexity of f . Most of our

results hold for deterministic protocols, which is a strength for our upper bounds. Moreover, it

is not a serious weakness for our lower bounds, because the ACC0 connection only calls for a

deterministic lower bound.

Notice that the NOF model has a feature not seen elsewhere in communication complexity:

9

the players share plenty of information. In fact, for large k, each individual player already

has “almost” all of the input. This intuitively makes lower bounds especially hard to prove

and indeed, to this day, no nontrivial lower bound is known in the NOF model for any explicit

function with k = ω(log n) players, where n is the total input size. The pointer jumping

problem is widely considered to be a good candidate for such a lower bound. As noted by

Damm, Jukna and Sgall [DJS98], it has many natural special cases, such as shifting, addressing,

multiplication and convolution. This motivates our study.

As a further motivation, Pǎtraşcu [Pǎt10] recently showed that sufficiently strong lower

bounds for a 3-person NOF protocol for a version of set disjointness would imply polynomial

query lower bounds for a large range of dynamic data structures. Only Ω(log n) bounds are

currently known.

2.1.1 The Pointer Jumping Problem and Previous Results

There are a number of variants of the pointer jumping problem. Here we study two variants:

a Boolean problem, MPJn
k , and a non-Boolean problem, M̂PJ

n

k (henceforth, we shall drop the

superscript n). In both variants, the input is a subgraph of a fixed layered graph that has k+1

layers of vertices, with layer 0 consisting of a single vertex, v0, and layers 1 through k−1

consisting of n vertices each (we assume k ≥ 2). Layer k consists of n vertices in the case

of M̂PJk and 2 vertices in the case of MPJk. The input graph is a subgraph of the fixed layered

graph in which every vertex (except those in layer k) has outdegree 1. The desired output is the

name of the unique vertex in layer k reachable from v0, i.e., the final result of “following the

pointers” starting at v0. The output is therefore a single bit in the case of MPJk or a dlog ne-bit

string in the case of M̂PJk.1

The functions MPJk and M̂PJk are made into NOF communication problems as follows: for

each i ∈ [k], a description of the ith layer of edges (i.e., the edges pointing into the ith layer of

1Throughout this chapter we use “log” to denote logarithm to the base 2.

10

vertices) is written on PLRi’s forehead. In other words, PLRi sees every layer of edges except

the ith. The players are allowed to write one message each on a public blackboard and must

do so in the fixed order PLR1, PLR2, . . . , PLRk. The final player’s message must be the desired

output. Notice that the specific order of speaking—PLR1, PLR2, . . . , PLRk—is important to

make the problem nontrivial. Any other order of speaking allows an easy deterministic protocol

with only O(log n) communication.

Consider the case k = 2. The problem MPJ2 is equivalent to the two-party communication

problem INDEX, where Alice holds a bit-vector x ∈ {0, 1}n, Bob holds an index i ∈ [n],

and Alice must send Bob a message that enables him to output xi. It is easy to show that

C(MPJ2) = n. In fact, Ablayev [Abl96] shows the tight tradeoff Rε(MPJ2) = (1 − H(ε))n,

where H is the binary entropy function. It is tempting to conjecture that this lower bound

generalizes as follows.

Conjecture 1. There is a nondecreasing function ξ : Z → R+ such that, ∀ k : C(MPJk) =

Ω(n/ξ(k)).

Note that, by the results of Beigel and Tarui [BT94], in order to show that MPJk /∈ ACC0 it

would suffice, for instance, to prove the following (possibly weaker) conjecture.

Conjecture 2. There exist constants α, β > 0 such that, for k = nα, C(MPJk) = Ω(nβ).

Conjecture 1 is consistent with (and to an extent motivated by) research prior to this

work. In weaker models of information sharing than the NOF model, an equivalent state-

ment is known to be true, even for randomized protocols. For instance, Damm, Jukna and

Sgall [DJS98] show an Ω(n/k2) communication lower bound in the so-called conservative

model, where PLRi has only a limited view of the layers of the graph behind her: she only

sees the result of following the first i−1 pointers. Chakrabarti [Cha07] extends this bound to

randomized protocols and also shows an Ω(n/k) lower bound in the so-called myopic model,

where PLRi has only a limited view of the layers ahead of her: she cannot see layers i+2, . . . , k.

11

This greatly improved a lower bound of Gronemeier [Gro06], who defined the myopic model

and gave a weak lower bound for myopic MPJk protocols.

For the full NOF model, Wigderson, building on the work of Nisan and Wigderson [NW93],

showed that C(MPJ3) = Ω(
√

n). This result is unpublished, but an exposition can be found in

Babai, Hayes and Kimmel [BHK01]. Recently, Viola and Wigderson [VW07] generalized this

result and extended it to randomized protocols, showing that R1/3(MPJk) = Ω(n1/(k−1)/kO(k)).

Of course, this bound falls far short of that in Conjecture 1 and does nothing for Conjecture 2.

However, it is worth noting that the Viola-Wigderson bound in fact applies to the much smaller

subproblem of tree pointer jumping (denoted TPJk), where the underlying layered graph is a

height-k tree, with every vertex in layers 0 through k − 2 having n1/(k−1) children and every

vertex in layer k − 1 having two children. It is easy to see that C(TPJk) = O(n1/(k−1)). Thus,

one might hope that the more general problem MPJk has a much stronger lower bound, as in

Conjecture 1.

On the upper bound side, Damm et al. [DJS98] have shown that C(M̂PJk) = O(n log(k−1) n),

where log(i) n is the ith iterated logarithm of n. This improves on the trivial upper bound of

O(n log n). Their technique does not yield anything nontrivial for the Boolean problem MPJk,

though. However, Pudlák, Rödl and Sgall [PRS97] obtain an amazing sublinear upper bound

of O(n log log n/ log n) for a special case of MPJ3. Their protocol works only when every

vertex in layer 2 has indegree 1, or equivalently, when the middle layer of edges in the input

describes a permutation of [n]. It is remarkable that even this is possible. The proof of the

O(n log log n/ log n) upper bound is deep, and our upper bound builds upon it. For this reason,

we include a development of the protocol and proof of it’s correctness in Section 2.3.1.

2.1.2 Our Results

The protocol of Pudlák et al. [PRS97] did not rule out Conjecture 1, but it did suggest cau-

tion. Our first result is the following upper bound—in fact the first nontrivial upper bound on

12

C(MPJk)—that falsifies the conjecture.

Theorem 3. For k ≥ 3, we have

C(MPJk) = O

(
n

(
k log log n

log n

)(k−2)/(k−1)
)

.

In particular, C(MPJ3) = O(n
√

log log n/ log n).

Next, we use a protocol for MPJk−1 to obtain a sublinear upper bound for M̂PJk, at a cost of

an extra log log n factor in communication.

Theorem 4. For k ≥ 4, we have

C(M̂PJk) = O

(
n log log n

(
k log log n

log n

)(k−3)/(k−2)
)

.

In particular, C(M̂PJ4) = O(n log log n
√

log log n/ log n).

We next provide a suite of lower bounds for myopic protocols. Our first lower bound shows

that in terms of total communication, no nontrivial myopic protocol is possible.

Theorem 5. In a myopic protocol for MPJk, at least n bits must be communicated in total.

This stands in contrast to the state of affairs for M̂PJk. The only nontrivial protocol for M̂PJk

prior to our work was the aforementioned protocol of Damm et al. [DJS98] (see Section 2.1.1),

which was both conservative and myopic.

We also provide a strong lower bound on the maximum communication of MPJk.

Theorem 6. In a myopic protocol for MPJk, some player must communicate at least n/2 bits.

We prove the above lower bounds on a generalized version of MPJk where there are m

vertices in the first layer instead of n.

13

A closer look at of the proof of Theorem 6 shows that there exists a decreasing function

φ : Z → [1/2, 1] such that any myopic protocol has maximum communication nφ(k).2 Our

next result shows that this is essentially tight.

Theorem 7. For all k ≥ 3, there exists a myopic protocol for MPJk in which each player sends

nφ(k)(1 + o(1)) bits.

We also apply our lower bound technique to myopic protocols for M̂PJk, and prove a lower

bound which nearly matches the upper bound of Damm et al.

Theorem 8. In any deterministic myopic protocol for M̂PJk, some player must communicate at

least n
(
log(k−1) n− log(k) n

)
bits.

Next, we show a lower bound for randomized protocols.

Theorem 9. In any randomized myopic protocol for MPJk, some player must communicate at

least Ω(n/(k log n)) bits.

Chakrabarti’s Ω(n/k) lower bound on the total communication immediately yields an

Ω(n/k2) maximum communication bound. Our bound is therefore an improvement for all

k ≥ log n.

A closer look at the protocol that achieves the upper bound from Theorem 3 reveals that all

players except for PLR1 behave in the following way: the message sent by PLRi depends only

on layers 1 through i − 1 and the composition of layers i + 1 through k. We say that PLRi is

collapsing. This notion is akin to that of the aforementioned conservative protocols considered

by Damm et al. Whereas a conservative player composes the layers behind hers, a collapsing

player does so for layers ahead of hers.

Our final results consider what happens if we require all players in the protocol to be col-

lapsing. We prove a strong linear lower bound, showing that even a single non-collapsing

player makes an asymptotic difference in the communication complexity.
2The precise definition of φ(k) is somewhat technical; we defer it until Section 2.4.

14

Theorem 10. In a protocol for MPJk where every player is collapsing, some player must com-

municate at least n− 1
2
log n− 2 = n−O(log n) bits.

One might wonder whether the collapsing requirement is so strong that nothing nontrivial

is possible anyway. We show an upper bound similar to that of Damm et al. for M̂PJk, but for

protocols where every player is collapsing.

Theorem 11. For k ≥ 3, there is an O(n log(k−1) n)-communication protocol for M̂PJ
perm

k in

which every player is collapsing. Here M̂PJ
perm

k denotes the subproblem of M̂PJk in which layers

2 through k of the input graph are permutations of [n].

The requirement that layers be permutations is a natural one and is not new. The protocol of

Pudlák et al. also had this requirement; i.e., it gave an upper bound on C(MPJperm
3). Theorem 11

can in fact be strengthened slightly by allowing one of the layers from 2 through k to be

arbitrary; we formulate and prove this stronger version in Section 2.8.

2.1.3 Relation to Dynamic Data Structures

Recently, Pǎtraşcu [Pǎt10] gave a three player NOF communication problem whose conjec-

tured lower bound implies polynomial lower bounds for a host of dynamic data structure prob-

lems, including subraph connectivity, dynamic shortest paths, and dynamic reachability.

The following conjecutre captures the essence of the communication problem.

Conjecture 12 ([Pǎt10, Conjecture 9]). Consider a 3-party number-on-the-forehead game in

which Alice holds i ∈ [k], Bob holds y1, . . . , yk ∈ Y , and Carol holds x ∈ X . The goal is

to compute g(x, yi), for some arbitrary g : X × Y → {0, 1}. If there is a protocol in which

Alice begins with a private message to Bob of o(k) bits, followed by M bits of bidirectional

communication between Bob and Carol, then the 2-party communication complexity of g is

O(M).

15

The intuition captured in this conjecture comes from the direct-sum style round elimination

lemmas of [MNSW98] and [SV08] and proceeds as follows. Since Alice transmits o(k) bits,

there must be some i such that she reveals o(1) information about yi. Fixing Alice’s message

and this i leaves a nontrivial problem for g. If Alice’s message depended only on y1, . . . , yk,

then a straightforward elimination result would hold. Fixing Alice’s message and i, we can

create a two-party protocol for g between Bob (holding x) and Carol (holding y) as follows:

Carol sets yi := y and chooses values for yj (j 6= i) such that y1, . . . , yk is consistent with

Alice’s fixed message. Then, Carol and Bob can compute g(x, y) by following the remainder

of the three-party protocol.

Unfortunately, this conjecture does not immediately follow, because Alice’s message de-

pends on x as well as y1, . . . , yk. As a result, neither Bob nor Carol has enough information to

extend the inputs (x, y)⇒ (x, y1, . . . , yk) in a way that is consistent with the fixed message.

Pǎtraşcu notes this but states “the information theoretic intuition of the (round elimination)

lemma holds, and it is conceivable that the message of Alice can be eliminated in a black-box

fashion for any communication problem of the appropriate direct sum structure.”

Our upper bound for MPJ3 refutes this statement. Specifically, we set k := n and Y := [n]

and view {yi} as the layer of edges (so yi maps the ith vertex in layer 1 to the yith vertex in

layer 2). Then, computing MPJ3 amounts to computing g(x, yi) := x[yi], and therefore the

resulting two player problem is merely INDEX.

If the direct-sum intuition were to hold in a black box fashion, then our protocol for MPJ3 in

which each player sends M := o(n) bits would result in a protocol for INDEX with communi-

cation O(M) = o(n), contradicting the Ω(n) lower bound of Ablayev [Abl96]. Conjecture 12,

as stated, might still hold. However, proving the conjecture will require exploiting the bidirec-

tional nature of the underlying 2-party protocol.

16

2.1.4 Organization

The rest of the chapter is organized as follows. Section 2.2 introduces some notation that is

used in subsequent sections. Theorems 3 and 4 are proven in Section 2.3. Theorems 5, 6,

and 8 are proven in Section 2.4. Theorems 7, 9, 10, and 11 are proven in Sections 2.4, 2.6, 2.7,

and 2.8 respectively. Finally, Section 2.9 concludes the chapter and discusses open problems.

2.2 Preliminaries and Notation

For the rest of the chapter, “protocols” will be assumed to be deterministic one-way NOF

protocols unless otherwise qualified. Let P be a k-player protocol in which player i’s message

has length `i. Define cost(P) and mcost(P) as

cost(P) :=
k∑

i=1

`i ,

mcost(P) := max
1≤i≤k

`i .

In this way, cost(P) denotes the total communication sent in a protocol whereas mcost(P)

denotes the maximum communication sent by any one player.

We now formally define the generalized pointer jumping problems MPJn
m,k and M̂PJ

n

m,k in a

recursive fashion. We define MPJn
m,2 : [m]× {0, 1}m → {0, 1} as MPJn

m,2(i, x) := xi, where xi

denotes the ith bit of the string x. In a similar fashion, we define M̂PJ
n

m,2 : [m]× [n][m] → [n] as

M̂PJ
n

m,2(i, f2) := f2(i). For k ≥ 3 we then define MPJn
m,k : [m]×[n][m]×

(
[n][n]

)k−3×{0, 1}n →

{0, 1} and M̂PJ
n

m,k : [m]× [n][m] ×
(
[n][n]

)k−2 → [n] as follows.

MPJn
m,k(i, f2, f3, . . . , fk−1, x) := MPJn

n,k−1(f2(i), f3, . . . , fk−1, x) , for k ≥ 3 ,

M̂PJ
n

m,k(i, f2, f3, . . . , fk) := M̂PJ
n

n,k−1(f2(i), f3, . . . , fk) , for k ≥ 3 .

17

It will be helpful, at times, to view strings in {0, 1}n as functions from [n] to {0, 1} and use

functional notation accordingly. Unrolling the recursion in the above definitions, we see that,

for k ≥ 2,

MPJn
m,k(i, f2, . . . , fk−1, x) = x ◦ fk−1 ◦ · · · ◦ f2(i) ; (2.1)

M̂PJ
n

m,k(i, f2, . . . , fk) = fk ◦ · · · ◦ f2(i) . (2.2)

It is often useful to discuss the composition of certain subsets of the inputs. Let î2 = i, and for

3 ≤ j ≤ k, let îj = fj−1 ◦ · · · ◦ f2(i). Similarly, let x̂k−1 = x, and for 1 ≤ j ≤ k − 2, let

x̂j = x ◦ fk−1 ◦ · · · ◦ fj+1.

Henceforth, we shall drop the superscript n. The most natural formulation of this problem

has m = n; in this case, we drop the subscript m as well.

Previous work on multiplayer pointer jumping considered only MPJk and M̂PJk. In Sec-

tion 2.4 we prove Theorems 5, 6, and 8 by performing round elimination on MPJm,k or M̂PJm,k

and shrinking m at each step.

We also consider the subproblems MPJperm
k and M̂PJ

perm

k where each fj above is a bijection

from [n] to [n] (equivalently, a permutation of [n]). We let Sn denote the set of all permutations

of [n].

2.3 Sublinear Upper Bounds

Here is a rough plan of the proof of our sublinear upper bound. We leverage the fact that a

protocol P for MPJperm
3 with sublinear communication is known. To be precise:

Fact 13 ([PRS97, Corollary 4.8]). C(MPJperm
3) = O(n log log n/ log n).

The exact structure of P will not matter; we shall only use P as a black box. To get a

sense for why P might be useful for, say, MPJ3, note that the players could replace f2 with a

permutation π and just simulate P , and this would work if π(i) = f(i). Of course, there is

18

no way for PLR1 and PLR3 to agree on a suitable π without communication. However, as we

shall see below, it is possible for them to agree on a small enough set of permutations such that

either some permutation in the set is suitable, or else only a small amount of side information

conveys the desired output bit to PLR3.

This idea eventually gives us a sublinear protocol for MPJ3. Clearly, whatever upper bound

we obtain for MPJ3 applies to MPJk for all k ≥ 3. However, we can decrease the upper bound

as k increases, by embedding several instances of MPJ3 into MPJk. Finally, we achieve an upper

bound for M̂PJk by leveraging several instances of MPJk−1. For clarity, we first give a complete

proof of Theorem 3 for the case k = 3. Then we give a proof of Theorem 3 for general k,

before proving Theorem 4.

2.3.1 The PRS Protocol

In this section, we present the MPJperm
3 protocol of Pudlák, Rödl and Sgall [PRS97]. In the next

section, we’ll leverage this upper bound to get a sublinear protocol for MPJ3.

Theorem 14 ([PRS97, Corollary 4.8]). C(MPJperm
3) = O(n log log n/ log n).

Remark. The proof of Theorem 14 is technical. Furthermore, we use it as a black box, so

details of this proof are not necessary to understand the rest of the chapter. The reader is

encouraged to skip details of this proof if necessary.

Proof. For this proof, it will be helpful to think of MPJperm
3 as a problem on a bipartite graph

G = (A ∪B, E) where π describes the edges in G (i.e., if b = π(a) then (a, b) ∈ E), x

describes a two-coloring of B, i describes a distinguished start vertex a ∈ A, and the goal is to

output the color of π(a). For a set of vertices B′ ⊆ B, we define the parity PB′ in the natural

way: arbitrarily associate one color with “0”, the second color with “1”, and define

PB′ :=

(∑
b∈B′

x[b]

)
mod 2 .

19

At a high level, the PRS protocol works in the following way. First, PLR1, using π, partitions

B into clusters C1, . . . , Cr. Crucially, the construction of this partition will depend only on π;

we defer a more complete description of this construction to later in the proof. PLR1 then sends

the parity of each cluster. PLR2 sees a and sends the color of several b ∈ B. Importantly,

PLR2 sends x[b] for every b in the cluster containing π(a), except possibly for π(a) itself. PLR3

recovers x[π(a)] by selecting the cluster containing π(a) and “XOR-ing” out the other bits in

the cluster; he outputs x[π(a)] =
(
PC +

∑
b∈C\{π(a)} x[b]

)
mod 2.

The magic in this protocol comes from how PLR1 chooses the clusters and how PLR2

chooses which b to send information about, such that for all a ∈ A and all π ∈ Sn, PLR3

has enough information to recover the answer.

Pudlák, Rödl and Sgall show this is possible using the probabilistic method. Specifically,

let H be a random bipartite graph on A ∪ B, where each edge (a, b) is selected with some

probability p to be determined later. Next, we’ll construct a protocol PH for MPJperm
3 based

on this random graph. Finally, we’ll show that with nonzero probablity, PH is an efficient

protocol, i.e., that for each a and each π, only O(n log log n/ log n) bits need to be sent.

Given H , PLR2’s message is simple: he sends the color of each neighbor of a in H . In

other words, PLR2 sends x[b] for each b such that (a, b) ∈ E(H). PLR1’s message is less simple

to construct. First, he constructs a graph Gπ on B, and he puts (b, b′) ∈ E(Gπ) if and only

if (π−1(b), b′) and (π−1(b′), b) are edges in H . Next, we let C be a clique cover of Gπ. The

cliques in this cover are the clusters of vertices in B that PLR1 uses in his message.

Now, it becomes easy to see why PH correctly computes MPJperm
3 . Let C ∈ C be the clique

containing π(a), and let b be some other element of C. Since C is a clique, (b, π(a)) is an edge

of Gπ, and therefore by construction (a, b) ∈ H . But since (a, b) is an edge in H , PLR2 sends

x[b]. Thus, we see that PLR2 sends x[b] for each b ∈ C not including π(a), giving PLR3 enough

information to recover x[π(a)].

To recap, the protocol of Pudlák, Rödl, and Sgall works as follows:

20

• PLR1 sees π and x. Using H , he creates a graph Gπ. PLR1 sends the parity PC of each

clique C in the clique cover C of Gπ.

• PLR2 sees a and x. Using H , he sends x[b] for all b ∈ B such that (a, b) is an edge in H .

• PLR3 sees a and π and must output x[π(a)]. Using H , he creates the graph Gπ. PLR3 then

computes the clique C containing π(a). Finally, PLR3 takes the parity PC from PLR1’s

message and the colors x[b] of all b ∈ C \ {π(a)} and outputs x[π(a)] by computing

PC +
∑

b∈C\{π(a)}

x[b]

 mod 2 =

∑
b∈C

x[b] +
∑

b∈C\{π(a)}

x[b]

 mod 2

= x[π(a)] .

We’ve seen that PH correctly outputs MPJperm
3 (a, π, x). It remains to show that there exists H

such that PH efficiently computes MPJperm
3 for all inputs. Recall the communication in PH :

PLR1 sends one bit for each cluster in Gπ, and PLR2 sends one bit for each neighbor of a in

H . H is a random graph. Each possible edge (a, b) is independently selected with probability

p. Therefore, for each a ∈ A, we expect a to have pn neighbors. By a Chernoff bound, there

exists a constant ε > 0 such that

Pr[a has more than (1+ε)pn neighbors] ≤ exp(−Ω(np2)) . (2.3)

Setting p := log log n/ log n, we see that

n · Pr[a has more than (1+ε)pn neighbors] ≤ n · exp
(
−Ω

(
n(log log n/ log n)2

))
= o(1) .

Next, we consider the number of cliques necessary to cover Gπ. Recall that (b, b′) ∈ E(Gπ)

21

if and only if (π−1(b), b′) and (π−1(b′), b) are edges in H , and that each edge in H is indepen-

dently selected with probability p. It follows that each (b, b′) is randomly selected for E(Gπ)

with probability p2. Simple inspection shows that for any two candidate edges e1, e2 in Gπ, the

edges from H used to determine whether e1 and e2 are edges in Gπ are disjoint. Thus, Gπ is a

random graph, with each edge independently selected with probability p2.

Pudlák, Rödl, and Sgall determine the number of cliques required to cover Gπ by consid-

ering the number of independent sets needed to cover its complement Ḡπ. Note that Ḡπ is a

random graph, where each edge is selected with probability q := 1−p2. Consider the chromatic

number χ(Ḡπ) of the complement graph, and suppose that r = χ(Ḡπ). Fix any r-coloring of

Ḡπ, and let Ci be the set of vertices of color i. Ci is an independent set in Ḡπ, hence it forms a

clique in Gπ, and therefore C := {C1, . . . , Cr} is a clique cover of Gπ. Pudlák, Rödl, and Sgall

prove the following technical lemma on the chromatic number of random graphs.

Lemma 15 ([PRS97, Theorem 4.4]). For every ε > 0 there exists δ > 0 and n0 such that for

all 7/8 < q < 1− 1/n1/2−ε and for all n ≥ n0,

Pr

[
χ(G(n, q)) ≤ (1/2 + ε)

−n log(1− q)

log n

]
> 1− exp(−n1+δ) . (2.4)

This lemma is an extension of a result by Bollobás, who considered the problem for con-

stant q; we do not develop it further here.

PLR1 sends one bit for each clique in the clique cover of Gπ. Recalling that q = 1− p2 and

22

that p := log log n/ log n, we see that

(1/2 + ε)(−n log(1− q)/ log n) = (1/2 + ε)(−2n log p/ log n)

= (1/2 + ε)

(
2n

log n
log

(
log n

log log n

))
= O

(
n log log n

log n

)
.

Thus, we see that if H behaves nicely with π, PLR1 sends only O(n log log n/ log n) bits. We

require a graph H such that no vertex a has too many neighbors, and no Gπ requires a clique

cover that is too large. Call H bad if either there exists a ∈ A such that a has more than

(1 + ε)pn neighbors or there exists π such that the smallest clique cover of Gπ has more than

(1/2 + ε)(−n log(1− q)/ log n) cliques; otherwise, call H good. Using Equations 2.3 and 2.4

and a union bound, we see that

Pr[H is bad] ≤ n! · Pr

[
χ(G(n, 1− p2)) >

(
1

2
+ ε

)
−n log(1− q)

log n

]
+n · Pr[a has more than (1 + ε)pn neighbors]

< n! · exp(−n1+δ) + n · exp(−Ω(np2))

= exp(n log n) · exp(−n1+δ) + n · exp(−Ω(np2))

= o(1) .

Hence there exists a good H and a protocol PH where players send O(n log log n/ log n) bits

each. 2

2.3.2 A 3-Player Protocol

Following the plan outlined above, we prove Theorem 3 for the case k = 3 by plugging Fact 13

into the following lemma, whose proof is the topic of this section.

23

Lemma 16. Suppose φ : Z → (0, 1] is a function such that C(MPJperm
3) = O(nφ(n)). Then

C(MPJ3) = O(n
√

φ(n)).

Definition 1. A set A ⊆ Sn of permutations is said to d-cover a function f : [n] → [n] if, for

each r ∈ [n], at least one of the following conditions holds:

(i) ∃π ∈ A such that π(r) = f(r), or

(ii) |f−1(f(r))| > d.

Lemma 17. Let f : [n] → [n] be a function and d be a positive integer. There exists a set

Ad(f) ⊆ Sn, with |Ad(f)| ≤ d, that d-covers f .

Proof. We give an explicit algortihm to constructAd(f). Our strategy for each permutation we

construct is to fix a set of pointers that cover the range of f and define the rest of the permutation

by arbitrarily matching the remaining elements. To be precise, suppose that Range(f) =

{s1, . . . , st}. Let Ai = f−1(si) be the corresponding fibers of f . Clearly, {Ai}ti=1 partition

[n]. Let B := [n] − Range(f) denote the elements not in the range of f , and write B as

{b1, b2, . . . , bn−t}.

For each 1 ≤ i ≤ t, let Ai = {ai,1, . . . , ai,|Ai|} denote the elements of Ai, and for each i and

each 1 ≤ j ≤ d, define ci,j := ai,min{j,|Ai|}. The jth permutation we construct will map ci,j to

si. Finally, let Cj := {c1,j, c2,j, . . . , ct,j}, and let Dj = {d1,j, . . . , dn−t,j} denote the elements

not in Cj . We define permutation πj in the following manner.

πj(r) =


si if r = ci,j ,

bi if r = di,j .

By construction, πj defines a bijection between Cj and Range(f), and between Dj and B;

therefore, πj permutes [n]. It remains to verify that this choice of Ad(f) d-covers f , i.e., to

verify that every r ∈ [n] satisfies at least one of the two conditions in Definition 1. Pick any

24

r ∈ [n]. Suppose r ∈ Ai, so that f(r) = si. If |Ai| ≤ d then there exists 1 ≤ j ≤ d such that

ai,j = r. Therefore, πj(r) = πj(ai,j) = πj(ci,j) = si and condition (i) holds. On the other

hand, Ai = f−1(si) = f−1(f(r)), so if |Ai| > d then condition (ii) holds. Either way, the

proof is complete. 2

Proof of Lemma 16.

Let (i, π, x) ∈ [n]×Sn×{0, 1}n denote an input for the problem MPJperm
3 . Then the desired

output is xπ(i). The existence of a protocol P for MPJperm
3 with cost(P) = O(nφ(n)) means

that there exist functions

α : Sn × {0, 1}n → {0, 1}m , β : [n]× {0, 1}n × {0, 1}m → {0, 1}m , and

γ : [n]× Sn × {0, 1}m × {0, 1}m → {0, 1} ,

where m = O(nφ(n)), such that γ(i, π, α(π, x), β(i, x, α(π, x))) = xπ(i). The functions α, β

and γ yield the messages in P of PLR1, PLR2 and PLR3 respectively.

To design a protocol for MPJ3, we first let PLR1 and PLR3 agree on a parameter d, to be

fixed below, and a choice of Ad(f) for each f : [n]→ [n], as guaranteed by Lemma 17. Now,

let (i, f, x) ∈ [n]× [n][n] × {0, 1}n be an input for MPJ3. Our protocol works as follows.

• PLR1 sends a two-part message. The first part consists of the strings {α(π, x)}π for all

π ∈ Ad(f). The second part consists of the bits xs for s ∈ [n] such that |f−1(s)| > d.

• PLR2 sends the strings {β(i, x, α)}α for all strings α in the first part of PLR1’s message.

• PLR3 can now output xf(i) as follows. If |f−1(f(i))| > d, then she reads xf(i) off from

the second part of PLR1’s message. Otherwise, since Ad(f) d-covers f , there exists a

π0 ∈ Ad(f) such that f(i) = π0(i). She uses the string α0 := α(π0, x) from the first

part of PLR1’s message and the string β0 := β(i, x, α0) from PLR2’s message to output

γ(i, π0, α0, β0).

25

To verify correctness, we only need to check that PLR3’s output in the “otherwise” case

indeed equals xf(i). By the correctness of P , the output equals xπ0(i) and we are done, since

f(i) = π0(i).

We now turn to the communication cost of the protocol. By the guarantees in Lemma 17,

|Ad(f)| ≤ d, so the first part of PLR1’s message is at most dm bits long, as is PLR2’s message.

Since there can be at most n/d values s ∈ [n] such that |f−1(s)| > d, the second part of PLR2’s

message is at most n/d bits long. Therefore the communication cost is at most 2dm + n/d =

O(dnφ(n) + n/d). Setting d = d1/
√

φ(n)e gives us a bound of O(n
√

φ(n)), as desired. 2

2.3.3 A k-Player Protocol

We now show how to prove Theorem 3 by generalizing the protocol from Lemma 16 into a

protocol for k players.

Lemma 18. Let (i, f2, . . . , fk−1, x) be input for MPJk. Then, for all 1 < j < k,

MPJk(i, f2, . . . , x) = MPJ3(fj−1 ◦ · · · ◦ f2(i), fj, x ◦ fk−1 ◦ · · · ◦ fj+1).

Proof. From the definition of MPJk and MPJ3, we have

MPJk(i, f2, . . . , fk−1, x) = x ◦ fk−1 ◦ · · · ◦ f2(i)

= x ◦ fk−1 ◦ · · · ◦ fj+1(fj(fj−1 ◦ · · · ◦ f2(i))

= MPJ3(fj−1 ◦ · · · ◦ f2(i), fj, x ◦ fk−1 ◦ · · · ◦ fj+1) .

2

In our protocol for MPJk, PLR1, PLRj, and PLRk will use a modified version of the proto-

col from Lemma 16 for MPJ3 on input (fj−1 ◦ · · · ◦ f2(i), fj, x ◦ · · · ◦ fj+1). Before we get

26

to the protocol, we need to generalize the technical definition and lemma from the previous

subsection.

Definition 2. A set A ⊆ Sn of permutations is said to (S, d)-cover a function f : [n]→ [n] if,

for each r ∈ S, at least one of the following conditions holds:

(i) ∃π ∈ A such that π(r) = f(r), or

(ii) |S ∩ f−1(f(r))| > d.

Lemma 19. Let f : [n]→ [n] be a function, S ⊆ [n], and d be a positive integer. There exists

a set AS,d(f) ⊆ Sn, with |AS,d(f)| ≤ d, that (S, d)-covers f .

Proof. This proof closely follows the proof of Lemma 17. As before, we give an ex-

plicit algorithm to construct AS,d(f). Suppose Range(f) = {s1, s2, . . . , st}, and let {Ai}

and B be defined as in Lemma 17. Let ai,1, · · · , ai,zi
denote the elements of Ai ∩ S, and let

ai,zi+1, . . . , ai,|Ai| denote the remaining elements of Ai. For 1 ≤ i ≤ t and 1 ≤ j ≤ d, define

ci,j := ai,min{j,|Ai|}. As before, the jth permutation we construct will map ci,j to si. Finally,

let Cj := {c1,j, . . . , ct,j}, and let Dj := {di,j, . . . , dn−t,j} be the elements not in Cj , We define

permutation πj in the following manner.

πj(r) =


si if r = ci,j ,

bi if r = di,j .

By construction, πj defines a bijection between Cj and Range(f), and between Dj and B. It

suffices to verify that this choice of AS,d(f) (S, d)-covers f , i.e., to verify that every r ∈ S

satisfies at least one of the two conditions in Definition 2. Pick any r ∈ S, and suppose r ∈ Ai.

If |Ai ∩S| ≤ d, then there exists 1 ≤ j ≤ d such that r = ci,j . Otherwise, condition (ii) holds,

since Ai = f−1(f(r)). 2

27

Proof of Theorem 3. To design a protocol for MPJk, we first let PLR1 and PLRk agree on a

parameter d, to be fixed below. They also agree on a choice of AS,d(f) for all S ⊆ [n] and

f : [n]→ [n].

Let (i, f2, . . . , fk−1, x) denote an input for MPJk. Also, let S1 = [n], and for all 2 ≤ j ≤

k − 1, let Sj = {s ∈ [n] : |Sj−1 ∩ f−1
j (s)| > d}. Our protocol works as follows:

• PLR1 sends a (k−1)-part message. For 1 ≤ j < k−2, the jth part of PLR1’s message

consists of the strings {α(π, x̂j+1)}π for each π ∈ ASj ,d(fj+1). Part k−2 consists of the

strings {α(π, x)}π for each π ∈ ASk−2,d(fk−1). The remaining part consists of the bits

xs for s ∈ Sk−1.

• For 2 ≤ j ≤ k− 1, PLRj sends the strings {β(̂ij, x̂j, α)}α for all strings α in the (j−1)st

part of PLR1’s message.

• PLRk can now output xîk
as follows. If |S1 ∩ f−1

2 (f2(i))| ≤ d, then AS1,d(f2) (S1, d)-

covers f2, and there exists π0 ∈ AS1,d(f2) such that f2(i) = π0(i). She uses the string

α0 = α(π0, x̂2) from the first part of PLR1’s message and the string β0 = β(i, x̂2, α0)

from PLR2’s message to output γ0 = γ(i, π0, α0, β0). Similarly, if for some 2 ≤ j ≤

k − 2 such that |Sj ∩ f−1
j+1(fj+1(̂ij+1))| ≤ d, then ASj ,d(fj+1) (Sj, d)-covers fj+1,

and there exists a π0 ∈ ASj ,d(fj+1) such that fj+1(̂ij+1) = π0(̂ij+1). She uses the

string α0 = α(π0, x̂j+1) from the jth part of PLR1’s message and the string β0 =

β(̂ij+1, x̂j+1, α0) from PLRj+1’s message to output γ0 = γ(̂ij+1, π0, α0, β0). Otherwise,

|Sk−2 ∩ f−1
k−1(fk−1(̂ik−1))| > d, hence îk ∈ Sk−1, and she reads xîk

off from the last part

of PLR1’s message.

To verify correctness, we need to ensure that PLRk always outputs x ◦ fk−1 ◦ · · · ◦ f2(i).

We proceed inductively. If |S1 ∩ f−1
2 (f2(i))| ≤ d then there exists π0 ∈ AS1,d(f2) such that

f2(i) = π0(i), α0 = α(π0, x̂2), and β0 = β(i, x̂2, α0), and PLRk outputs γ0 = γ(i, π0, α0, β0) =

x̂2(π0(i)) = x ◦ fk−1 ◦ · · · ◦ f2(i). Otherwise, |S1 ∩ f−1
2 (f2(i))| > d, hence f2(i) ∈ S2.

28

Inductively, if îj ∈ Sj−1, then either |Sj−1 ∩ f−1
j (fj (̂ij))| ≤ d, or |Sj−1 ∩ f−1

j (fj (̂ij))| > d.

In the former case, there is π0 ∈ ASj−1,d(fj) such that fj (̂ij) = π0(̂ij), α0(π0, x̂j), and β0 =

β(̂ij, x̂j, α0), and PLRk outputs γ0 = γ(̂ij, π0, α0, β0) = x̂j(fj (̂ij)) = x ◦ fk−1 ◦ · · · ◦ f2(i). In

the latter case, fj (̂ij) ∈ Sj . By induction, we have that either PLRk outputs x◦fk−1 ◦· · ·◦f2(i),

or îk ∈ Sk−1. But in this case, PLRk outputs x(̂ik) = x ◦ fk−1 ◦ · · · ◦ f2(i) directly from the last

part of PLR1’s message. Therefore, PLRk always outputs x ◦ fk−1 ◦ · · · ◦ f2(i) correctly.

We now turn to the communication cost of the protocol. By Lemma 19, |ASj ,d(fj)| ≤ d

for each 2 ≤ j ≤ k−1, hence the first k−2 parts of PLR1’s message are each at most dm bits

long, as is PLRj’s message for all 2 ≤ j ≤ k − 1. Also, since for all 2 ≤ j ≤ k − 1, there are

at most |Sj−1|/d s ∈ Sj such that |Sj−1 ∩ f−1
j (s)| > d, we must have that |S2| ≤ |S1|/d =

n/d, |S3| ≤ |S2|/d ≤ n/d2, |Sj| ≤ n/dj−1, and |Sk−1| ≤ n/dk−2. Therefore, the final part

of PLR1’s message is at most n/dk−2 bits long, and the total communication cost is at most

2(k − 2)dm + n/dk−2 = O((k − 2)dnφ(n) + n/dk−2). Setting d = d((k − 2)φ(n))−1/(k−1)e

gives us a bound of O(n(kφ(n))k−2/k−1) as desired. 2

Note that except for the first and last players, the input can be quite restrictive. Specifically,

for all 2 ≤ j ≤ k − 1, PLRj needs to see only îj and x̂j , i.e. PLRj is both conservative and

collapsing. Despite this severe restriction, we have a sublinear protocol for MPJk. As we’ll see

in Section 2.7, further restricting the input such that PLR1 is also collapsing yields very high

lower bounds.

2.3.4 A k-Player Protocol for M̂PJk

We conclude this section by extending the protocol for MPJk to get a protocol for M̂PJk.

Proof of Theorem 4. Let (i, f2, . . . , fk) be input for M̂PJk. For 1 ≤ j ≤ log n, define x(j)

to be the n-bit string such that x(j)(r) equals the jth most significant bit of fk−1(r). Note

that (i, f2, . . . , fk−2, x
(j)) is a valid input for MPJk−1. Our protocol for M̂PJk works as fol-

29

lows. First, players PLR1, . . . , PLRk−1 use a protocol for MPJk−1 t times in parallel, on inputs

(i, f2, . . . , fk−2, x
(j)) for each 1 ≤ j ≤ t. As a result of this, PLRk−1 learns the t most signifi-

cant bits of îk = fk−1(̂ik−1). There are at most n/2t values i∗ ∈ [n] whose t most significant

bits match those of îk. PLRk−1 sends fk(i
∗) for each of these possibilities, and PLRk, seeing îk,

outputs fk (̂ik) from PLRk−1’s message.

The first k−1 players run t copies of an MPJk−1 protocol at a cost of tC(MPJk−1). Addition-

ally, PLRk−1 sends log n bits for each of n/2t different possible values for îk. Therefore, the

cost of this protocol is tC(MPJk−1)+n log n/2t. Using the MPJk−1 protocol from Section 2.3.3

and setting t :=
(
2− 1

k−1

)
log (log n/ log log n) gives the desired bound. 2

2.4 Lower Bounds for Myopic Protocols

For many of our results in this section, we shall make use of the following sequences of num-

bers, all of which are parameterized by some δ ∈ R+ (possibly dependent on n and k) to be

specified later. Let a0 := 0, and for ` > 0, let a` := δ2a`−1. For all ` ≥ 0, let m` := n2−a` .

Note that m0 = n. Also, let φ(k) be the least δ such that ak−1 ≥ 1.

We now prove the lower bound on myopic MPJk protocols. We repeat the main theorem

here for convenience:

Theorem 20. (Precise restatement of Theorem 6). Let P be a myopic protocol for MPJk. Then,

mcost(P) > nφ(k).

We prove this theorem by viewing MPJk as a special instance of MPJm,k and by using a

round elimination lemma. First, we note that MPJm,2 is just the INDEX problem on m bits.

The one-way communication complexity of INDEX is well known; we state it here in terms of

MPJm,2.

Fact 21. If P is a protocol for MPJm,2, then mcost(P) ≥ m.

30

The structure of our proof is as follows. We assume the existence of a protocol for MPJk

in which each player sends at most δn bits. In the round elimination step, we show how to

turn a protocol for MPJm,k into a protocol for MPJm′,k−1 with the same cost, and with m′ < m.

Repeating this step k − 2 times, transforms the δn-bit protocol for MPJk into a δn-bit protocol

for MPJm,2 with m > δn, contradicting Fact 21.

The following simple definition and lemma provide the combinatorial hook that permits

the round elimination step.

Definition 3. Let i ∈ [`] and F ⊆ [n]` be given. The range of i in F , denoted Range(i,F), is

defined as:

Range(i,F) := {f(i) : f ∈ F}

Lemma 22. Let F ⊆ [n]` be given. If |F| ≥ m`, then |Range(i,F)| ≥ m for some i ∈ [`].

Proof. We prove the contrapositive of this statement. Suppose that |Range(i,F)| < m for

all i ∈ [`]. Without loss of generality, assume that Range(i,F) ⊆ [m − 1] for each i, and let

G := {f : f(i) ≤ m − 1 for all i ∈ [`]}. Its clear that F ⊆ G. Furthermore, |G| = (m − 1)`.

Hence, |F| ≤ |G| < m`. 2

Lemma 23 (Round Elimination Lemma). Let k ≥ 3. If there is a δn-bit myopic protocol P

for MPJm,k, then there is a δn-bit myopic protocol Q for MPJm′,k−1 with m′ = n · 2−δn/m.

Proof. In MPJm,k, PLR1’s input is a function f2 : [m] → [n]. There are nm such func-

tions. Since PLR1 sends at most δn bits, he must send the same message M on nm/2δn distinct

f2. Let F be the set of inputs for which PLR1 sends M . It follows that |F| ≥ nm/2δn =

2m log n−δn = 2m(log n−δn/m) = 2m log m′
= (m′)m. By Lemma 22, we must have i ∈ [m] with

|Range(i,F)| ≥ m′. Fix such an i, and let S := Range(i,F). Without loss of generality,

assume S = [m′]. 3

3Specifically, if S 6= [m′], then fix a permutation π ∈ Sn that maps (a subset of) S to [m′]. In Q, players

31

We are now ready to construct a protocol for MPJm′,k−1. Label the players PLR2, . . . , PLRk.

For each j ∈ [m′], the players agree on a gj ∈ F such that gj(i) = j. Then, on input

(j, f3, . . . , fk−1, x), players simulate P on input (i, gj, f3, . . . , fk−1, x). Clearly, cost(Q) =

cost(P), and since gj(i) = j, we must have

MPJm,k(i, gj, f3, . . . , fk−1, x) = MPJm′,k−1(j, f3, . . . , fk−1, x) .

2

Note that the reduction step in the round elimination lemma uses only the first two layers

of input, so the lemma can be applied to a much wider range of problems than just MPJm,k and

to a much wider range of protocols than just myopic protocols. For example, the reduction step

only requires that PLR1 is myopic. More importantly, the lemma applies to M̂PJm,k exactly as

stated.

Lemma 24. Let k ≥ 3. If there is a δn-bit myopic protocol P for M̂PJm,k, then there is a δn-bit

myopic protocol Q for M̂PJm′,k−1 with m′ = n · 2−δn/m.

Proof of Theorem 20. The main theorem follows by careful application of the Round Elim-

ination Lemma. Suppose P is a δn-bit myopic protocol for MPJk = MPJm0,k. By the Round

Elimination Lemma, a δn-bit protocol for MPJm`,z yields a δn-bit protocol for MPJm′,z−1, where

m′ = n · 2−δn/m` = n · 2−δn/(n2−a`) = n · 2−δ2a` = n · 2−a`+1 = m`+1. Applying the lemma

k − 2 times, we transform P into a δn-bit protocol for MPJmk−2,2. By Fact 21, we must have

δn ≥ mk−2 = n2−ak−2 , hence 1 ≤ δ2ak−2 = ak−1. Therefore, cost(P) ≥ φ(k)n. (Recall that

φ(k) is precisely the least δ such that ak−1 ≥ 1.)

We complete the proof by showing that φ(k) > 1/2. Specifically, we claim that if δ ≤ 1/2,

then a` < 1 for all ` > 0. We prove this claim by induction. In the base case, a1 = δ2a0 ≤

agree on gj such that π(gj(i)) = j and simulate P on input (i, gj , f3 ◦ π, . . . , fk−1, x). f3(j) = f3(π(gj(i))) =
f3 ◦ π(gj(i)), and the rest of the proof follows.

32

1/2 < 1, and if a` < 1, then a`+1 = δ2a` < (1/2) · 21 = 1. 2

Next, we show how to extend this to an exact lower bound for the total communication of

myopic protocols.

Corollary 25. For all m ≤ n, any myopic protocol P for MPJm,k must have cost(P) ≥ m.

Proof. We prove this by induction on k. The base case MPJm,2 is trivial. For the general

case, assume that for all m ≤ n, any protocol for MPJm,k−1 requires m bits, and suppose there

is a protocol P for MPJm,k where PLR1 sends m1 bits. The reduction in Lemma 23 gives a

protocol Q for MPJm′,k−1 where m′ = n · 2−δn/m = n · 2−m1/m. By the induction hypothesis,

cost(Q) ≥ m′. Therefore, cost(P) ≥ m1 + m′. Next, note that

m1 + m′ < m ⇔ m1 + n · 2−m1/m < m (2.5)

⇔ n < 2m1/m(m−m1) (2.6)

⇔ n < 2αm(1− α). (2.7)

where α = m′/m ∈ [0, 1]. The function f(x) = 2x(1− x) is decreasing on all x ∈ [0, 1], so it

achieves its maximal value at f(0) = 1. Note that 2αm(1 − α) < m. Hence if the right hand

side of inequality (2.7) holds, then n < m. However, by assumption, m ≤ n, so this cannot be

true. Therefore, m1 + m′ ≥ m, completing the proof. 2

Our main theorem shows that no matter how many players are involved, some player must

send at least φ(k)n > n/2 bits. For specific k, the constant factor can be improved. For

example, a δn-bit protocol for MPJ3 gives a δn-bit protocol for MPJm,2 with m = n · 2−δ. By

Lemma 21, we must have n · 2−δ ≤ δn, or δ2δ ≥ 1. Solving for δ gives a lower bound of

≈ 0.6412n.

Next we give a similar theorem for M̂PJk.

33

Theorem 26. (Restatement of Theorem 8). Fix 2 ≤ k < log∗ n, and let P be a myopic protocol

for M̂PJk. Then, cost(P) ≥ n(log(k−1) n− log(k) n) bits.

As in the lower bound proof for MPJk, we begin with an easy lower bound for M̂PJm,2.

Fact 27. In any deterministic protocol for M̂PJm,2, PLR1 communicates at least m log n bits.

Theorem 26 is a direct consequence of the following lemma:

Lemma 28. If δ = log(k−1) n− log(k) n, then aj ≤ log(k−j) n− log(k+1−j) n for all 1 ≤ j < k.

In particular, ak−1 ≤ log n− log log n.

Proof. (by induction) For j = 1, aj = a1 = δ = log(k−1) n − log(k) n = log(k−j) n −

log(k+1−j) n. For the induction step, we have

aj−1 ≤ log(k+1−j) n− log(k+2−j) n

= log

(
log(k−j) n

log(k+1−j) n

)

Therefore, 2aj−1 ≤ log(k−j) n

log(k+1−j) n
, and

aj = δ2aj−1

≤
(
log(k−1) n− log(k) n

)(log(k−j) n

log(k+1−j) n

)

=
log(k−1) n log(k−j) n

log(k+1−j) n
− log(k) n log(k−j) n

log(k+1−j) n

≤ log(k−j) n− log(k+1−j) n

where the last inequality is because the positive term is less than log(k−j) n, and the negative

term is greater than log(k+1−j) n, for all 2 ≤ j < k. 2

Proof of Theorem 26. Let δ = log(k−1) n − log(k) n. Suppose we have a protocol for M̂PJk in

34

which each player sends δn bits. By Lemma 24, we have a δn-bit protocol for M̂PJmk−2,2. By

Fact 27, such a protocol costs at least mk−2 log n bits. Hence, we must have

δn ≥ mk−2 log n ⇔ δn ≥ n2−ak−2 log n

⇔ δ2ak−2 ≥ log n

⇔ ak−1 ≥ log n

However, we know by Lemma 28 that ak−1 ≤ log n − log log n < log n, so we have a

contradiction. 2

2.5 An Upper Bound for Myopic Protocols

The analysis for the lower bound in the previous section also gives insight as to what myopic

protocols can do. Specifically, in a protocol for MPJm,k, we’d like PLR1’s message to give

PLR2 enough information so that PLR2, . . . , PLRk can run a protocol for MPJm′,k−1 for some

m′ < m. To do this, we need PLR1’s messages to partition his input space so that for each of

his messages Mj and for each 1 ≤ i ≤ m, the range size |Range(i, M1)| is small.

It turns out that just such a protocol is possible, and that the communication cost matches

our lower bound up to 1 + o(1) factors. To aid in the analysis of this protocol, we need the

following covering lemma.

Definition 4. We say a subset T ⊆ [m]d is isomorphic to [m′]d and write T ∼= [m′]d if T =

T1 × · · · × Td for sets T1, . . . , Td ⊆ [m], each of size m′.

Lemma 29. (Covering Lemma). For integers d,m, m′ < m ∈ Z>0, let Um,d := [m]d, and

Sm′,d := {T ⊆ Um,d : T ∼= [m′]d}. Then there exists a set C ⊆ Sm′,d of size |C| ≤ (m/m′)d ·

35

d ln m + 1 such that ∪T∈CT = Um,d. We say that C covers Um,d and call C an m′-covering of

Um,d.

Proof. We use the probabilistic method. Fix r > (m/m′)d d ln m, and pick T1, . . . , Tr in-

dependently and uniformly at random from Sm′,d. Note that picking T in this way amounts

to picking d [m′]-subsets of [m] independently and uniformly at random. Therefore, for any

p ∈ Um,d, we have Pr[p ∈ T] = (m′/m)d. For each p ∈ Um,d, let BADp :=
∧

1≤j≤r(p 6∈ Tj)

be the event that p is not covered by any set Tj . Also, let BAD :=
∨

p∈Um,d
BADp be the

event that some p is not covered. From the probability calculation above, and using the fact

that 1 + x ≤ ex, we have Pr[BADp] =
(
1− (m′/m)d

)r

≤ e−r(m′/m)d

. By the union bound,

we have Pr[BAD] ≤ md Pr[BADp] ≤ ed ln m−r(m′/m)d

. Recall that r > (m/m′)d · d ln m, so

d ln m− r(m′/m)d < d ln m− d ln m = 0. Hence, Pr[BAD] < e0 = 1. Therefore, there must

exist a set {T1, . . . , Tr} of sets isomorphic to [m′]d that cover Um,d. 2

Theorem 30. For all k ≥ 3, there exists a myopic protocol for MPJk in which each player

sends φ(k)n(1 + o(1)) bits.

Proof. We prove this by construction. As a warmup, we give a (0.65n)-bit max-communication

protocol for MPJ3. Later, we show how to generalize this to more than 3 players. Recall that

we have a φ(3)n-bit lower bound for MPJ3, where φ(3) ≈ 0.6412 is the unique real number δ

such that a2 = δ2δ = 1. In advance, the players fix a [0.65n]-covering C of [n][n]. On input

(i, f2, x), PLR1 sends T ∈ C such that f2 ∈ T . PLR2 sees i, x and T , and sends xj for all

j ∈ Range(i, T). PLR3 sees i, f2 and recovers xf2(i) from PLR2’s message.

In terms of communication cost, PLR1 sends log |C| bits. By Lemma 29, |C| ≤ (n/0.65n)n ·

n ln n + 1, hence PLR1 sends log |C| = n log(1/0.65)(1 + o(1)) < 0.65n bits. PLR2 sends one

bit for each j ∈ Range(i, T). Since T ∼= [0.65n]n, we must have |Range(i, T)| ≤ 0.65n.

Hence, PLR2 sends at most 0.65n bits, and the maximum communication cost is also 0.65 bits.

For the general case, we construct a protocol P for MPJk as follows. Fix δ := φ(k), and for

36

each 0 ≤ j ≤ k − 2, players agree in advance on a [mj+1]-covering set Cj+1 for Un,mj
. Note

that by the covering lemma, log |Cj+1| = mj log(n/mj+1)(1 + o(1)). Also note that

mj log(n/mj+1) = n2−aj log
(
n/n2−aj+1

)
= −n2−aj log(2−aj+1)

= n2−ajaj+1

= n2−aj(δ2aj)

= δn .

On input (i, f2, . . . , fk−1, x), the players proceed as follows. PLR1 sees f2 ∈ [n][n] and picks

T1 ∈ C1 that contains f2. PLR1 communicates T1 to the rest of the players.

PLR2 sees i ∈ [m], f3 ∈ [n][n], and T1. From i and T1, PLR2 computes R2 := Range(i, T1).

Note that since T1 is an [m1] covering, |Range(i, T1)| = m1 for all i. Without loss of generality,

assume R2 = [m1]. Let f ∗3 be f3 restricted to the domain R2. Note that f ∗3 is a function

[m1] → [n], so f ∗3 ∈ Un,m1 . PLR2 picks T2 ∈ C2 that contains f ∗3 and communicates T2 to the

rest of the players.

Generalizing, PLRj computes Rj := Range(fj−1 ◦ · · · ◦ f2(i), Tj−1), which has size mj−1

because Tj−1 ∈ Cj−1. Noting that fj restricted to Rj is an element in Un,mj−2
, PLRj picks

Tj ∈ Cj that contains fj and communicates this to the rest of the players.

PLRk−1 computes Rk−1 := Range(fk−2 ◦ · · · ◦f2(i), Tk−2) and sends xr for each r ∈ Rk−1.

PLRk computes r∗ := fk−1 ◦ fk−2 ◦ · · · ◦ f2(i) and recovers xr∗ from PLRk−1’s message.

For each 1 ≤ j ≤ k − 2, PLRj sends log |Cj+1| = δn(1 + o(1)) bits. PLRk−1 sends one bit

for each j ∈ Rk−1. By construction, |Rk−1| ≤ mk−2. Choosing δ to be the smallest real such

that δ2ak−2 = ak−1 ≥ 1 ensures that mk−2 ≤ δn.

In conclusion, we have a protocol P where each player sends δn(1 + o(1)) bits, where δ

37

is the smallest real such that ak−1 ≥ 1. Note that this choice of δ exactly matches our lower

bound. 2

2.6 Randomizing the Lower Bound

Theorems 20 and 26 give strong lower bounds for deterministic protocols for MPJk and M̂PJk

respectively. In this section, we show that our technique can also be used to show lower bounds

on the randomized complexity of MPJk.

Previously, Chakrabarti [Cha07] showed randomized lower bounds of Ω(n/k) and

Ω(n log(k−1) n) for MPJk and M̂PJk respectively. The bound for M̂PJk is for the maximum

communication and is tight. The bound for MPJk is for the total communication; this bound

implies an Ω(n/k2) lower bound on the maximum communication. In contrast, we achieve:

Theorem 31. In any randomized myopic protocol for MPJk, some player must communicate at

least Ω(n/k log n) bits.

Our lower bound improves on the bound from [Cha07] for k = Ω(log n). To prove this

lower bound, we give a round elimination lemma for ε-error distributional protocols for MPJm,k

under the uniform distribution. By Yao’s minimax principle [Yao77], lower bounds on distri-

butional protocols imply lower bounds on randomized protocols. Our “base case” is the lower

bound on the ε-error distributional complexity of MPJm,k, due to Ablayev [Abl96]:

Fact 32. Any protocol for MPJm,2 that errs on at most an ε-fraction of the inputs distributed

uniformly must communicate at least m (1−H(ε)) bits.4

Lemma 33 (Round Elimination Lemma). Let k ≥ 3. If there is a δn-bit, ε-error distri-

butional myopic protocol P for MPJm,k, then there is a δn-bit, ε̂-error distributional myopic

protocol Q for MPJm′,k−1 with m′ = n · 2−2δ n
m and ε̂ = 2nε.

4The binary entropy function H is defined as: H(ε) := −ε log ε− (1− ε) log(1− ε).

38

Proof. For the sake of notation, we let z := (f3, . . . , fk−1, x), so the input to MPJm,k is

(i, f2, z). Let P(i, f2, z) denote the output of P on input (i, f2, z). Let

α(i, f2, z) :=

 1 if P(i, f2, z) 6= MPJm,k(i, f2, z)

0 otherwise

Since P is an ε-error protocol, we have Ei,f2,z[α(i, f2, z)] = ε. Now, let α̂(i, f2) :=

Ez[α(i, f2, z)], and call (i, f2) bad if α̂(i, f2) > 2nε; otherwise, call (i, f2) good. Clearly,

Ei,f2 [α̂(i, f2)] = Ei,f2,z[α(i, f2, z)] = ε, so by Markov’s inequality, we get Pr[(i, f2) is bad] <

1/2n. Now, let

β(i, f2) :=

 1 if (i, f2) is bad

0 otherwise

Also, let β̂(f2) = Ei[β(i, f2)]. Call f2 bad if β̂(f2) ≥ 1/n, and call f2 good otherwise. Note

that Ef2 [β̂(f2)] = Ei,f2 [β(i, f2)] < 1/(2n), so by another application of Markov’s inequality,

we get Pr[f2 is bad] < 1/2. Therefore, f2 is good with probability at least 1/2.

Note that if f2 is good, then Pri[(i, f2) is bad] < 1/n. Furthermore, if (i, f2) were bad for

even a single i, then we would have Pri[(i, f2)is bad] ≥ 1/n. Therefore, (i, f2) is good for

every i whenever f2 is good.

The rest of this lemma closely follows the deterministic version. There are nm functions

f2 : [m]→ [n]. Since at least half the functions f2 are good, there must be at least nm/2 good

f2. Since PLR1 sends at most δn bits, he must send the same message M1 on nm/(2 · 2δn)

distinct good f2. Let F be the set of good inputs for which PLR1 sends M1. It follows that

|F| ≥ nm

2·2δn = 2m log n−1−δn > 2m log n−2δn = (m′)m. By Lemma 22, we must have i ∈ [m]

with |Range(i,F)| ≥ m′. Furthermore, every f ∈ F is good, so (i, f) is good for all f ∈ F .

Construct a protocol Q for MPJm′,k−1 as we did in Lemma 23. As in Lemma 23, the cost

of Q remains equal to the cost of P , MPJm,k(i, gj, z) = MPJm′,k−1(j, z), and that Q(j, z) =

39

P(i, gj, z). Finally, we get

Pr
j,z

[Q(i, z) 6= MPJm′,k−1(j, z)] = Pr
j,z

[P(i, gj, z) 6= MPJm,k(i, gj, z)]

= Pr
j,z

[α(i, gj, z) = 1]

≤ 2nε .

where the inequality holds because (i, gj) is good for every j. 2

Proof of Theorem 31. Let ε = 1/3 and δ = 1/32, and suppose an ε-error randomized protocol

for MPJk exists where each player sends at most t = n
48δ ln 2(log 3+(k−2) log(2n))

= Ω(n
k log n

) bits.

By Chernoff bounds, there exists an ε̂ := ε (2n)−(k−2)-error randomized protocol P for MPJk,

where each player sends δn bits. By Yao’s minimax lemma, there is a deterministic protocol

where each player sends δn bits that errs on an ε̂ fraction of inputs, distributed uniformly.

Set a0 = 0, a` = 2δ2a`−1 , and m` = n2−a` . Note that a0 < 1/8, and if a`−1 < 1/8, then

a` = 2δ2a`−1 < 1/8, so by induction, a` < 1/8 for all `. Using Lemma 33 k − 2 times, we get

a δn-bit, ε-error protocol for MPJmk−2,2. Combining this with Fact 32, we get

δn ≥ mk−2 (1−H(1/3)) ⇔ δn ≥ n2−ak−2 (1−H(1/3))

⇔ δ2ak−2 ≥ 1−H(1/3)

⇔ ak−1/2 ≥ 1−H(1/3) .

However, we have already seen that ak−1/2 < 1/16 < 1 −H(1/3), so this is a contradiction.

2

40

2.7 Collapsing Protocols: A Lower Bound

Let F : A1 × A2 × · · · × Ak → B be a k-player NOF communication problem and P

be a protocol for F . We say that PLRj is collapsing in P if her message depends only on

x1, . . . , xj−1 and the function gx,j : A1 × A2 × · · · × Aj → B given by gx,j(z1, . . . , zj) =

F (z1, . . . , zj, xj+1, . . . , xk). For pointer jumping, this amounts to saying that PLRj sees all

layers 1, . . . , j − 1 of edges (i.e., the layers preceding the one on her forehead), but not layers

j + 1, . . . , k; however, she does see the result of following the pointers from each vertex in

layer j. Still more precisely, if the input to MPJk (or M̂PJk) is (i, f2, . . . , fk), then the only

information PLRj gets is i, f2, . . . , fj−1 and the composition fk ◦ fk−1 ◦ · · · ◦ fj+1.

We say that a protocol is collapsing if every player involved is collapsing. We shall prove

Theorem 10 by contradiction. Assume that there is a collapsing protocol P for MPJk in which

every player sends less than n− 1
2
log n− 2 bits. We shall construct a pair of inputs that differ

only in the last layer (i.e., the Boolean string on PLRk’s forehead) and that cause players 1

through k − 1 to send the exact same sequence of messages. This will cause PLRk to give the

same output for both these inputs. But our construction will ensure that the desired outputs are

unequal, a contradiction. To aid our construction, we need some definitions and preliminary

lemmas.

Definition 5. A string x ∈ {0, 1}n is said to be consistent with (f1, . . . , fj, α1, . . . , αj) if, in

protocol P , for all h ≤ j, PLRh sends the message αh on seeing input (f1, . . . , fh−1, x ◦ fj ◦

fj−1 ◦ · · · ◦ fh+1) and previous messages α1, . . . , αh−1.5 A subset T ⊆ {0, 1}n is said to be

consistent with (f1, . . . , fj, α1, . . . , αj) if x is consistent with (f1, . . . , fj, α1, . . . , αj) for all

x ∈ T .
5It is worth noting that, in Definition 5, x is not to be thought of as an input on PLRk’s forehead. Instead, in

general, it is the composition of the rightmost k − j layers of the input graph.

41

Definition 6. For strings x, x′ ∈ {0, 1}n and a, b ∈ {0, 1}, define the sets

Iab(x, x′) := {i ∈ [n] : (xi, x
′
i) = (a, b)} .

A pair of strings (x, x′) is said to be a crossing pair if for all a, b ∈ {0, 1}, Iab(x, x′) 6= ∅. A set

T ⊆ {0, 1}n is said to be crossed if it contains a crossing pair and uncrossed otherwise. The

weight of a string x ∈ {0, 1}n is defined to be the number of 1s in x, and denoted |x|.

For the rest of this section, we assume (without loss of generality) that n is large enough

and even.

Lemma 34. If T ⊆ {0, 1}n is uncrossed, then |{x ∈ T : |x| = n/2}| ≤ 2.

Proof. Let x and x′ be distinct elements of T with |x| = |x′| = n/2. For a, b ∈ {0, 1}, define

tab = |Iab(x, x′)|. Since x 6= x′, we must have t01 + t10 > 0. An easy counting argument

shows that t01 = t10 and t00 = t11. Since T is uncrossed, (x, x′) is not a crossing pair, so at

least one of the numbers tab must be zero. It follows that t00 = t11 = 0, so x and x′ are bitwise

complements of each other.

Since this holds for any two strings in {x ∈ T : |x| = n/2}, that set can have size at most

2. 2

Lemma 35. Suppose t ≤ n − 1
2
log n − 2. If {0, 1}n is partitioned into 2t disjoint sets, then

one of those sets must be crossed.

Proof. Let {0, 1}n = T1tT2t· · ·tTm be a partition of {0, 1}n into m uncrossed sets. Define

X := {x ∈ {0, 1}n : |x| = n/2}. Then X =
⋃m

i=1(Ti ∩X). By Lemma 34,

|X| ≤
m∑

i=1

|Ti ∩X| ≤ 2m .

42

Using Stirling’s approximation, we can bound |X| > 2n/(2
√

n). Therefore, m > 2n− 1
2

log n−2.

2

Proof of Theorem 10. Set t = n − 1
2
log n − 2. Recall that we have assumed that there is a

collapsing protocol P for MPJk in which every player sends at most t bits. We shall prove the

following statement by induction on j, for j ∈ [k − 1].

(*) There exists a partial input (i = f1, f2, . . . , fj) ∈ [n]×
(
[n][n]

)j−1, a sequence

of messages (α1, . . . , αj) and a crossing pair of strings (x, x′) ∈ ({0, 1}n)2

such that both x and x′ are consistent with (f1, . . . , fj, α1, . . . , αj), whereas

x ◦ fj ◦ · · · ◦ f2(i) = 0 and x′ ◦ fj ◦ · · · ◦ f2(i) = 1.

Considering (*) for j = k − 1, we see that PLRk must behave identically on inputs

(i, f2, . . . , fk−1, x) and (i, f2, . . . , fk−1, x
′). Therefore, she must err on one of these two in-

puts. This will give us the desired contradiction.

To prove (*) for j = 1, note that PLR1’s message, being at most t bits long, partitions

{0, 1}n into at most 2t disjoint sets. By Lemma 35, one of these sets, say T , must be crossed.

Let (x, x′) be a crossing pair in T and let α1 be the message that PLR1 sends on seeing a string

in T . Fix i = f1 such that i ∈ I01(x, x′). These choices are easily seen to satisfy the conditions

in (*).

Now, suppose (*) holds for a particular j ≥ 1. Fix the partial input (f1, . . . , fj) and the

message sequence (α1, . . . , αj) as given by (*). We shall come up with appropriate choices for

fj+1, αj+1 and a new crossing pair (y, y′) to replace (x, x′), so that (*) is satisfied for j + 1.

Since PLRj+1 sends at most t bits, she partitions {0, 1}n into at most 2t subsets (the partition

might depend on the choice of (f1, . . . , fj, α1, . . . , αj)).

As above, by Lemma 35, she sends a message αj+1 on some crossing pair (y, y′). Choose

fj+1 so that it maps Iab(x, x′) to Iab(y, y′) for all a, b ∈ {0, 1}; this is possible because

Iab(y, y′) 6= ∅. Then, for all i ∈ [n], xi = yfj+1(i) and x′i = y′fj+1(i). Hence, x = y ◦ fj+1

43

and x′ = y′ ◦ fj+1. Applying the inductive hypothesis and the definition of consistency, it is

straightforward to verify the conditions of (*) with these choices for fj+1, αj+1, y and y′. This

completes the proof. 2

2.8 Collapsing Protocols: An Upper Bound

We now turn to proving Theorem 11 by constructing appropriate collapsing protocols for

M̂PJ
perm

k . Our protocols use what we call bucketing schemes, which have the flavor of the

conservative protocol of Damm et al. [DJS98]. For any function f ∈ [n][n] and any S ⊆ [n].

let 1S denote the indicator function for S; that is, 1S(i) = 1↔ i ∈ S. Also, let f |S denote the

function f restricted to S. fS can be seen as a list of numbers {is}, one for each s ∈ S. Players

will often need to send 1S and f |S together in a single message. This is because later players

might not know S, and will therefore be unable to interpret f |S without 1S . Let 〈m1, . . . ,mt〉

denote the concatenation of messages m1, . . . ,mt. As before, it will be instructive to first

consider the special case k = 3 in detail.

Definition 7. A bucketing scheme on a set X is an ordered partition B = (B1, . . . , Bt) of X

into buckets. For x ∈ X , we write B[x] to denote the integer j such that Bj 3 x.

We actually prove our upper bound for problems slightly more general than M̂PJ
perm

k . To be

precise, for an instance (i, f2, . . . , fk) of M̂PJk, we allow any one of f2, . . . , fk to be an arbitrary

function in [n][n]. The rest of the fjs are required to be permutations, i.e., in Sn. For k = 3,

this leads to two cases.

Theorem 36. There is an O(n log log n)-communication collapsing protocol for instances

(i, f2, f3) of M̂PJ3 in which f3 ∈ Sn.

Proof. Assume, without loss of generality, that n is a power of 2. The players agree on the

bucketing scheme B = (B1, . . . , Blog n) on [n] defined by Bj := {r ∈ [n] : d(r log n)/ne = j}.

44

Note that each |Bj| ≤ dn/ log ne and that a bucket can be described using dlog log ne bits.

Upon input (i, f2, f3):

• PLR1 sees f3 ◦ f2 and sends α := 〈B[f3(f2(1))],B[f3(f2(2))], . . . ,B[f3(f2(n))]〉.

• PLR2 sees i, f3, and α. From α, she recovers b := B[f3(f2(i))] and hence Bb. She

determines the set S := {h ∈ [n] : f3(h) ∈ Bb}. Note that the definitions guarantee that

f2(i) ∈ S. She sends β := 〈1S, f3|S〉.

• PLR3 sees i, f2, α, and β. She computes j = f2(i). Since j ∈ S, she determines f3(j)

from β and outputs that.

The protocol is clearly correct. As for the communication cost, PLR1’s message uses

ndlog log ne bits. In PLR2’s message, 1S takes up n bits and f3|S takes up |S| log n bits. To

finish the proof, note that S = f−1
3 (Bb). Since f3 is a permutation, this gives |S| = |Bb| ≤

dn/ log ne and we are done. 2

When bucketing, it is important to ensure that each player sees only a limited number of

elements that could go in the bucket sent by the previous player because this in turn limits the

size of the message he needs to sends to the next player. For example, in the above proto-

col, PLR2 learns from PLR1’s message the identity of the bucket containing the desired output

f3(f2(i)). Since f3 permutes [n], she is guaranteed to see only dn/ log ne possibilities for this

output. In the next two protocols, ensuring a similar bound is less trivial.

Theorem 37. There is an O(n log log n)-communication collapsing protocol for instances

(i, f2, f3) of M̂PJ3 in which f2 ∈ Sn.

Proof. For a function f : [n] → [n] and an integer t ∈ [n], we define a bucketing scheme

B∗(f, t) on Range(f) via the following algorithm.

45

Algorithm B∗(f, t)

1 i← 0 ; S ← Range(f)

2 while S 6= ∅

3 do i← i + 1

4 viewing S in ascending order, move elements from S into Bi until |f−1(Bi)| ≥ n
t

5 return (B1, . . . , Bi)

We collect the salient properties of this scheme into the following lemma, omitting the easy

proof.

Lemma 38. The bucketing scheme B∗(f, t) is completely determined by the sorted list of values

in (f(1), f(2), . . . , f(n)). The scheme has at most t buckets. If B is one of those buckets and

m = max{s : s ∈ B}, then |f−1(B \ {m})| < n/t.

Returning to the proof of Theorem 37, let us assume without loss of generality that n is a

power of 2. We now describe our protocol. On input (i, f2, f3):

• PLR1 sees f3 ◦ f2 and computes B := B∗(f3 ◦ f2, log n). She then sends the message

α := 〈B[f3(f2(1))],B[f3(f2(2)), . . . ,B[f3(f2(n))]〉.

• PLR2 sees i, f3, and α, and computes B := B∗(x, log n); this computation is correct by

Lemma 38, because f2 is a permutation. From α, she recovers b := B[f3(f2(i))] and

hence Bb. She determines m := max{s : s ∈ Bb} and S := {h ∈ [n] : f3(h) ∈ Bb \

{m}}. Note that the definitions guarantee that either f2(i) ∈ S or else f3(f2(i)) = m.

She sends β := 〈1S, f3|S, m〉.

• PLR3 sees i, f2, α, and β. If f2(i) ∈ S, then she recovers f3(f2(i)) from the first two

parts of β and outputs that. Otherwise, she outputs m from the third part of β.

Again, this protocol is clearly correct. As for the communication cost, note that it requires

only dlog log ne bits to describe a bucket in B. Therefore, PLR1’s message uses ndlog log ne

46

bits. As before, PLR2’s message requires n + |S| log n + log n bits. To finish the proof, note

that S = f−1
3 (Bb \ {m}) and use Lemma 38 to conclude that |S| < n/ log n. 2

The final collapsing protocol is for k players when all but one of the layers is a permutation.

For j = 1, . . . , k − 1 let bj = log(k−j)(n) and f̂j = fk ◦ · · · ◦ fj+1.

Theorem 39. There is an O(n log(k−1) n) protocol for M̂PJk when all but one of f2, . . . , fk are

permutations.

Proof. This protocol is a hybrid of the two previous approaches. Without loss of generality,

let fj+1 be the layer that is not a permutation. Note that for 1 ≤ j∗ ≤ j, {f̂j∗} all represent

(up to permutation) the same list of numbers. Similarly, for j < j∗ ≤ k, {f̂j∗} all represent

[n] (up to permutation). Let B∗(f, t) denote the bucketing scheme used in Theorem 37, and

for t ∈ [n], define the bucketing scheme Bt = (B1, . . . , Bt) on [n] by Bj := {r ∈ [n] :

d(rt)/ne = j}. Note that Blog n is equivalent to the bucketing scheme used in Theorem 36. On

input (i, f2, . . . , fk),

• PLR1 sees f̂1, computes B ← B∗(f̂1, 2
b1), and sends 〈B[f̂1(1)], . . . ,B[f̂1(n)]〉.

• PLR2 sees î2, f̂2, and the message from PLR1. PLR2 computes B ← B∗(f̂2, 2
b1) and

B′ ← B∗(f̂2, 2
b2). From PLR1’s message, he recovers B ← B[f̂1(i)]. Let k2 be the

largest element of B, and let S2 = {i ∈ [n] : f̂2(i) ∈ B ∧ f̂2(i) 6= k2}. PLR2 sends

〈1S2 , {B′[f̂2(s)] : s ∈ S2}, k2〉.

• PLR3 sees î3, f̂3 and PLR2’s message. PLR3 then computes B ← B∗(f̂3, 2
b2) and

B′ ← B∗(f̂3, 2
b3). First, PLR3 checks to see if î3 = f2(i) ∈ S2. If f2(i) 6∈ S2, then he an-

nounces f̂2(f2(i)) = k2 and the protocol ends. Otherwise, he recovers B ← B[f̂2(f2(i))]

from the second part of PLR2’s message. Let k3 be the greatest element of B, and let

S3 = {i ∈ [n] : f̂3(i) ∈ B ∧ f̂3(i) 6= k3}. PLR2 sends 〈1S3 , {B′[f̂3(s)] : s ∈ S3}, k3〉.
...

47

• PLRj sees îj, f̂j, and PLRj−1’s message. PLRj then computes B ← B∗(f̂j, 2
bj−1) and

B′ ← Bbj
. PLRj checks to see if îj = fj−1(̂ij−1) ∈ Sj−1. if îj 6∈ Sj−1 then he announces

f̂j−1(fj−1(̂ij−1)) = f̂j−1(̂ij) = kj−1 and the protocol ends. Otherwise, he recovers

B ← B[f̂j−1(fj−1(̂ij−1))] from the second part of player (j − 1)’s message. Let kj be

the greatest element of B, and let Sj = {i ∈ [n] : f̂j(i) ∈ B ∧ f̂j 6= kj}. PLRj sends

〈1Sj
, {B′[f̂j(s)] : s ∈ Sj}, kj〉.

• PLRj+1 sees îj+1, f̂j+1, and PLRj’s message. PLRj+1 then computes B = Bbj+1
and B′ =

Bbj+1
. PLRj+1 checks to see if îj+1 = fj (̂ij) ∈ Sj . If îj+1 6∈ Sj , then PLRj+1 announces

kj = f̂j(fj (̂ij)) and the protocol ends. Otherwise,he recovers B ← B[f̂j(fj (̂ij))]. Let

Sj+1 = {i ∈ [n] : f̂j+1(i) ∈ B}. PLRj+1 sends 〈1Sj+1
, {B′[f̂j+1(s)] : s ∈ Sj+1}〉.

...

• PLRk sees îk and PLRk−1’s message and outputs fk (̂ik).

We claim that this protocol costs O(n log(k−1) n) and correctly outputs M̂PJk(i, f2, . . . , fk).

For all j∗ < j, PLRj∗ buckets elements using the B∗ scheme. Then, by definition of Sj∗ ,

PLRj∗+1 knows that either f̂j∗ [fj∗ (̂ij∗)] = kj∗ , or that fj∗ (̂ij∗) ∈ Sj∗ . In the former case,

kj∗ = M̂PJk(i, f2, . . . , fk), and player j∗+1 outputs it directly, ending the protocol. In the latter

case, he recovers the bucket B for f̂j∗(fj∗ (̂ij∗)) from the second part of player j∗s message.

PLRj∗+1 identifies the elements of f̂j∗+1 that are elements of B and buckets these. The latter

players bucket elements based on the Bt bucketing scheme. The correctness of this part of the

protocol follows directly from Theorem 36. Finally, PLR1 sends b1 = log(k−1) n bits to identify

the bucket for each i ∈ [n]. Each successive PLRj using the B∗ scheme uses n + bj(n/bj) +

log n = bits, and each PLRj using the Bt scheme uses n + bj(n/bj) bits. Thus, the maximum

communication cost of this protocol is O(n log(k−1) n) bits. When k is constant, this also gives

a bound on the total communication cost. However, when k = ω(1), the total communication

cost is O(n log(k−1) n + kn) since later players each send Θ(n) bits. We address this issue in

48

two steps. First, we show an O(n log(k−1) n) protocol for all k ≤ log∗ n. Then, we handle the

case where k > log∗ n.

Suppose then that k ≤ log∗ n. Note that in the previous protocol, no matter which bucketing

scheme PLRj uses, he divides the input space into 2bj = bj+1 buckets, and therefore it costs bj

bits to describe each bucket. Note also that the resulting set Sj+1 has size n/2bj = n/bj+1. To

get the communication cost to telescope, each PLRj divides his input space into 22bj = (bj+1)
2

buckets. It costs twice as many bits to describe each bucket, but the resulting set Sj+1 will have

size |Sj+1| ≤ n/(bj+1)
2. Thus, the second part of PLRj’s message will cost 2bjn/(b2

j) = 2n/bj

bits. Instead of sending n bits to send the characteristic vector of Sj , PLRj can use the following

fact and describe Sj using only 2nbj+1/b
2
j < 2n/bj bits.

Fact 40. For all 1 ≤ k ≤ n,

log

(
n

n/k

)
≤ n log k

k

In this new protocol, PLR1 sends n log(k−1) n bits, and for 1 < j < k, PLRj sends at most

3n/bj + log n bits. The total cost of the protocol is at most

n log(k−1) n + 3n
k−1∑
j−2

1

log(k−j) n
+ k log n < n log(k−1) n + O(n) + 3n

k−2∑
r=1

1

log(r) n

< n log(k−1) n +
3n

log(k−2) n

(
1 +

1

2
+

1

4
+ . . .

)
= n log(k−1) n ,

where the last inequality holds because 2 log x ≤ x for all x ≥ 2 and log(r) n > 2 for all

r < log∗ n− 1.

Finally, if k > log∗ n, then players can follow a O(n) protocol by having all but the last

log∗ n players not communicating, and have the rest of the players use a O(n log(k−1) n) =

O(n) bit protocol. 2

49

2.9 Concluding Remarks

We have presented the first nontrivial upper bound on the NOF communication complexity of

the Boolean problem MPJk, showing that C(MPJk) = o(n). A lower bound of Ω(n) had seemed

a priori reasonable, but we show that it fails. One plausible line of attack on lower bounds for

MPJk is to treat it as a direct sum problem: at each player’s turn, it seems that n different

paths need to be followed in the input graph, so it seems that an information theoretic approach

(as in Bar-Yossef et al. [BJKS02] or Chakrabarti [Cha07]) could lower bound C(MPJk) by n

times the complexity of some simpler problem. However, it appears that such an approach

would naturally yield a lower bound of the form Ω(n/ξ(k)), as in Conjecture 1, which we have

falsified.

The most outstanding open problem regarding MPJk is to resolve Conjecture 2. A less

ambitious, but seemingly difficult, goal is to get tight bounds on C(MPJ3), closing the gap

between our O(n
√

log log n/ log n) upper bound and Wigderson’s Ω(
√

n) lower bound. A

still less ambitious question is prove that MPJ3 is harder than its very special subproblem TPJ3

(defined in Section 2.1.1). Our n − O(log n) lower bound for collapsing protocols is a step

in the direction of improving the known lower bounds. We hope our technique provides some

insight about the more general problem.

50

Chapter 3

Distributed Functional Monitoring

The notion of distributed functional monitoring was recently introduced by Cormode,

Muthukrishnan and Yi [CMY08] to initiate a formal study of the communication cost of cer-

tain fundamental problems arising in distributed systems, especially sensor networks. In this

model, each of k sites reads a stream of tokens and is in communication with a central coordi-

nator, who wishes to continuously monitor some function f of σ, the union of the k streams.

The goal is to minimize the number of bits communicated by a protocol that correctly monitors

f(σ), to within some small error. As in previous work, we focus on a threshold version of

the problem, where the coordinator’s task is simply to maintain a single output bit, which is 0

whenever f(σ) ≤ τ(1− ε) and 1 whenever f(σ) ≥ τ . Following Cormode et al., we term this

the (k, f, τ, ε) functional monitoring problem.

In previous work, some upper and lower bounds were obtained for this problem, with f

being a frequency moment function, e.g., F0, F1, F2. Importantly, these functions are mono-

tone. Here, we further advance the study of such problems, proving two new classes of results.

First, we study the effect of non-monotonicity of f on our ability to give nontrivial monitoring

protocols, by considering f = Fp with deletions allowed, as well as f = H . Second, we prove

new lower bounds on this problem when f = Fp, for several values of p. In [ABC09], we

51

provide nontrivial monitoring protocols when f is either H , the empirical Shannon entropy of

a stream, or any of a related class of entropy functions (Tsallis entropies). These are the first

nontrivial algorithms for distributed monitoring of non-monotone functions.

3.1 Introduction

Energy efficiency is a key issue in sensor network systems. Communication, which typically

uses power-hungry radio, is a vital resource whose usage needs to be minimized [EGHK99].

Several other distributed systems have a similar need for minimizing communication. This is

the primary motivation for our present work, which is a natural successor to the recent work of

Cormode, Muthukrishnan and Yi [CMY08], who introduced a clean formal model to study this

issue. The formalization, known as distributed functional monitoring, involves a multi-party

communication model consisting of k sites (the sensors, in a sensor network) and a single

central coordinator. Each site asynchronously receives “readings” from its environment, for-

malized as a data stream consisting of tokens from a discrete universe. The union of these

streams defines an overall input stream σ that the coordinator wishes to monitor continuously,

using an appropriate protocol involving private two-way communication channels between the

coordinator and each site. Specifically, the coordinator wants to continuously maintain ap-

proximate knowledge of some nonnegative real-valued function f of σ. (We assume that f

is invariant under permutations of σ, which justifies our use of “union” above, rather than

“concatenation.”)

As is often the case in computer science, the essence of this problem is captured by a

threshold version with Boolean outputs. Specifically, we have a threshold τ ∈ R+ and an

approximation parameter ε ∈ R+, and we require the coordinator to continuously maintain

an output bit, which should be 0 whenever f(σ) ≤ τ(1 − ε) and 1 whenever f(σ) ≥ τ .1

1Clearly, a solution to the value monitoring problem solves this threshold version, and the value monitoring
problem can be solved by running, in parallel, several copies of a solution to this threshold version with geomet-

52

Following [CMY08], we call this the (k, f, τ, ε) functional monitoring problem. This formula-

tion of the problem combines aspects of streaming algorithms, sketching and communication

complexity.

Motivation. Plenty of recent research has studied such continuous monitoring problems, for

several special classes of functions f (see, e.g., [BO03, DGGR04, CMZ06, SSK07]). Applica-

tions have arisen not only in sensor networks, but also in more general network and database

settings. However, most of this past work had not provided formal bounds on communica-

tion cost, an issue that was first addressed in detail in [CMY08], and that we continue to ad-

dress here. Philosophically, the study of such monitoring problems is a vast generalization of

Slepian-Wolf style distributed source coding [SW73] in much the same way that communica-

tion complexity is a vast generalization of basic source coding in information theory. Further-

more, while the problems and the model we consider here are strongly reminiscent of streaming

algorithms, there are notable additional challenges: for instance, maintaining an approximate

count of the total number of tokens received is a nontrivial problem in our setting, but is trivial

in the streaming model. For a more detailed discussion of prior research, we refer the reader

to [CMY08] and the references therein.

Our Results and Comparison with Prior Work. Our work studies (k, f, τ, ε) functional

monitoring for two natural classes of functions f : the empirical Shannon entropy H and the

frequency moments Fp. For an input stream σ of tokens from the universe [n] := {1, 2, . . . , n},

let fi denote the number of appearances of i in σ, where i ∈ [n]. For p ≥ 0, the pth frequency

moment Fp(σ) is defined to be
∑n

i=1 fp
i . Note that p can be non-integral or zero: indeed,

using the convention 00 = 0 makes F0(σ) equal to the number of distinct tokens in σ. These

functions Fp capture important statistical properties of the stream and have been studied heavily

in the streaming algorithms literature [AMS99, Mut03]. The stream σ also implicitly defines

rically spaced thresholds.

53

a probability distribution over [n], given by Pr[i] = fi/m, where m is the length of σ. For

various applications, especially ones related to anomaly detection in networks, the entropy of

this distribution — also called the empirical entropy of the stream — is a measure of interest.

Abusing notation somewhat, we denote this as H(σ), when the underlying entropy measure is

Shannon entropy: thus, H(σ) =
∑n

i=1(fi/m) log(m/fi).2

We study the effect of non-monotonicity of f on the (k, f, τ, ε) problem: the bounds of

Cormode et al. [CMY08] crucially exploited the fact that the functions being monitored were

monotone nondecreasing. We obtain two new classes of results. First, we prove lower bounds

for monitoring f = Fp with deletions allowed: i.e., the stream can contain “negative tokens”

that effectively delete earlier tokens. In contrast with the good upper bounds in [CMY08] for

monitoring Fp without deletions (a monotone problem), we show that essentially no nontrivial

upper bounds are possible. Using similar techniques, we also give a lower bound for monitor-

ing H that is necessarily much milder, and in the same ballpark as our upper bound.

Secondly, we prove new lower bounds for the monotone problems f = Fp, with-

out deletions, for various values of p. These improve or are incomparable with previous

bounds [CMY08]; see Table 3.1 for a side-by-side comparison.

In [ABC09], we provide nontrivial monitoring protocols for H , and the related functions

Tα. For this, we suitably extend recent sketching algorithms such as those due to Bhuvanagiri

and Ganguly [BG06] and Harvey et al. [HNO08]. These are the first nontrivial algorithms

for monitoring non-monotone functions. Our algorithms, which are simple and easily usable,

can monitor continuously until the end of the stream, even as the f(σ) crosses the threshold

multiple times. This is the desired behavior when monitoring non-monotone functions.

Notation, etc. We now define some notation that we use at various points in this chapter. We

use |σ| to denote the length of the stream σ and σ1◦σ2 to denote the concatenation: σ1 followed

2Throughout this chapter we use “log” to denote logarithm to the base 2 and “ln” to denote natural logarithm.

54

Problem Previous Results Our Results

H , deterministic

O(m), trivially

Ω(kε−1/2 log m)

H , randomized Õ(kε−3 log4 m), Ω(ε−1/2 log m)

Fp, dels., determ. Ω(m)

Fp, dels., rand. Ω(m/k)

F1, deterministic O(k log(1/ε)), Ω(k log(1/(εk))) Ω(k log(1/ε))

F0, randomized Õ(k/ε2), Ω(k) Ω(1/ε), Ω(1/ε2) if round-based

Fp, p > 1, rand. Õ(k2/ε + (
√

k/ε)3), Ω(k), for p = 2 Ω(1/ε), Ω(1/ε2) if round-based

Table 3.1: Summary of our results (somewhat simplified) and comparison with previous
work [CMY08]. Dependence on τ is not shown here, but is stated in the relevant theorems.

by σ2. We typically use S1, . . . , Sk to denote the k sites, and C to denote the coordinator, in a

(k, f, τ, ε) functional monitoring protocol. We tacitly assume that randomized protocols use a

public coin and err with probability at most 1/3 at each point of time. These assumptions do

not lose generality, as shown by appropriate parallel repetition and the private-versus-public-

coin theorem of Newman [New91]. We use m to denote the overall input length (i.e., number

of tokens) seen by the protocol under consideration. We state our communication bounds in

terms of m, k and ε, and sometimes τ .

3.2 Formal Definition

In this section, we formally define distributed functional monitoring. Let σ1, . . . , σk denote

aribtrary streams of tokens from a finite universe U = [m], and let σ denote the union of

σ1, . . . , σk. The following definition formalizes our model.

Definition 1. For all k ∈ N+, all functions f : U∗ → R+, and all ε, τ ∈ R+, the (k, f, τ, ε)-

distributed functional monitoring problem is defined as follows. Each of k sites receives a

stream of tokens σi from U and has a bidirectional communication channel with a central

55

coordinator, who must continuously output 0 whenever f(σ) ≤ τ(1−ε) and 1 whenever f(σ) ≥

τ .

In this chapter, we are interested in protocols which solve the (k, f, τ, ε)-distributed func-

tional monitoring problem for several different functions f . Our goal is to minimize the amount

of communication required.

3.3 Lower Bounds for Non-Monotone Functions

We now give lower bounds for estimating entropy, and later, Fp. We give deterministic bounds

first, and then randomized bounds. We abuse notation and let H denote both the empirical

entropy of a stream and the binary entropy function H : [0, 1] → [0, 1] given by H(x) =

−x log x− (1− x) log(1− x).

Theorem 41. For any ε < 1/2 and m ≥ k/
√

ε, a deterministic algorithm solving (k,H, τ, ε)

functional monitoring must communicate Ω(kε−1/2 log(εm/k)) bits.

Proof. We use an adversarial argument that proceeds in rounds. Each round, the adversary

will force the protocol to send at least one bit. The result will follow by showing a lower bound

on the number of rounds r that the adversary can create, using no more than m tokens. Let

τ = 1, and let z be the unique positive real such that H(z
2z+1

) = 1−ε. Note that this implies

H(z
2z+1

) > 1/2 > H(1/10), whence z
2z+1

> 1/10, hence z > 1/8. An estimation of H using

calculus shows that z = Θ(1/
√

ε). Fix a monitoring protocol P . The adversary only uses

tokens from {0, 1}, i.e., the stream will induce a two-point probability distribution.

The adversary starts with a “round 0” in which he sends nine 1s followed by a 0 to site

S1. Note that at the end of round 0, the entropy of the stream is H(1/10) < 1/2. For i ∈

{0, 1, . . . , r}, let ai denote the number of 0s and bi the number of 1s in the stream at the end

of round i. Then a0 = 1 and b0 = 9. For all i > 0, the adversary maintains the invariant that

56

bi = dai(z + 1)/ze. This ensures that at the end of round i, the empirical entropy of the stream

is

H

(
ai

ai + bi

)
≤ H

(
ai

ai(1 + (z + 1)/z)

)
= H

(
z

2z + 1

)
= 1− ε ,

which requires the coordinator to output 0.

Consider the situation at the start of round i, where i ≥ 1. If each player were to receive

d(bi−1 − ai−1)/ke 0-tokens in this round, then at some point the number of 0s in the stream

would equal the number of 1s, which would make the empirical entropy equal to 1 and require

the coordinator to change his output to 1. Therefore, there must exist a site Sji
, ji ∈ [k], who

would communicate upon receiving these many 0-tokens in round i. In actuality, the adversary

does the following in round i: he sends these many 0s to Sji
, followed by as many 1s as required

to restore the invariant, i.e., to cause bi = dai(z+1)/ze. Clearly, this strategy forces at least one

bit of communication per round. It remains to bound r from below. Note that the adversary’s

invariant implies bi − ai ≤ ai/z + 1 and ai + bi ≤ ai(2z + 1)/z + 1 = ai(2 + 1/z) + 1.

Therefore, we have

ai = ai−1 +

⌈
bi−1 − ai−1

k

⌉
≤ ai−1 +

⌈
1 + ai−1/z

k

⌉
≤ ai−1

(
1 +

1

zk

)
+ 2 .

Setting α = (1+1/zk) and iterating gives ar ≤ a0α
r +2(αr−1)/(α−1) = a0α

r +2zk(αr−

1) = αr(a0 +2zk)−2zk. Using our upper bound on ai + bi, the above inequality, and the facts

that a0 = 1 and that z > 1/8, we obtain

ar + br ≤ αr (1 + 2zk) (2 + 1/z)− 2zk(2 + 1/z) + 1

≤ (2 + 1/z) (1 + 2zk) αr

≤ (2 + 1/z) (1 + 2zk) er/zk

≤ 60zker/zk .

57

Therefore, we can have ar + br ≤ m, provided r ≤ zk ln(m/(60zk)). Recalling that z =

Θ(1/
√

ε), we get the claimed lower bound of Ω(kε−1/2 log(εm/k)). 2

Our next lower bounds are for functional monitoring of frequency moments when we allow

for deletions. Specifically, we now consider update streams that consist of tokens of the form

(i, v), where i ∈ [n] and v ∈ {−1, 1}, to be thought of as updates to a vector (f1, . . . , fn) of

frequencies. The vector is initially zero and is updated using fi ← fi + v upon receipt of the

token (i, v); in this way, each update either adds or deletes one copy of item i.

As usual, we let m denote the length of an update stream whose tokens are distributed

amongst several sites. Our next results essentially show that no nontrivial savings in commu-

nication is possible for the problem of monitoring frequency moments in this setting. These

bounds highlight the precise problem caused by the non-monotonicity of the function being

monitored. They should be contrasted with the much smaller upper bounds achievable in the

monotone case, when there are no deletions (see Table 3.1).

Our proofs are again adversarial and proceed in rounds. They use appropriate instantiations

of the following generic lemma.

Definition 2. An update stream is said to be positive if it consists entirely of tokens from

[n] × {1}, i.e., insertions only. The inverse of an update stream σ = 〈(i1, v1), . . . , (im, vm)〉

is defined to be σ−1 := 〈(im,−vm), . . . , (i1,−v1)〉. A function G : Zn
+ → R+ on frequency

vectors is said to be monotone if G is nondecreasing in each parameter, separately. We extend

such a G to a function on streams (or update streams) in the natural way, and write G(σ) to

denote G(~f), where ~f is the frequency vector determined by σ.

Lemma 42. Let G : Zn
+ → R+ be monotone and let P be a protocol for the (k,G, τ, ε)

functional monitoring problem with deletions allowed. Let σ0, σ1, . . . , σk be a collection of

positive update streams such that (1) G(σ0) ≤ τ(1−ε), and (2) G(σ0◦σ1◦. . .◦σk) ≥ τ . If P is

a deterministic protocol, then at least
⌊
|(m− |σ0|) / (2 ·maxj∈[k]{|σj|})

⌋
are communicated.

58

If P is a δ-error randomized protocol, then the expected number of bits communicated is at

least ((1− δ)/k) ·
⌊
(m− |σ0|) / (2 ·maxj∈[k]{|σj|})

⌋
.

Proof. Let S1, . . . , Sk be the k sites involved in P . The adversary will send certain tokens to

certain sites, maintaining the invariant that the coordinator is always required to output 0. In

round 0, the adversary sends σ0 to S1; by condition (1), this maintains the invariant.

Let s = maxj∈[k]{|σj|} and r = b(m − |σ0|)/2sc. The adversary uses r additional rounds

maintaining the additional invariant that at the start of each such round the value of G is G(σ0).

Consider round i, where i ∈ [r]. By condition (2), if the adversary were to send σj to Sj in this

round, for each j ∈ [k], the coordinator’s output would have to change to 1.

Suppose P is a deterministic protocol. Then, since the coordinator’s output would have to

change to 1, there must exist a site Sji
, with ji ∈ [k], that would have to communicate upon

receiving σji
in this round. In actuality, the adversary sends σji

◦ σ−1
ji

to Sji
and nothing to

any other site in round i. Clearly, this maintains both invariants and causes at least one bit

of communication. Also, this adds at most 2s tokens to the overall input stream. Thus, the

adversary can cause r bits of communication using |σ0|+ 2sr ≤ m tokens in all, which proves

the claim for deterministic protocols.

The proof when P is a δ-error randomized protocol proceeds in a similar manner. The

difference is that each round i has an associated collection of probabilities (pi1, . . . , pik), where

pij = Pr[Sj communicates in round i upon receiving σj]. As before, condition (2) implies that

were each Sj to receive σj in this round, correctness would require C’s output to change to 1.

Thus,

1− δ ≤ Pr[P is correct] ≤ Pr[C receives a bit in round i] ≤
∑k

j=1 pij ,

where the final inequality uses a union bound. Therefore, there exists a site Sji
, with ji ∈ [k],

having piji
≥ (1 − δ)/k. Again, as in the deterministic case, the adversary actually sends

59

σji
◦ σ−1

ji
to Sji

and nothing to any other site in round i. By linearity of expectation, the

expected total communication with r rounds is at least r(1− δ)/k, which proves the lemma. 2

The theorems that follow are for randomized protocols with error δ = 1/3.

Theorem 43. The expected communication cost of a randomized (k, F0, τ, ε) functional moni-

toring protocol that allows for deletions is Ω(min{m/k, m/ετ}).

Proof. Let a := max{1, d τε
k
e}, and instantiate σ0 as a stream of τ − ka distinct elements and

σ1, . . . , σk each as a stream of a distinct elements. Note that ka ≥ τε, so F0(σ0) = τ − ka ≤

τ(1−ε). Furthermore, note that F0(σ0 ◦ σ1 ◦ · · · ◦ σk) = τ , hence the streams satisfy the

conditions of Lemma 42 with G = F0. Applying that lemma, and noting that |σj| = a gives us

a lower bound of ((1−δ)/k) · b(m− |σ0|)/(2a)c = Ω(min{m/k, m/ετ}) for large enough m.

2

Note that Lemma 42 implies a slightly stronger result for deterministic protocols that mon-

itor frequency moments; however, a linear lower bound is already known, even without dele-

tions, by the same techniques used in [AMS99] to prove lower bounds in the streaming model.

The proof of the next theorem is similar to that of Theorem 43.

Theorem 44. The expected communication cost of a randomized (k, Fp, τ, ε) monitoring pro-

tocol (with p > 0) that allows deletions is Ω(min{m/k, mp/τ 1/pε}).

Proof. Let s0 := (1−ε)1/pτ 1/p, s1 := τ 1/p, and a := 1 + d(s1 − s0)/ke. Instantiate σ0 as

a stream of bs0c insertions of the token “1”, and instantiate σ1, . . . , σk each as a stream of a

insertions of the token “1”. Note that

Fp(σ0) ≤ sp
0 = τ(1− ε) ,

60

and that

Fp(σ0 ◦ σ1 ◦ · · · ◦ σk) ≥ (bs0c+ k (1 + d(s1 − s0)/ke))p

≥ (bs0c+ 1 + s1 − s0)
p

≥ sp
1 = τ .

hence the streams satisfy the conditions of Lemma 42 with G = Fp. Applying that lemma,

and noting that |σj| = a gives us a lower bound of ((1 − δ)/k) · b(m − |σ0|)/(2a)c, which is

Ω(min{m/k, mp/τ 1/pε}) for large enough m. 2

Theorem 45. The expected communication cost of a randomized (k,H, τ, ε) functional moni-

toring protocol is Ω(ε−1/2 log(εm/k)) bits.

We note that Yi and Zhang [YZ09] study problems similar to ours but in terms of compet-

itive ratio. The bounds in this section rely on the construction of hard instances which might

not be possible in their case.

3.4 Frequency Moments Without Deletions: New Bounds

We finish with another set of lower bounds, this time for monitoring Fp (for various p) without

deletions. Our bounds either improve or are incomparable with previous lower bounds: see

Table 3.1.

Theorem 46. A deterministic protocol that solves (k, F1, τ, ε) functional monitoring must com-

municate at least Ω
(
k log k+τ

k+ετ

)
bits. In particular, when τ ≥ k/εΩ(1), it must communicate

Ω (k log(1/ε)) bits.

Proof. Again we use an adversary, who proceeds in rounds: each round, he gives just enough

tokens to a single site to force that site to communicate.

61

Let a0 = 0 and, for i ≥ 1, let ai be the total number of tokens received by all sites

(i.e., the value of F1 for the input stream) at the end of round i. The adversary maintains

the invariant that ai ≤ τ(1 − ε), so that the coordinator must always output 0. For j ∈ [k],

let bij be the maximum number of tokens that site j can receive in round i without being

required to communicate. The correctness of the protocol requires ai−1 +
∑k

j=1 bij < τ , for

otherwise the desired output can change from 0 to 1 without the coordinator having received

any communication. Let j∗ = argminj∈[k]{bij}. In round i, the adversary sends bij∗ +1 tokens

to site j∗, forcing it to communicate. We have

ai = ai−1 + bij∗ + 1 ≤ ai−1 +
τ − ai−1

k
+ 1 = 1 +

τ

k
+

(
1− 1

k

)
ai−1 .

Letting α = 1− 1/k and iterating the above recurrence gives

ai ≤ (1 + τ/k)(1− αi)/(1− α) = (k + τ)(1− αi).

Now note that α ≥ e−2/k, so when i ≤ r := k
2
ln k+τ

k+ετ
, we have αi ≥ k+ετ

k+τ
, so that

ai ≤ (τ + k)

(
k + τ − k − ετ

k + τ

)
= τ(1− ε) .

This shows that the adversary can maintain the invariant for up to r rounds, forcing Ω(r)

bits of communication, as claimed. 2

Our next lower bounds use reductions from a fundamental problem in communication com-

plexity: the Gap Hamming distance problem. We discuss Gap Hamming Distance more in

Chapter 4. In this chapter, we use a parameterized version of Gap Hamming Distance, denoted

GHDc, where c ∈ R+ is a parameter. In this problem, Alice and Bob are given x, y ∈ {0, 1}n

respectively and want to output 1 if ∆(x, y) ≥ n
2
+c
√

n and 0 if ∆(x, y) ≤ n
2
−c
√

n; they don’t

care what happens if the input satisfies neither of these conditions. We shall need the following

62

lower bounds on the randomized communication complexity R(GHDc), as well as the one-way

randomized communication complexity (where the only communication is from Alice to Bob)

R→(GHDc). Proofs of these bounds can be found in [Woo07]. Further background background

on the problem can be found in Woodruff [Woo07] and in Chapter 4.

Theorem 47. Suppose c > 0 is a constant. Then R(GHDc) = Ω(
√

n) and R→(GHDc) = Ω(n).

Here, the Ω notation hides factors dependent upon c.3

It is conjectured that the general randomized bound is in fact as strong as the one-way ver-

sion. This is not just a tantalizing conjecture about a basic communication problem. Settling it

would have important consequences because, for instance, the Gap Hamming distance problem

is central to a number of results in streaming algorithms. As we shall soon see, it would also

have consequences for our work here.

Conjecture 48. For sufficiently small constants c, we have R(GHDc) = Ω(n).

Remark. For a long time, it was conjectured that the general randomized bound is as strong

as the one-way version. In Chapter 4, we make the first progress on this conjecture, showing

first an Ω(n/2O(k2)) and then an improved Ω̃(n/k2) bound on the communication complexity

of any k-round randomized protocol for GHDc. However, these results have little bearing on

our work here, because the reduction below uses a potentially large value of k (up to k ≤ n).

However, a very recent result of Chakrabarti and Regev [CR10] finally showed a general lower

bound of R(GHDc) = Ω(n). Thus, the bounds in Theorems 49 and 50 are now Ω(1/ε2), and

Theorem 51 is subsumed. We believe this work is of independent interest and there for include

these results for pedagogical value.

Theorem 49. For any ε ≤ 1/2, a randomized protocol for (k, F0, τ, ε) functional monitoring

must communicate Ω(1/ε) bits.

3The bounds in [Woo07] restrict the range of c, but this turns out not to be necessary.

63

Proof. We give a reduction from GHD1. Let P be a randomized protocol for (k, F0, τ, ε)

functional monitoring. Set N := b1/ε2c and τ = 3N/2 +
√

N . We design a two-party public

coin randomized communication protocol Q for GHD1 on N -bit inputs that simulates a run of

P involving the coordinator, C, and two sites, S1 and S2. Let x ∈ {0, 1}N be Alice’s input in

Q and let y ∈ {0, 1}N be Bob’s input. Alice creates a stream σa := 〈a1, . . . , aN〉 of tokens

from [N]×{0, 1} by letting ai := (i, xi) and Bob similarly creates a stream σb := 〈b1, . . . , bN〉,

where bi := (i, yi). They then simulate a run of P where S1 first receives all of σa after which

S2 receives all of σb. They output whatever the coordinator would have output at the end of

this run.

The simulation itself occurs as follows: Alice maintains the state of S1, Bob maintains the

state of S2, and they both maintain the state of C. Clearly, this can be done by having Alice

send to Bob all of S1’s messages to C plus C’s messages to S2 (and having Bob act similarly).

The total communication in Q is at most that in P .

We now show that Q is correct. By construction, the combined input stream σ = σa ◦ σb

seen by P has 2∆(x, y) tokens with frequency 1 each and N −∆(x, y) tokens with frequency

2 each. Therefore F0(σ) = N + ∆(x, y). When ∆(x, y) ≥ N/2 +
√

N , we have F0(σ) ≥ τ

and Q, following P , correctly outputs 1. On the other hand, when ∆(x, y) ≤ N/2−
√

N , we

have

F0(σ) ≤ 3N

2
−
√

N = τ

(
1− 2

√
N

3N/2 +
√

N

)
≤ τ

(
1− 1√

N

)
≤ τ(1− ε) .

Thus Q correctly outputs 0. Since Q is correct, by Theorem 47, it must communicate at least

Ω(
√

N) = Ω(1/ε) bits. Therefore, so must P . 2

Theorem 50. For any ε < 1/2 and any constant p > 1, a randomized protocol for (k, Fp, τ, ε)

functional monitoring must communicate Ω(1/ε) bits.

Proof. For simplicity, we assume here that p ≥ 2. As before, we reduce from GHD1 on

64

N := b1/ε2c-bit inputs. For this reduction, we set τ := (N/2 +
√

N)2p + (N − 2
√

N). Let

P be a protocol for (k, Fp, τ, ε) functional monitoring. We design a protocol Q for GHD1 on

input (x, y) that simulates a run of P involving two sites, creating two streams 〈(i, xi)〉i∈[N]

and 〈(i, yi)〉i∈[N], exactly as before; however, in this reduction, the output of Q is the opposite

of the coordinator’s output at the end of the run of P .

We now show that Q is correct. The input stream σ seen by P has the same frequency

distribution as before, which means that

Fp(σ) = 2∆(x, y) + (N −∆(x, y))·2p = N ·2p −∆(x, y)(2p − 2) .

When ∆(x, y) ≤ N/2−
√

N , we have

Fp(σ) ≥ N · 2p − (N/2−
√

N)(2p − 2)

= (N/2 +
√

N)2p + (N − 2
√

N)

= τ .

ThereforeP outputs 1, which meansQ correctly outputs 0. On the other hand, when ∆(x, y) ≥

N/2 +
√

N , we have

Fp(σ) ≤ N · 2p − (N/2 +
√

N)(2p − 2)

= τ

(
1− 2

√
N2p − 4

√
N

(N/2 +
√

N) · 2p + (N − 2
√

N)

)
≤ τ(1− 1/

√
N)

≤ τ(1− ε) ,

where the penultimate inequality uses p ≥ 2. Therefore P outputs 0, whence Q correctly

outputs 1. Theorem 47 now implies that Q, and hence P , must communicate Ω(
√

N) =

65

Ω(1/ε) bits. 2

We remark that if Conjecture 48 holds (for a favorable c), then the lower bounds in Theo-

rems 49 and 50 would improve to Ω(1/ε2). This further strengthens the motivation for settling

the conjecture.

We also consider a restricted, yet natural, class of protocols that we call round-based pro-

tocols; the precise definition follows. Note that all nontrivial protocols in [CMY08] are round-

based, which illustrates the naturalness of this notion.

Definition 3. A round-based protocol for (k, f, τ, ε) functional monitoring is one that proceeds

in a series of rounds numbered 1, . . . , r. Each round has the following four stages. (1) Coordi-

nator C sends messages to the sites Si, based on the past communication history. (2) Each Si

read its tokens and sends messages to C from time to time, based on these tokens and the Stage

1 message from C to Si. (3) At some point, based on the messages it receives, C decides to

end the current round by sending a special, fixed, end-of-round message to each Si. (4) Each

Si sends C a final message for the round, based on all its knowledge, and then resets itself,

forgetting all previously read tokens and messages.

It is possible to improve the lower bounds above by restricting to round-based protocols,

as in Definition 3. The key is that if the functional monitoring protocol P in the proofs of

Theorems 49 and 50 is round-based, then the corresponding communication protocol Q only

requires messages from Alice to Bob. This is because Alice can now simulate the coordinator

C and both sites S1 and S2, during P’s processing of σa: she knows that S2 receives no tokens

at this time, so she has the information needed to compute any messages that S2 might need to

send. Consider the situation when Alice is done processing her tokens. At this time the Stage

4 message (see Definition 3) from S1 to C in the current round has been determined, so Alice

can send this message to Bob. From here on, Bob has all the information needed to continue

simulating S1, because he knows that S1 receives no further tokens. Thus, Bob can simulate P

66

to the end of the run.

Theorem 51. Suppose p is either 0 or a constant greater than 1. For any ε ≤ 1/2, a round-

based randomized protocol for (k, Fp, τ, ε) functional monitoring must communicate Ω(1/ε2)

bits.

Proof. We use the observations in the preceding paragraph, proceed as in the proofs of Theo-

rems 49 and 50 above, and plug in the one-way communication lower bound from Theorem 47.

2

67

Chapter 4

Gap Hamming Distance: The First

Multi-Round Lower Bound

The Gap-Hamming-Distance problem arose in the context of proving space lower bounds for

a number of key problems in the data stream model. In this problem, Alice and Bob have to

decide whether the Hamming distance between their n-bit input strings is large (i.e., at least

n/2+
√

n) or small (i.e., at most n/2−
√

n); they do not care if it is neither large nor small. This

Θ(
√

n) gap in the problem specification is crucial for capturing the approximation allowed to

a data stream algorithm.

Thus far, for randomized communication, an Ω(n) lower bound on this problem was known

only in the one-way setting [Woo04]. We prove an Ω(n) lower bound for randomized protocols

that use any constant number of rounds.

As a consequence we conclude, for instance, that ε-approximately counting the number

of distinct elements in a data stream requires Ω(1/ε2) space, even with multiple (a constant

number of) passes over the input stream. This extends earlier one-pass lower bounds, answer-

ing a long-standing open question. We obtain similar results for approximating the frequency

moments and for approximating the empirical entropy of a data stream.

68

In the process, we also obtain tight n−Θ(
√

n log n) lower and upper bounds on the one-way

deterministic communication complexity of the problem. Finally, we give a simple combina-

torial proof of an Ω(n) lower bound on the one-way randomized communication complexity.

4.1 Introduction

Our focus here is on the Gap-Hamming-Distance problem. To the best of our knowledge, this

problem was first formally studied by Indyk and Woodruff [IW03] in FOCS 2003. They studied

the problem in the context of proving space lower bounds for the Distinct Elements problem

in the data stream model. We shall discuss their application shortly, but let us first define our

communication problem precisely.

The Problem In the Gap-Hamming-Distance problem, Alice receives a Boolean string x ∈

{0, 1}n and Bob receives y ∈ {0, 1}n. They wish to decide whether x and y are “close” or

“far” in the Hamming sense. That is, they wish to output 0 if ∆(x, y) ≤ n/2 −
√

n and 1 if

∆(x, y) ≥ n/2 +
√

n. They do not care about the output if neither of these conditions holds.

Here, ∆ denotes Hamming distance. In the sequel, we shall be interested in a parametrized

version of the problem, where the thresholds are set at n/2±c
√

n, for some parameter c ∈ R+.

Our Results While we prove a number of results about the Gap-Hamming-Distance problem

here, there is a clear “main theorem” that we wish to highlight. Technical terms appearing

below are defined precisely in Section 4.2.

Theorem 52 (Main Theorem, Informal). Suppose a randomized 1
3
-error protocol solves the

Gap-Hamming-Distance problem using k rounds of communication. Then, at least one mes-

sage must be n/2O(k2) bits long. In particular, any protocol using a constant number of rounds

must communicate Ω(n) bits in some round. In fact, these bounds apply to deterministic pro-

tocols with low distributional error under the uniform distribution.

69

At the heart of our proof is a round elimination lemma that lets us “eliminate” the first round

of communication, in a protocol for the Gap-Hamming-Distance problem, and thus derive

a shorter protocol for an “easier” instance of the same problem. By repeatedly applying this

lemma, we eventually eliminate all of the communication. We also make the problem instances

progressively easier, but, if the original protocol was short enough, at the end we are still left

with a nontrivial problem. The resulting contradiction lower bounds the length of the original

protocol. We note that this underlying “round elimination philosophy” is behind a number of

key results in communication complexity [MNSW98, Sen03, CR04, ADHP06, Cha07, VW07,

CJP08].

Besides the above theorem, we also prove tight lower and upper bounds of n−Θ(
√

n log n)

on the one-way deterministic communication complexity of Gap-Hamming-Distance. Only

Ω(n) lower bounds were known before. We also prove an Ω(n) one-way randomized commu-

nication lower bound. This matches earlier results, but our proof has the advantage of being

purely combinatorial. (We recently learned that Woodruff [Woo09] had independently discov-

ered a similar combinatorial proof. We present our proof nevertheless, for pedagogical value,

as it can be seen as a generalization of our deterministic lower bound proof.)

Motivation and Relation to Prior Work We now describe the original motivation for study-

ing the Gap-Hamming-Distance problem. Later, we discuss the consequences of our The-

orem 52. In the data stream model, one wishes to compute a real-valued function of a

massively long input sequence (the data stream) using very limited space, hopefully sublin-

ear in the input length. To get interesting results, one almost always needs to allow ran-

domized approximate algorithms. A key problem in this model, that has seen much re-

search [FM85, AMS99, BJK+04, IW03, Woo09], is the Distinct Elements problem: the goal is

to estimate the number of distinct elements in a stream of m elements (for simplicity, assume

that the elements are drawn from the universe [m] := {1, 2, . . . ,m}).

70

An interesting solution to this problem would give a nontrivial tradeoff between the quality

of approximation desired and the space required to achieve it. The best such result [BJK+04]

achieved a multiplicative (1+ε)-approximation using space Õ(1/ε2), where the Õ-notation

suppresses log m and log(1/ε) factors. It also processed the input stream in a single pass,

a very desirable property. Soon afterwards, Indyk and Woodruff [IW03] gave a matching

Ω(1/ε2) space lower bound for one-pass algorithms for this problem, by a reduction from

the Gap-Hamming-Distance communication problem. In SODA 2004, Woodruff [Woo04] im-

proved the bound, extending it to the full possible range of subconstant ε, and also applied it

to the more general problem of estimating frequency moments Fp :=
∑n

i=1 fp
i , where fi is the

frequency of element i in the input stream. A number of other natural data stream problems

have similar space lower bounds via reductions from Gap-Hamming, a more recent example

being the computation of the empirical entropy of a stream [CCM07].

The idea behind the reduction is quite simple; as a concrete example, suppose there exists

a streaming algorithm A for F0. Alice and Bob can convert their Gap-Hamming inputs into

suitable streams of integers. A protocol for Gap-Hamming-Distance is obtained in the follow-

ing manner: Alice processes A on her stream. Then, she sends the contents of the memory to

Bob in a single message, after which Bob processes A on his stream. Thus, Alice and Bob can

estimate the number of distinct elements in the concatenation of their streams. By setting the

approximation factor correctly, Alice and Bob convert an ε-approximate streaming algorithm

for F0 into a protocol for Gap-Hamming. In this way, an Ω(n) one-way communication lower

bound for Gap-Hamming-Distance translates into an Ω(1/ε2) one-pass space lower bound for

F0. Much less simple was the proof of the communication lower bound itself. Woodruff’s

proof [Woo04] required intricate combinatorial arguments and a fair amount of complex cal-

culations. Jayram et al. [JKS08] later provided a rather different proof, based on a simple

geometric argument, coupled with a clever reduction from the INDEX problem.1 A version

1In the INDEX problem, Alice has an n-bit string x and sends a single message to Bob, who sees i ∈ [n]

71

of this proof is given in Woodruff’s Ph.D. thesis [Woo07]. In Section 4.5, we provide a still

simpler direct combinatorial proof, essentially from first principles.

All of this left open the tantalizing possibility that a second pass over the input stream

could drastically reduce the space required to approximate the number of distinct elements —

or, more generally, the frequency moments Fp. Perhaps Õ(1/ε) space was possible? This was a

long-standing open problem [Kum06] in data streams. Yet, some thinking about the underlying

Gap-Hamming communication problem suggested that the linear lower bound ought to hold

for general communication protocols, not just for one-way communication. This prompted the

following natural conjecture.

Conjecture 53. A 1
3
-error randomized communication protocol for the Gap-Hamming-

Distance problem must communicate Ω(n) bits in total, irrespective of the number of rounds of

communication.

An immediate consequence of the above conjecture is that a second pass does not help beat

the Ω(1/ε2) space lower bound for the aforementioned streaming problems; in fact, no constant

number of passes helps. Our Theorem 52 does not resolve Conjecture 53. However, it does

imply the Ω(1/ε2) space lower bound with a constant number of passes. This is because we do

obtain a linear communication lower bound with a constant number of rounds.

Remark. Subsequent to the work in this chapter and the improved lower bound of Chapter 5,

Chakrabarti and Regev [CR10] answered Conjecture 53 in the affirmative. The techniques they

employ are completely different than ours, and rather involved. We include these results for

completeness.

and must output xi. Ablayev [Abl96] gave an Ω(n) lower bound for randomized protocols that compute INDEX.
Note that this problem is inherently one-way—if the communication is from Bob to Alice, then a trivial O(log n)
protocol exists.

72

Finer Points To better understand our contribution here, it is worth considering some finer

points of previously known lower bounds on Gap-Hamming-Distance, including some “folk-

lore” results. The earlier one-way Ω(n) bounds were inherently one-way, because the INDEX

problem has a trivial two-round protocol. Also, the nature of the reduction implied a distri-

butional error lower bound for Gap-Hamming only under a somewhat artificial input distribu-

tion. Our bounds here, including our one-way randomized bound, overcome this problem, as

does the recent one-way bound of Woodruff [Woo09]: they apply to the uniform distribution.

As noted by Woodruff [Woo09], this has the desirable consequence of implying space lower

bounds for the Distinct Elements problem under weaker assumptions about the input stream: it

could be random, rather than adversarial.

Intuitively, the uniform distribution is the hard case for the Gap-Hamming problem. The

Hamming distance between two uniformly distributed n-bit strings is likely to be just around

the n/2±Θ(
√

n) thresholds, which means that a protocol will have to work hard to determine

which threshold the input is at. Indeed, this line of thinking suggests an Ω(n) lower bound for

distributional complexity — under the uniform distribution — on the gapless version of the

problem. Our proofs here confirm this intuition, at least for a constant number of rounds.

It is relatively easy to obtain an Ω(n) lower bound on the deterministic multi-round com-

munication complexity of the problem. One can directly demonstrate that the communication

matrix contains no large monochromatic rectangles (see, e.g. [Woo07]). Indeed, the argument

goes through even with gaps of the form n/2±Θ(n), rather than n/2±Θ(
√

n). It is also easy

to obtain an Ω(n) bound on the randomized complexity of the gapless problem, via a reduction

from DISJOINTNESS. Unfortunately, the known hard distributions for DISJOINTNESS are far

from uniform, and DISJOINTNESS is actually very easy under a uniform input distribution. So,

this reduction does not give us the results we want. Incidentally, an even easier reduction from

DISJOINTNESS yields an arbitrary-round Ω(
√

n) lower bound for Gap-Hamming-Distance; this

result is folklore.

73

Furthermore, straightforward rectangle-based methods (discrepancy/corruption) fail to ef-

fectively lower bound the randomized communication complexity of our problem. This is

because there do exist very large near-monochromatic rectangles in its communication matrix.

This can be seen, e.g., by considering all inputs (x, y) with xi = yi = 0 for i ∈ [O(
√

n)].

Connection to Decision Trees and Quantum Communication We would like to bring up

two other illuminating observations. Consider the following query complexity problem: the

input is a string x ∈ {0, 1}n and the desired output is 1 if |x| ≥ n/2 +
√

n and 0 if |x| ≤

n/2 −
√

n. Here, |x| denotes the Hamming weight of x. The model is a randomized decision

tree whose nodes query individual bits of x, and whose leaves give outputs in {0, 1}. It is not

hard to show that Ω(n) queries are needed to solve this problem with 1
3

error. Essentially, one

can do no better than sampling bits of x at random, and then Ω(1/ε2) samples are necessary to

distinguish a biased coin that shows heads with probability 1
2

+ ε from one that shows heads

with probability 1
2
− ε.

The Gap-Hamming-Distance problem can be seen as a generalization of this problem to

the communication setting. Certainly, any efficient decision tree for the query problem implies

a correspondingly efficient communication protocol, with Alice acting as the querier and Bob

acting as the responder (say). Conjecture 53 says that no better communication protocols are

possible for this problem.

This query complexity connection brings up another crucial point. The quantum query

complexity of the above problem can be shown to be O(
√

n), by the results of Nayak and

Wu [NW99]. This in turn implies an O(
√

n log n) quantum communication protocol for

Gap-Hamming, essentially by carefully “implementing” the quantum query algorithm, as in

Razborov [Raz02]. Therefore, any technique that seeks to prove an Ω(n) lower bound for Gap-

Hamming (under classical communication) must necessarily fail for quantum protocols. This

rules out several recently-developed methods, such as the factorization norms method of Linial

74

and Shraibman [LS07] and the pattern matrix method of Sherstov [She08].

4.2 Basic Definitions, Notation and Preliminaries

We begin with definitions of our central problem of interest, and quickly recall some standard

definitions from communication complexity. Along the way, we also introduce some notation

that we use in the rest of the paper.

Definition 4. For strings x, y ∈ {0, 1}n, the Hamming distance between x and y, denoted

∆(x, y), is defined as the number of coordinates i ∈ [n] such that xi 6= yi.

Definition 5 (Gap-Hamming-Distance problem). Suppose n ∈ N and c ∈ R+. The c-

Gap-Hamming-Distance partial function, on n-bit inputs, is denoted GHDc,n and is defined as

follows.

GHDc,n(x, y) =


1 , if ∆(x, y) ≥ n/2 + c

√
n ,

0 , if ∆(x, y) ≤ n/2− c
√

n ,

? , otherwise.

We also use GHDc,n to denote the corresponding communication problem where Alice holds

x ∈ {0, 1}n, Bob holds y ∈ {0, 1}n, and the goal is for them to communicate and agree on an

output bit that matches GHDc,n(x, y). By convention, ? matches both 0 and 1.

Protocols Consider a communication problem f : {0, 1}n × {0, 1}n → {0, 1, ?}n and a

protocol P that attempts to solve f . We write P(x, y) to denote the output of P on input

(x, y): note that this may be a random variable, dependent on the internal coin tosses of P , if

P is a randomized protocol. A deterministic protocol P is said to be correct for f if ∀ (x, y) :

P(x, y) = f(x, y) (the “=” is to be read as “matches”). It is said to have distributional error

75

ε under an input distribution ρ if Pr(x,y)∼ρ[P(x, y) 6= f(x, y)] ≤ ε. A randomized protocol P ,

using a public random string r, is said to be have error ε if ∀ (x, y) : Prr[P(x, y) 6= f(x, y)] ≤

ε. A protocol P is said to be a k-round protocol if it involves exactly k messages, with Alice

and Bob taking turns to send the messages; by convention, we usually assume that Alice sends

the first message and the recipient of the last message announces the output. A 1-round protocol

is also called a one-way protocol, since the entire communication happens in the Alice→ Bob

direction.

Communication Complexity The deterministic communication complexity D(f) of a com-

munication problem f is defined to be the minimum, over deterministic protocols P for f ,

of the number of bits exchanged by P for a worst-case input (x, y). By suitably varying the

class of protocols over which the minimum is taken, we obtain, e.g., the ε-error randomized,

one-way deterministic, ε-error one-way randomized, and ε-error ρ-distributional deterministic

communication complexities of f , denoted Rε(f), D→(f), R→
ε (f), and Dρ,ε(f), respectively.

When the error parameter ε is dropped, it is tacitly assumed to be 1
3
; as is well-known, the

precise value of this constant is immaterial for asymptotic bounds.

Definition 6 (Near-Orthogonality). We say that strings x, y ∈ {0, 1}n are c-near-orthogonal,

and write x ⊥c y, if |∆(x, y) − n/2| < c
√

n. Here, c is a positive real quantity, possibly

dependent on n. Notice that GHDc,n(x, y) = ? ⇔ x ⊥c y.

The distribution of the Hamming distance between two uniform random n-bit strings —

equivalently, the distribution of the Hamming weight of a uniform random n-bit string — is

just an unbiased binomial distribution Binom(n, 1
2
). We shall use the following (fairly loose)

bounds on the tail of this distribution (see, e.g., Feller [Fel68]).

Fact 54. Let Tn(c) = Prx [x 6⊥c 0n], where x is distributed uniformly at random in {0, 1}n. Let

76

T (c) = limn→∞ Tn(c). Then

2−3c2−2 ≤ T (c) ≈ e−2c2

c
√

2π
≤ 2−c2 .

There are two very natural input distributions for GHDc,n: the uniform distribution on

{0, 1}n × {0, 1}n, and the (non-product) distribution that is uniform over all inputs for which

the output is precisely defined. We call this latter distribution µc,n.

Definition 7 (Distributions). For n ∈ N, c ∈ R+, let µc,n denote the uniform distribution on

the set {(x, y) ∈ {0, 1}n × {0, 1}n : x 6⊥c y}. Also, let Un denote the uniform distribution on

{0, 1}n.

Using Fact 54, we can show that for a constant c and suitably small ε, the distributional

complexities DUn×Un,ε(GHDc,n) and Dµc,n,ε(GHDc,n) are within constant factors of each other.

This lets us work with the latter and draw conclusions about the former. The latter has the

advantage that it is meaningful for any ε < 1
2
, whereas the former is only meaningful if ε <

1
2
T (c).

Let B(x, r) denote the Hamming ball of radius r centered at x. We need to use the following

bounds on the volume (i.e., size) of a Hamming ball. Here, H : [0, 1] → [0, 1] is the binary

entropy function.

Fact 55. If r = c
√

n, then (
√

n/c)r < |B(x, r)| < nr.

Fact 56. If r = αn for some constant 0 < α < 1, then |B(x, r)| ≤ 2nH(α).

77

4.3 Main Theorem: Multi-Round Lower Bound

4.3.1 Some Basics

In order to prove our multi-round lower bound, we need a simple — yet, powerful — combi-

natorial lemma, known as Sauer’s Lemma [Sau72]. For this, we recall the concept of Vapnik-

Chervonenkis dimension. Let S ⊆ {0, 1}n and I ⊆ [n]. We say that S shatters I if the set

obtained by restricting the vectors in S to the coordinates in I has the maximum possible size,

2|I|. We define VC-dim(S) to be the maximum |I| such that S shatters I .

Lemma 57 (Sauer’s Lemma). Suppose S ⊆ {0, 1}n has VC-dim(S) < d. Then

|S| ≤
d∑

i=0

(
n

i

)
.

When d = αn for some constant α, then the above sum can be upper bounded by 2nH(α).

This yields the following corollary.

Corollary 58. If |S| ≥ 2nH(α), for a constant α, then VC-dim(S) ≥ αn.

We now turn to the proof proper. It is based on a round elimination lemma that serves to

eliminate the first round of communication of a GHD protocol, yielding a shorter protocol, but

for GHD instances with weakened parameters. To keep track of all relevant parameters, we

introduce the following notation.

Definition 8. A [k, n, s, c, ε]-protocol is a deterministic k-round protocol for GHDc,n that errs

on at most an ε fraction of inputs, under the input distribution µc,n, and in which each message

is s bits long.

The next lemma gives us the “end point” of our round elimination argument.

Lemma 59. There exists no [0, n, s, c, ε]-protocol with n > 1, c = o(
√

n), and ε < 1
2
.

78

Proof. With these parameters, µc,n has nonempty support. This implies Prµc,n [GHDc,n(x, y) =

0] = Prµc,n [GHDc,n(x, y) = 1] = 1
2
. Thus, a 0-round deterministic protocol, which must have

constant output, cannot achieve error less than 1
2
. 2

4.3.2 The Round Elimination Lemma

The next lemma is the heart of our proof. To set up its parameters, we set t0 = (48 ln 2) · 211k,

t = 215k, and b = T−1(1/8), and we define a sequence 〈(ni, si, ci, εi)〉ki=0 as follows:

n0 = n , ni+1 = ni/3 ,

s0 = t0s , si+1 = tsi ,

c0 = 10 , ci+1 = 2ci ,

ε0 = 2−211k
, εi+1 = εi/T (ci+1) .


for i > 0 . (4.1)

Lemma 60 (Round Elimination for GHD). Suppose 0 ≤ i < k and si ≤ ni/20. Suppose

there exists a [k− i, ni, si, ci, εi]-protocol. Then there exists a [k− i− 1, ni+1, si+1, ci+1, εi+1]-

protocol.

Proof. Let (n, s, c, ε) = (ni, si, ci, εi) and (n′, s′, c′, ε′) = (ni+1, si+1, ci+1, εi+1). Also, let

µ = µc,n, µ′ = µc′,n′ , GHD = GHDc,n and GHD′ = GHDc′,n′ . Let P be a [k − i, n, s, c, ε]-

protocol. Assume, WLOG, that Alice sends the first message in P .

Call a string x0 ∈ {0, 1}n “good” if

Pr
(x,y)∼µ

[P(x, y) 6= GHD(x, y) | x = x0] ≤ 2ε . (4.2)

By the error guarantee of P and Markov’s inequality, the number of good strings is at least

2n−1. There are 2s ≤ 2n/20 different choices for Alice’s first message. Therefore, there is a set

M ⊆ {0, 1}n of good strings such that Alice sends the same first message m on every input

79

x ∈ M , with |M | ≥ 2n−1−n/20 ≥ 2nH(1/3). By Corollary 58, VC-dim(M) ≥ n/3. Therefore,

there exists a set I ⊆ [n], with |I| = n/3 = n′, that is shattered by M . For strings x′ ∈ {0, 1}n′

and x′′ ∈ {0, 1}n−n′ , we write x′ ◦ x′′ to denote the string in {0, 1}n formed by plugging in the

bits of x′ and x′′ (in order) into the coordinates in I and [n] \ I , respectively.

We now give a suitable (k− i−1)-round protocolQ for GHD′, in which Bob sends the first

message. Consider an input (x′, y′) ∈ {0, 1}n′×{0, 1}n′ , with Alice holding x′ and Bob holding

y′. By definition of shattering, there exists an x′′ ∈ {0, 1}n−n′ such that x := x′ ◦ x′′ ∈ M .

Alice and Bob agree beforehand on a suitable x for each possible x′. Suppose Bob were to

pick a uniform random y′′ ∈ {0, 1}n−n′ and form the string y := y′ ◦ y′′. Then, Alice and Bob

could simulate P on input (x, y) using only k − i − 1 rounds of communication, with Bob

starting, because Alice’s first message in P would always be m. Call this randomized protocol

Q1. We define Q to be the protocol obtained by running t instances of Q1 in parallel, using

independent random choices of y′′, and outputting the majority answer. Note that the length of

each message in Q is ts = s′. We shall now analyze the error.

Suppose x′′ ⊥b y′′. Let d1 = ∆(x, y)− n/2, d2 = ∆(x′, y′)− n′/2 and d3 = ∆(x′′, y′′)−

(n− n′)/2. Note that d1 = d2 + d3. Also,

|d1| ≥ |d2| − |d3|

≥ c′
√

n′ − b
√

n− n′

≥ (c′ − b
√

2)
√

n√
3

≥ c
√

n ,

where we used (4.1) and our choice of b. Thus, x 6⊥c y. The same calculation also shows that

d1 and d2 have the same sign, as |d2| > |d3|. Therefore GHD(x, y) = GHD′(x′, y′).

For the rest of the calculations in this proof, fix an input x′ for Alice, and hence, x′′ and x as

well. For a fixed y′, let E(y′) denote the event that P(x, y) 6= GHD(x, y): note that y′′ remains

80

random. Using the above observation (at step (4.4) below), we can bound the probability that

Q1 errs on input (x′, y′) as follows.

Pr
y

[Q1(x
′, y′) 6= GHD′(x′, y′) | y′] ≤ (4.3)

Pr
y

[P(x, y) 6= GHD(x, y) ∨ GHD(x, y) 6= GHD′(x′, y′) | y′]

≤ Pr
y′′

[E(y′)] + Pr
y

[GHD(x, y) 6= GHD′(x′, y′) | y′]

≤ Pr
y′′

[E(y′)] + Pr
y′′

[x′′ 6⊥b y′′] (4.4)

≤ Pr
y′′

[E(y′)] + T (b)

= Pr
y′′

[E(y′)] + 1/8 , (4.5)

where step (4.5) follows from our choice of b. To analyze Q, notice that during the t-fold

parallel repetition of Q1, y′ remains fixed while y′′ varies. Thus, it suffices to understand how

the repetition drives down the sum on the right side of (4.5). Unfortunately, for some values of

y′, the sum may exceed 1
2
, in which case it will be driven up, not down, by the repetition. To

account for this, we shall bound the expectation of the first term of that sum, for a random y′.

To do so, let z ∼ µ | x be a random string independent of y. Notice that z is uniformly

distributed on a subset of {0, 1}n of size 2nT (c), whereas y is uniformly distributed on a subset

of {0, 1}n of size 2nT (c′). (We are now thinking of x as being fixed and both y′ and y′′ as being

random.) Therefore,

Ey′

[
Pr
y′′

[E(y′)]
]

= Pr
y

[E(y′)] (4.6)

= Pr
y

[P(x, y) 6= GHD(x, y)]

≤ Pr
z

[P(x, z) 6= GHD(x, z)] · T (c)

T (c′)

≤ 2εT (c)/T (c′) , (4.7)

81

where (4.7) holds because x, being good, satisfies (4.2). Thus, by Markov’s inequality,

Pr
y′

[
Pr
y′′

[E(y′)] ≥ 1

8

]
≤ 16εT (c)/T (c′) . (4.8)

If, for a particular y′, the bad event Pry′′ [E(y′)] ≥ 1
8

does not occur, then the right side of (4.5)

is at most 1/8 + 1/8 = 1/4. In other words, Q1 errs with probability at most 1/4 for this y′.

By standard Chernoff bounds, the t-fold repetition in Q drives this error down to (e/4)t/4 ≤

2−t/10 ≤ ε0 ≤ ε. Combining this with (4.8), which bounds the probability of the bad event, we

get

Pr
y′,r

[Q(x′, y′) 6= GHD′(x′, y′)] ≤ 16εT (c)/T (c′) + ε

≤ ε/T (c′)

= ε′ ,

where r denotes the internal random string of Q (i.e., the collection of y′′s used).

Note that this error bound holds for every fixed x′, and thus, when (x′, y′) ∼ µ′. Therefore,

we can fix Bob’s random coin tosses in Q to get the desired [k − i− 1, n′, s′, c′, ε′]-protocol.

2

4.3.3 The Lower Bound

Having established our round elimination lemma, we obtain our lower bound in a straightfor-

ward fashion.

Theorem 61 (Multi-round Lower Bound). Let P be a k-round 1
3
-error randomized commu-

nication protocol for GHDc,n, with c = O(1), in which each message is s bits long. Then

s ≥ n

2O(k2)
.

82

Remark. This is a formal restatement of Theorem 52.

Proof. For simplicity, assume c ≤ c0 = 10. Our proof easily applies to a general c = O(1) by

a suitable modification of the parameters in (4.1). Also, assume n ≥ 24k2 , for otherwise there

is nothing to prove.

By repeating P (48 ln 2) · 211k = t0 times, in parallel, and outputting the majority of the

answers, we can reduce the error to 2−211k
= ε0. The size of each message is now t0s = s0.

Fixing the random coins of the resulting protocol gives us a [k, n0, s0, c0, ε0]-protocol P0.

Suppose si ≤ ni/20 for all i, with 0 ≤ i < k. We then repeatedly apply Lemma 60 k times,

starting with P0. Eventually, we end up with a [0, nk, sk, ck, εk]-protocol. Examining (4.1), we

see that nk = n/3k, sk = 215k2
s0 = (48 ln 2)215k2+11ks, and ck = 10 · 2k. Notice that

nk ≥ 24k2
/3k > 1 and ck = o(

√
nk). We also see that 〈ci〉ki=1 is an increasing sequence,

whence εi+1/εi = 1/T (ci+1) ≤ 1/T (ck) ≤ 23ck
2+2, where the final step uses Fact 54. Thus,

εk ≤ ε0

(
23c2k+2

)k
= 2−211k · 2(3(10·2k)2+2)·k

= 2−211k+300k·22k+2k

<
1

2
.

In other words, we have a [0, nk, sk, ck, εk]-protocol with nk > 1, ck = o(
√

nk) and εk < 1
2
.

This contradicts Lemma 59.

Therefore, there must exist an i such that si ≥ ni/20. Since 〈si〉ki=1 is increasing and 〈ni〉ki=1

is decreasing, sk ≥ nk/20. By the above calculations, (48 ln 2)215k2+11ks ≥ n/(20 · 3k), which

implies s ≥ n/2O(k2), as claimed. 2

Notice that, for constant k, the argument in the above proof in fact implies a lower bound

for deterministic protocols with small enough constant distributional error under µc,n. This, in

83

turn, extends to distributional error under the uniform distribution, as remarked earlier.

4.4 Tight Deterministic One-Way Bounds

The main result of this section is the following.

Theorem 62. D→(GHDc,n) = n−Θ(
√

n log n) for all constant c.

Definition 9. Let x1, x2, y ∈ {0, 1}n. We say that y witnesses x1 and x2 or that y is a witness

for (x1, x2) if x1 6⊥c y, x2 6⊥c y, and GHDc,n(x1, y) 6= GHDc,n(x2, y).

Intuitively, if (x1, x2) have a witness, then they cannot be in the same message set. For if

Alice sent the same message on x1 and x2 and Bob’s input y was a witness for (x1, x2) then

whatever Bob were to output, the protocol would err on either (x1, y) or (x2, y). The next

lemma characterizes which (x1, x2) pairs have witnesses.

Lemma 63. For all x1, x2 ∈ {0, 1}n, there exists y that witnesses (x1, x2) if and only if

∆(x1, x2) ≥ 2c
√

n.

Proof. On the one hand, suppose y witnesses (x1, x2). Then assume WLOG that ∆(x1, y) ≤

n/2 − c
√

n and ∆(x2, y) ≥ n/2 + c
√

n. By the triangle inequality, ∆(x1, x2) ≥ ∆(x2, y) −

∆(x1, y) = 2c
√

n. Conversely, suppose ∆(x1, x2) ≥ 2c
√

n. Let L = {i : x1[i] = x2[i]},

and let R = {i : x1[i] 6= x2[i]}. Suppose y agrees with x1 on all coordinates from R and

half the coordinates from L. Then, ∆(x1, y) = |L|/2 = (n − ∆(x1, x2))/2 ≤ n/2 − c
√

n.

Furthermore, y agrees with x2 on no coordinates from R and half the coordinates from L, so

∆(x1, y) = |L|/2 + |R| ≥ n/2 + c
√

n. 2

We show that it is both necessary and sufficient for Alice to send different messages on x1

and x2 whenever ∆(x1, x2) is “large”. To prove this, we need the following theorem, due to

Bezrukov [Bez87] and a simple claim that is proved using the probabilistic method.

84

Theorem 64. Call a subset A ⊆ {0, 1}n d-maximal if it is largest, subject to the constraint

that ∆(x, y) ≤ d for all x, y ∈ A.

1. If d = 2t then B(x, t) is d-maximal for any x ∈ {0, 1}n.

2. If d = 2t + 1 then B(x, t) ∪ B(y, t) is d-maximal for any x, y ∈ {0, 1}n such that

∆(x, y) = 1.

Claim 65. It is possible to cover {0, 1}n with at most 2n−O(
√

n log n) Hamming balls, each of

radius c
√

n.

Proof. We use the probabilistic method. Let r := c
√

n. For x ∈ {0, 1}n, let Bx := B(x, r)

be the Hamming ball of radius r centered at x. For a t to be determined later, pick x1, . . . , xt

independently and uniformly at random from {0, 1}n. We want to show that with nonzero

probability, the universe {0, 1}n is covered by these t Hamming balls Bx1 , . . . ,Bxt .

Now, fix any x ∈ {0, 1}n and any 1 ≤ i ≤ t. Since xi was picked uniformly at random,

each x is equally likely to be in Bxi
. Therefore,

Pr[x ∈ Bxi
] =
|Bxi
|

2n
≥ 2θ(

√
n log n)−n

where inequality stems from Fact 55.

Let BADx =
∧

1≤i≤t x 6∈ Bxi
be the event that x is not covered by any of the Hamming

balls we picked at random, and let BAD =
∨

BADx be the event that some x is not covered

by the Hamming balls. We want to limit Pr[BAD]. BADx occurs when x 6∈ Bxi
for all xi.

Therefore, using 1− x ≤ e−x for all real x,

Pr[BADx] =
(
1− 2θ(

√
n log n)−n

)t

≤ e−t·2θ(
√

n log n)−n

.

85

By the union bound,

Pr[BAD] ≤ 2n Pr[BADx] = 2n− t
ln 2

2θ(n
√

n)−n

.

Picking t = ln 2(n + 1)2n−θ(
√

n log n) = 2n−θ(
√

n log n) ensures that Pr[BAD] < 1. Therefore,

there exists a set of t = 2n−θ(
√

n log n) Hamming balls of radius c
√

n that cover {0, 1}n. 2

Proof of Theorem 62. For the lower bound, suppose for the sake of contradiction that there

is a protocol where Alice sends only n − c
√

n log n bits. By the pigeonhole principle, there

exists a set M ⊆ {0, 1}n of inputs of size |M | ≥ 2n/2n−c
√

n log n = 2c
√

n log n = nc
√

n upon

which Alice sends the same message. By Theorem 64, the Hamming ball B(x, c
√

n) is 2c
√

n-

maximal, and by Fact 55, |B(x, c
√

n)| < |M |. Therefore, there must be x1, x2 ∈ M with

∆(x1, x2) > 2c
√

n. By Lemma 63, there exists a y that witnesses (x1, x2). No matter what

Bob outputs, the protocol errs on either (x1, y) or on (x2, y).

For a matching upper bound, Alice and Bob fix a covering C = {B(x0, r)} of {0, 1}n by

Hamming balls of radius r = c
√

n. On input x, Alice sends Bob the Hamming ball B(x0, r)

containing x. Bob selects some x′ ∈ B(x0, r) such that x′ 6⊥c y and outputs GHD(x′, y). The

correctness of this protocol follows from Lemma 63, as ∆(x, x′) ≤ 2c
√

n since they are both

in B(x0, c
√

n). The cost of the protocol is given by Claim 65, which shows that it suffices for

Alice to send log
(
2n−O(

√
n log n)

)
= n−O(

√
n log n) bits to describe each Hamming ball. 2

4.5 One Round Randomized Lower Bound

Next, we develop a one-way lower bound for randomized protocols. Note that our lower bound

applies to the uniform distribution, which, as mentioned in Section 4.1, implies space lower

bounds for the Distinct Elements problem under weaker assumptions about the input stream.

Woodruff [Woo09] recently proved similar results, also for the uniform distribution. We in-

86

clude our lower bound as a natural extension of the deterministic bound.

Theorem 66. R→
ε (GHDc,n) = Ω(n).

Proof. For the sake of clarity, fix c = 2 and ε = 1/10, and suppose P is a one-round, ε-error,

o(n)-bit protocol for GHDc,n.

Definition 10. For x ∈ {0, 1}n, let Yx := {y : x 6⊥2 y}. Say that x is good if Pry∈Yx [P(x, y) =

GHD(x, y)] ≤ 2ε. Otherwise, call x bad.

By Markov’s inequality, at most a 1/2-fraction of x are bad. Next, fix Alice’s message m to

maximize the number of good x, and let M = {good x ∈ {0, 1}n : Alice sends m on input x}.

It follows that

|M | ≥ 2n−1/2o(n) > 2n(1−o(1)).

Our goal is to show that since |M | is large, we must err on a > 2ε-fraction of y ∈ Yx for some

x ∈ M , contradicting the goodness of x. Note that it suffices to show that a 4ε fraction of

y ∈ Yx1 witness x1 and x2.

|M | ≥ 2n(1−o(1)), so by Fact 56 and Theorem 64, There exist x1, x2 with ∆(x1, x2) ≥

1−o(1). Next, we’d like to determine the probability that a random y ∈ Yx1 witnesses (x1, x2).

Without loss of generality, let x1 = 0n. Let w(x) := Pry∈Yx1
[GHD(x, y) 6= GHD(x1, y)]. The

following lemma shows that w(x) is an increasing function of |x|.

Lemma 67. For all x, x′ ∈ {0, 1}n, w(x) ≥ w(x′) ⇔ |x| ≥ |x′|, with equality if and only if

|x| = |x′|.

Proof. If |x| = |x′|, then w(x) = w(x′) by symmetry. Further, note that GHD(x, y) = 0 if and

only if GHD(−x, y) = 1. Therefore, it suffices to handle the case where |y| ≤ n/2− c
√

n and

GHD(~0, y) = 0.

87

For the rest of the proof, we assume that xi = x′i, except for the nth coordinate, where

xn = 0 and x′n = 1. Thus, |x| = |x′| − 1. We show that w(x) < w(x′); the rest of the lemma

follows by induction.

Let Y be the set of strings with Hamming weight |y| ≤ n/2 − c
√

n. Partition Y into the

following three sets:

• A := {y : |y| = n/2 + c
√

n ∧ yn = 0}.

• B := {y : |y| < n/2 + c
√

n ∧ yn = 0}.

• C := {y : yn = 1}.

Note the one-to-one correspondence between strings in B and strings in C obtained by flipping

the nth bit. Now, consider any y ∈ B such that y witnesses (~0, x′) but not (~0, x). Flipping the

nth bit of y yields a string y′ ∈ C such that Y witnesses (~0, x) but not (~0, x′). Hence among

y ∈ B ∪C there is an equal number of witnesses for x and x′. For any y ∈ A, yn = 0, whence

|y− x′| = |y− x|+ 1. Therefore, any y that witnesses (~0, x) must also witness (~0, x′), whence

w(x) ≤ w(x′). 2

We compute w(x) by conditioning on |y|:

w(x) =

n/2−c
√

n∑
n1=1

(
Pr
[
∆(x, y) ≥ n/2 + c

√
n| |y| = n1

]
· Pr[|y| = n1]

)
.

Fix |x| =: m, pick a random y with |y| = n1, and suppose there are k coordinates i such

that xi = yi. Then, ∆(x, y) = (m− k) + (n1 − k) = m + n1 − 2k. Hence,

∆(x, y) ≥ n/2 + c
√

n ⇐⇒ k ≤ m + n1

2
− n

4
− c

2

√
n .

Note that given a random y with weight |y| = n1, the probability that exactly k of m coordinates

have xi = yi = 1 follows the hypergeometric distribution Hyp(k; n, m, n1). Therefore, we can

88

express the probability Pr|y|=n1 [∆(x, y) ≥ n/2 + c
√

n] as

Pr
|y|=n1

[
∆(x, y) ≥ n/2 + c

√
n
]

=
∑

k≤m+n1
2

−n
4
− c

2

√
n

Hyp(k; n, m, n1) .

Finally, we show that w(x) > 4ε for a suitably large constant |x| with the following claims,

whose proofs require tight tail bounds for binomial and hypergeometric distributions and are

left to Section 4.7.

Claim 68. Conditioned on |y| ≤ n/2− 2
√

n, we have Pr[|y| ≥ n/2− 2.1
√

n] ≤ 1
3
.

Claim 69. For all d < n/2− 2.1
√

n, we have Pr[∆(x2, y) ≥ n/2 + d
√

n] ≥ 0.95.

Its easy to see from the previous two claims that w(x) > 0.95 · (2/3) > 4ε. 2

4.6 Concluding Remarks

Our most important contribution in this chapter was to prove a multi-round lower bound on a

fundamental problem in communication complexity, the Gap-Hamming Distance problem. As

a consequence, we extended several known Ω(1/ε2)-type space bounds for various data stream

problems, such as the Distinct Elements problem, to multi-pass algorithms. These resolve

long-standing open questions.

4.7 Proofs of Technical Lemmas

Many claims in this chapter require tight upper and lower tail bounds for binomial and hy-

pergeometric distributions. We use Chernoff bounds where they apply. For other bounds, we

approximate using normal distributions. We use Feller [Fel68] as a reference.

89

Definition 11. For x ∈ R, let φ(x) := e−x2/2/
√

2π and

N(x) :=

∫ ∞

x

φ(y)dy.

N(x) is the cumulative distribution function of the normal distribution. We use it in Fact 54

to approximate T (x). Here, we’ll also use it to approximate tails of the binomial and hyperge-

ometric distributions.

Lemma 70 (Feller, Chapter VII, Lemma 2.). For all x > 0,

φ(x)

(
1

x
− 1

x3

)
< N(x) < φ(x)

1

x
.

In the next two theorems, we let a ∼ b denote a = b(1± o(1)).

Theorem 71 (Feller, Chapter VII, Theorem 2.). For fixed z1, z2,

Pr[n/2 + (z1/2)
√

n ≤ |y| ≤ n/2 + (z2/2)
√

n] ∼ N(z1)−N(z2).

Theorem 72. For any γ such that γ = ω(1) and γ = o(n1/6), we have

∑
k>n/2+γ

√
n/2

(
n

k

)
∼ N(γ).

Claim 73 (Restatement of Claim 68). Conditioned on |y| ≤ n/2− 2
√

n,

Pr|y|≤n/2−2
√

n[|y| ≥ n/2− 2.1
√

n] ≤ 0.0828.

90

Proof. By Theorem 71 and Lemma 70, we have

Pr[n/2− 2.1
√

n ≤ |y| ≤ n/2− 2
√

n] ∼ N(4)−N(4.2)

≤ φ(4)/4− φ(4.2)(4.2−1 − 4.2−3)

≤ 2.0219 ∗ 10−5

By Fact 54, Pr[|y| ≤ n/2 − 2
√

n] ≥ 2−3·22−2 = 2−14 = 6.1035 · 10−5. Putting the two terms

together, we get

Pr[|y| ≥ n/2− 2.1
√

n||y| ≤ n/2− 2
√

n] ≤ 2.0219 · 10−5

6.1035 · 10−5
≤ 1/3.

2

Claim 74 (Restatement of Claim 69). For all d < n/2− 2.1
√

n,

Pr[∆(x2, y) ≥ n/2 + 2
√

n] ≥ 0.95.

Proof. The proof follows from the following claim, instantiated with c = 2 and α = 2.1. 2

Claim 75. For all α > c, |x| = γn, and all γ ≥ 1− (1− c/α)/4,

Pr
|y|=n/2−α

√
n
[∆(x, y) ≥ n/2 + c

√
n] ≥ 1− exp

(
−2(α− c)α2(1 + o(1))

3α + c

)
.

Proof. Let m := |x| = γn and let n1 = n/2 − α
√

n. Then, the probability that a random

y with |y| = n2 can be expressed using the hypergeometric distribution Hyp(k; n, m, n1). Let

the m set bits of x be the defects. The probability of k of the n1 bits of y are defective is

91

Hyp(k; n, m, n1). Note that ∆(x, y) = (m− k) + (n1 − k) = m + n1 − 2k. Therefore,

∆(x, y) ≥ n/2 + c
√

n⇔ k ≤ m + n1

2
− n

4
− c

2

√
n. =

γn

2
− α + c

2

√
n

We express the probability Pr|y|=n1 [∆(x, y) ≥ n/2 + c
√

n] as

Pr
|y|=n1

[∆(x, y) ≥ n/2 + c
√

n] = Pr
K∼Hyp(k;n,m,n1)

[K ≤ γn

2
− α + c

2

√
n].

Next, we use a concentration of measure result due to Hush and Scovel [HS05]. Here, we

present a simplified version.

Theorem 76 (Hush, Scovel). Let m = γn > n1 = n/2− α
√

n, and let β = n/m(n−m).

Pr[K − E[K] > η] < exp(−2βη2(1 + o(1))).

The expected value of a random variable K distributed according to Hyp(K; n, m, n1) is

E[K] =
mn1

n
=

γn

n

(n

2
− α
√

n
)

=
γn

2
− γα

√
n.

Set η := (α− c)
√

n/4. Note that

E[K] + η =
γn

2
− γα

√
n +

α− c

4

√
n

≤ γn

2
− α + c

2

√
n

=
m + n1

2
− n

4
− c

2

√
n.

where the inequality holds because γ ≥ 1 − (1 − c/α)/4. Note also that (1 − c/α)/4 =

92

(α− c)/4α, so 1− (1− c/α)/4 = (3α + c)/4α. By Theorem 76,

Pr[K >
γn

2
− α + c

2

√
n] = Pr[K − E[K] > η]

< exp

(
−2nη2(1 + o(1))

m(n−m)

)
= exp

(
−2(α− c)2(1 + o(1))

16γ(1− γ)

)
≤ exp

(
−2(α− c)2(4α)2(1 + o(1))

16(α− c)(3α + c)

)
= exp

(
−2(α− c)α2(1 + o(1))

3α + c

)
.

It follows that Pr[K ≤ γn
2
− α+c

2

√
n] ≥ 1− exp

(
−2(α−c)α2(1+o(1))

3α+c

)
. 2

Claim 77. For any xL ∈ {0, 1}nL , GHD(xL, yL) is defined for at least a
(
e−2(c′)2/5c′

)
-fraction

of yL ∈ {0, 1}nL .

Proof. Without loss of generality, assume xL = ~0. Then, GHD(xL, yL) is defined for all y such

that |y| ≤ nL/2− c′
√

nL or |y| ≥ nL/2 + c′
√

nL. Note that for any constant x > c′,

Pr
y

[
|y| ≤ nL

2
− c′
√

nL

]
≥ Pr

[nL

2
− x
√

nL ≤ |y| ≤
nL

2
− c′
√

nL

]
≥ N(2c′)−N(2x)

≥ φ(2c′)

(
1

2c′
− 1

(2c′)3

)
− φ(2x)

2x

=
e−(2c′)2/2

√
2π

(

(
1

2c′
− 1

(2c′)3

)
− e−2x2

2x
√

2π

≥ e−2(c′)2

10c′
.

Pr[|y| ≥ nL/2 + c′
√

nL] is bounded in the same fashion. 2

93

Chapter 5

Improving the Gap Hamming Distance

Lower Bounds Through Better Round

Elimination

Gap Hamming Distance is a well-studied problem in communication complexity, in which

Alice and Bob have to decide whether the Hamming distance between their respective n-bit

inputs is less than n/2−
√

n or greater than n/2 +
√

n. We show that every k-round bounded-

error communication protocol for this problem sends a message of at least Ω(n/(k2 log k))

bits. This lower bound has an exponentially better dependence on the number of rounds than

the previous best bound, due to Brody and Chakrabarti. Our communication lower bound

implies strong space lower bounds on algorithms for a number of data stream computations,

such as approximating the number of distinct elements in a stream.

94

5.1 Introduction

5.1.1 The Communication Complexity of the Gap Hamming Distance

Problem

Communication complexity studies the communication requirements of distributed comput-

ing. In its simplest and best-studied setting, two players, Alice and Bob, receive inputs x and

y, respectively, and are required to compute some function f(x, y). Clearly, for most functions

f , the two players need to communicate to solve this problem. The basic question of commu-

nication complexity is the minimal amount of communication needed. By abstracting away

from the resources of local computation time and space, communication complexity gives us

a bare-bones but elegant model of distributed computing. It is interesting for its own sake but

is also useful as one of our main sources of lower bounds in many other models of computa-

tion, including data structures, circuits, Turing machines, VLSI, and streaming algorithms. The

basic results are excellently covered in the book of Kushilevitz and Nisan [KN97], but many

additional fundamental results have appeared since its publication in 1997.

One of the few basic problems whose randomized communication complexity is not yet

well-understood is the Gap Hamming Distance (GHD) problem, defined as follows.

GHD: Alice receives input x ∈ {0, 1}n and Bob receives input y ∈ {0, 1}n, with

the promise that |∆(x, y)− n/2| ≥
√

n, where ∆ denotes the Hamming distance.

Decide whether ∆(x, y) < n/2 or ∆(x, y) > n/2.

Mind the gap between n/2 −
√

n and n/2 +
√

n, which is what makes this problem inter-

esting and useful. Indeed, the communication complexity of the gapless version, where there

is no promise on the inputs, can easily be seen to be linear (for instance by a reduction from

disjointness). The gap makes the problem easier, and the question is how it affects the commu-

nication complexity: does it remain linear? A gap size of Θ(
√

n) is the natural choice—a Θ(1)

95

fraction of the inputs lie inside the promise area for this gap size, and as we’ll see below, it

is precisely this choice of gap size that has strong implications for streaming algorithms lower

bounds. Moreover, understanding the complexity of the
√

n-gap version can be shown to imply

a complete understanding of the GHD problem for all gaps.

Randomized protocols for GHD and more general problems can be obtained by sampling.

Suppose for instance that it is promised that either ∆(x, y) ≤ (1/2− γ)n or ∆(x, y) ≥ (1/2 +

γ)n. Choosing an index i ∈ [n] at random, the predicate [xi 6= yi] is a coin flip with heads

probability≤ 1/2−γ in the first case and≥ 1/2+γ in the second. It is known that flipping such

a coin Θ(1/γ2) times suffices to distinguish these two cases with probability at least 2/3. Hence

if we use shared randomness to choose Θ(1/γ2) indices, we obtain a one-round bounded-error

protocol with communication Θ(1/γ2) bits. In particular, for GHD (where γ = 1/
√

n), the

communication is Θ(n) bits, which is no better than the trivial upper bound of n when Alice

just sends x to Bob.

What about lower bounds? Indyk and Woodruff [IW03] managed to prove a linear lower

bound for the case of one-round protocols for GHD, where there is only one message from

Alice to Bob (see also [Woo04, JKS08]). However, going beyond one-round bounds turned

out to be quite a difficult problem. Recently, Brody and Chakrabarti [BC09] obtained linear

lower bounds for all constant-round protocols:

Theorem 78. [BC09] Every k-round bounded-error protocol for GHD sends a message of

length
n

2O(k2)
.

In fact our bound is significant as long as the number of rounds is k ≤ c0

√
log n, for a

universal constant c0. Regarding lower bounds that hold irrespective of the number of rounds,

an easy reduction gives an Ω(
√

n) lower bound (which is folklore): take an instance of the

gapless version of the problem on x, y ∈ {0, 1}
√

n and “repeat” x and y
√

n times each. This

blows up the gap from 1 to
√

n, giving an instance of GHD on n bits. Solving this n-bit instance

96

of GHD solves the
√

n-bit instance of the gapless problem. Since we have a linear lower bound

for the latter, we obtain a general Ω(
√

n) bound for GHD.1

5.1.2 Our results

Our main result is an improvement of the bound of Brody and Chakrabarti, with an exponen-

tially better dependence on the number of rounds:

Theorem 79. Every k-round bounded-error protocol for GHD sends a message of length

Ω

(
n

k2 log k

)
.

In fact we get a bound for the more general problem of distinguishing distance ∆(x, y) ≤

(1/2 − γ)n from ∆(x, y) ≥ (1/2 + γ)n, as long as γ = Ω(1/
√

n): for this problem every

k-round protocol sends a message of Ω
(

1
k2 log k

1
γ2

)
bits.

Like the result of [BC09], our lower bound deteriorates with the number of rounds. Also

like their result, our proof is based on round elimination, an important framework for proving

communication lower bounds. Our proof contains an important insight into this framework

that we now explain.

A communication problem usually involves a number of parameters, such as the input size,

an error bound, and in our case the gap size. The round elimination framework consists of

showing that a k-round protocol solving a communication problem for a class C of parameters

can be turned into a (k−1)-round protocol for an easier class C ′, provided the message com-

municated in the first round is short. This fact is then applied repeatedly to obtain a 0-round

protocol (say), for some nontrivial class of instances. The resulting contradiction can then be

1In fact the same proof lower-bounds the quantum communication complexity; a linear quantum lower
bound for the gapless version follows easily from Razborov’s work [Raz02] and the observation that ∆(x, y) =
|x| + |y| − 2|x ∧ y|. However, as Brody and Chakrabarti observed, in the quantum case this

√
n lower bound

is essentially tight: there is a bounded-error quantum protocol, based on a well-known quantum algorithm for
approximate counting, that communicates O(

√
n log n) qubits. This also implies that lower bound techniques

which apply to quantum protocols, such as discrepancy, factorization norms [LS07, LS08], and the pattern matrix
method [She08], cannot prove better bounds for classical protocols.

97

recast as a communication lower bound. Historically, the easier class C ′ has contained smaller

input lengths2 than those in C.

In contrast to previous applications of round elimination, we manage to avoid shrinking

the input length: the simplification will instead come from a slight deterioration in the error

parameter. Here is how this works. If Alice’s first message is short, then there is a specific

message and a large set A of inputs on which Alice would have sent that message. Roughly

speaking, we can use the largeness of A to show that almost any input x̃ for Alice is close

to A in Hamming distance. Therefore, Alice can “move” x̃ to its nearest neighbor, x, in A:

this makes her first message redundant, as it is constant for all inputs x ∈ A. Since x and

x̃ have small Hamming distance, it is likely that both pairs (x̃, y) and (x, y) are on the same

side of the gap, i.e. have the same GHD value. Hence the correctness of the new protocol,

which is one round shorter, is only mildly affected by the move. Eliminating all k rounds in

this manner, while carefully keeping track of the accumulating errors, yields a lower bound of

Ω(n/(k4 log2 k)) on the maximum message length of any k-round bounded-error protocol for

GHD.

Notice that this lower bound is slightly weaker than the Ω(n/(k2 log k)) bound stated above.

To obtain the stronger bound, we leave the purely combinatorial setting and analyze a version

of GHD on the unit sphere:3 Alice’s input is now a unit vector x ∈ Rn and Bob’s input is a

unit vector y ∈ Rn, with the promise that either x · y ≥ 1/
√

n or x · y ≤ −1/
√

n (as we show

below in Section 5.2, this version and the Boolean one are essentially equivalent in terms of

communication complexity). Alice’s input is now close to the large, constant-message set A in

Euclidean distance. The rest of the proof is as outlined above, but the final bound is stronger

than in the combinatorial proof for reasons that are discussed in Section 5.2.2. Although this

2In fact, C and C′ are often designed such that an instance in C is a “direct sum” of several independent
instances in C′.

3The idea of going to the unit sphere was also used by Jayram et al. [JKS08] for a simplified one-round lower
bound. As we will see in Section 5.2, doing so is perhaps even more natural than working with the combinatorial
version; in particular it is then easy to make GHD into a dimension-independent problem.

98

proof uses arguments from high-dimensional geometry, such as measure concentration, it ar-

guably remains conceptually simpler than the one in [BC09].

Related work. The round elimination technique was formalized in Miltersen et

al. [MNSW98] and dates back even further, at least to Ajtai’s lower bound for predecessor

data structures [Ajt88]. For us, the most relevant previous use of this technique our result from

Chapter 4, where a weaker lower bound is proved on GHD.

As in the previous chapter, this proof identifies a large subset A of inputs on which Alice

sends the same message. The “largeness” of A is used to identify a suitable subset of (n/3)

coordinates such that Alice can “lift” any (n/3)-bit input x̃, defined on these coordinates, to

some n-bit input x ∈ A. In the resulting protocol for (n/3)-bit inputs, the first message is now

constant, hence redundant, and can be eliminated.

The input size thus shrinks from n to n/3 in one round elimination step. As a result of

this constant-factor shrinkage, the Brody-Chakrabarti final lower bound necessarily decays

exponentially with the number of rounds. Our proof crucially avoids this shrinkage of input

size by instead considering the geometry of the set A, and exploiting the natural invariance of

the GHD predicate to small perturbations of the inputs.

Remark. After we obtained our results, a subset of the authors independently proved an opti-

mal Ω(n) lower bound, independent of the number of rounds [CR10]. However, the techniques

they introduce are completely different, and rather involved. Our result, through its relatively

simple and elegant proof, should be of independent interest to the community.

5.1.3 Applications to Streaming

The introduction of gapped versions of the Hamming distance problem [IW03] was motivated

by the streaming model of computation, in particular the problem of approximating the number

99

of distinct elements in a data stream. For many data stream problems, including the distinct

elements problem, the goal is to output a multiplicative approximation of some real-valued

quantity. Usually, both randomization and approximation are required. When both are allowed,

there are often remarkably space-efficient solutions.

As Indyk and Woodruff showed, communication lower bounds for the Gap Hamming Dis-

tance problem imply space lower bounds on algorithms that output the number of distinct

elements in a data stream up to a multiplicative approximation factor 1 ± γ. The reduction

from GHD works as follows. Alice converts her n-bit string x = x1x2 · · ·xn into a stream of

tuples σ = 〈(1, x1), (2, x2), . . . , (n, xn)〉. Bob converts y into τ = 〈(1, y1), (2, y2), . . . , (n, yn)〉

in a similar fashion. Using a streaming algorithm for the distinct elements problem, Alice pro-

cesses σ and sends the memory contents to Bob, who then processes τ starting from where

Alice left off. In this way, they estimate the number of distinct elements in σ ◦ τ . Note that

each element in σ is unique, and that elements in τ are distinct from elements in σ precisely

when xi 6= yi. Hence, an accurate approximation (γ = Ω(1/
√

n) is required) for the number of

distinct elements in σ ◦ τ gives an answer to the original GHD instance. This reduction can be

extended to multi-pass streaming algorithms in a natural way: when Bob is finished process-

ing τ , he sends the memory contents back to Alice, who begins processing σ a second time.

Generalizing, it is easy to see that a p-pass streaming algorithm gives a (2p−1)-round com-

munication protocol, where each message is the memory contents of the streaming algorithm.

Accordingly, a lower bound on the length of the largest message of (2p−1)-round protocols

gives a space lower bound for the p-pass streaming algorithm.

Thus, the one-round linear lower bound by Indyk and Woodruff [IW03] yields the desired

Ω(1/γ2) (one-pass) space lower bound for the streaming problem. Similarly, our new commu-

nication lower bounds imply Ω(1/(γ2p2 log p)) space lower bounds for p-pass algorithms for

the streaming problem. This improves on previous bounds for all p = o(n1/4/
√

log n).

100

Organization of the chapter. We start with some preliminaries in Section 5.2, including a

discussion of the key measure concentration results that we will use, both for the sphere and

for the Hamming cube, in Section 5.2.2. In Section 5.3 we prove our main result, while in

Section 5.4 we give the simple combinatorial proof of the slightly weaker result mentioned

above.

5.2 Preliminaries

Notation. For x, y ∈ Rn, let d(x, y) := ‖x − y‖ be the Euclidean distance between x and

y, and x · y their inner product. For z ∈ R, define sgn(z) := 0 if z ≥ 0, and sgn(z) = 1

otherwise. For a set S ⊆ Rn, let d(x, S) be the infimum over all y ∈ S of d(x, y). The

unique rotationally-invariant probability distribution on the n-dimensional sphere Sn−1 is the

Haar measure, which we denote by ν. When we say that a vector is taken from the uniform

distribution over a measurable subset of the sphere, we will always mean that it is distributed

according to the Haar measure, conditioned on being in that subset.

Define the max-cost of a communication protocol to be the length of the longest single

message sent during an execution of the protocol, for a worst-case input. We use Rk
ε(f) to de-

note the minimal max-cost amongst all two-party, k-round, public-coin protocols that compute

f with error probability at most ε on every input (here a “round” is one message).

5.2.1 Problem Definition

We will prove our lower bounds for the problem GHDd,γ , where d is an integer and γ > 0. In

this problem Alice receives a d-dimensional unit vector x, and Bob receives a d-dimensional

unit vector y, with the promise that |x · y| ≥ γ. Alice and Bob should output sgn(x · y).

We show that GHDn,1/
√

n has essentially the same randomized communication complexity

as the problem GHD that we defined in the introduction. Generalizing that definition, for any

101

g > 0 define the problem GHDn,g, in which the input is formed of two n-bit strings x and y,

with the promise that |∆(x, y)− n/2| ≥ g, where ∆ is the Hamming distance. Alice and Bob

should output 0 if ∆(x, y) < n/2 and 1 otherwise.

The following proposition shows that for any
√

n ≤ g ≤ n, the problems GHDn,g and

GHDd,γ are essentially equivalent from the point of view of randomized communication com-

plexity (with shared randomness) as long as d ≥ n and γ = Θ(g/n). It also shows that the

randomized communication complexity of GHDd,γ is independent of the dimension d of the

input, as long as d is large enough with respect to γ.

Proposition 1. For every ε > 0, there is a constant C0 = C0(ε) such that for all integers

k, d ≥ 0 and
√

n ≤ g ≤ n, we have Rk
2ε(GHDd,C0g/n) ≤ Rk

ε(GHDn,g) ≤ Rk
ε(GHDn,2g/n).

Proof. We begin with the right-hand inequality. The idea is that a GHDn,g protocol can be

obtained by applying a given GHD protocol to a suitably transformed input. Let x, y ∈ {0, 1}n

be two inputs to GHDn,g. Define x̃ = 1√
n

((−1)xi)i∈[n] and ỹ = 1√
n

((−1)yi)i∈[n]. Then x̃, ỹ ∈

Sn−1. Moreover, x̃ · ỹ = 1− 2∆(x, y)/n. Therefore, if ∆(x, y) ≥ n/2+ g then x̃ · ỹ ≤ −2g/n,

and if ∆(x, y) ≤ n/2− g then x̃ · ỹ ≥ 2g/n. This proves Rk
ε(GHDn,g) ≤ Rk

ε(GHDn,2g/n).

For the left inequality, let x and y be two unit vectors (in any dimension) such that |x·y| ≥ γ,

where γ = C0g/n. Note that since g ≥
√

n, we have n = Ω(γ−2). Using shared randomness,

Alice and Bob pick a sequence of vectors w1, . . . , wn, each independently and uniformly drawn

from the unit sphere. Define two n-bit strings x̃ = (sgn(x · wi))i∈[n] and ỹ = (sgn(y · wi))i∈[n].

Let α = cos−1(x · y) be the angle between x and y. Then a simple argument (used, e.g., by

Goemans and Williamson [GW95]) shows that the probability that a random unit vector w is

such that sgn(x · w) 6= sgn(y · w) is exactly α/π. This means that for each i, the bits x̃i and

ỹi differ with probability 1
π

cos−1(x · y), independently of the other bits of x̃ and ỹ. The first

few terms in the Taylor series expansion of cos−1 are cos−1(z) = π
2
− z − z3

6
+ O(z5). Hence,

for each i, Prwi
(x̃i 6= ỹi) = 1/2 − Θ(x · y), and these events are independent for different i.

102

Choosing C0 sufficiently large, with probability at least 1− ε, the Hamming distance between

x̃ and ỹ is at most n/2− g if x · y ≥ γ, and it is at least n/2 + g if x · y ≤ −γ. 2

5.2.2 Concentration of Measure

It is well known that the Haar measure ν on a high-dimensional sphere is tightly concentrated

around the equator—around any equator, which makes it a fairly counterintuitive phenomenon.

The original phrasing of this phenomenon, usually attributed to P. Lévy [Lév51], goes by show-

ing that among all subsets of the sphere, the one with the smallest “boundary” is the spherical

cap Sx
γ = {y ∈ Sn−1 : x · y ≥ γ}. The following standard volume estimate will prove useful

(see, e.g., [Bal97], Lemma 2.2).

Fact 80. Let x ∈ Sn−1 and γ > 0. Then ν(Sx
γ) ≤ e−γ2n/2.

Given a measurable set A, define its t-boundary At := {x ∈ Sn−1 : d(x, A) ≤ t}, for any

t > 0. At the core of our results will be the standard fact that, for any not-too-small set A, the

set At contains almost all the sphere, even for moderately small values of t.

Fact 81 (Concentration of measure on the sphere). For any measurable A ⊆ Sn−1 and any

t > 0,

Pr(x ∈ A) Pr(x /∈ At) ≤ 4 e−t2n/4, (5.1)

where the probabilities are taken according to the Haar measure on the sphere.

Proof. The usual measure concentration inequality for the sphere (Theorem 14.1.1 in [Mat02])

says that for any set B ⊆ Sn−1 of measure at least 1/2 and any t′ > 0,

Pr(x /∈ Bt′) ≤ 2 e−(t′)2n/2.

103

This suffices to prove the fact if Pr(x ∈ A) ≥ 1/2, so assume that Pr(x ∈ A) < 1/2. Let t0 be

such that At0 has measure 1/2; such a t0 exists by continuity. Applying measure concentration

to B = At0 gives

Pr(x /∈ At′+t0) ≤ 2 e−(t′)2n/2, (5.2)

for all t′ > 0, while applying it to B = At0 yields

Pr(x ∈ At0−t′′) ≤ Pr(x 6∈ Bt′′) ≤ 2 e−(t′′)2n/2 (5.3)

for all t′′ ≤ t0, since At0−t′′ is included in the complement of (At0)t′′ . Taking t′′ = t0 gives

us Pr(x ∈ A) ≤ 2 e−t20n/2. If t ≤ t0 then this suffices to prove the inequality. Otherwise,

set t′ := t − t0 in (5.2) and t′′ := t0 in (5.3) and multiply the two inequalities to obtain the

required bound, by using that t20 + (t − t0)
2 ≥ t2/2 (which holds since 2t20 + t2/2 − 2t t0 =

(
√

2t0 − t/
√

2)2 ≥ 0). 2

Why the sphere? In Section 5.4 we give a proof of a slightly weaker lower bound than the

one in our main result by using measure concentration facts on the Hamming cube only. We

present those useful facts now, together with a brief discussion of the differences, in terms

of concentration of measure phenomenon, between the Haar measure on the sphere and the

uniform distribution over the hypercube. These differences point to the reasons why the proof

of Section 5.4 gives an inferior bound.

On the Hamming cube, the analogous notion of spherical cap is the Hamming ball: let

T x
c = {y ∈ {0, 1}n : ∆(x, y) ≤ n/2 − c

√
n} be the Hamming ball of radius n/2 − c

√
n

centered at x. The analogue of Fact 80 is given by the Chernoff bound:

Fact 82. For all c > 0, we have 2−n|T x
c | ≤ e−2c2 .

A result similar to Lévy’s, attributed to Harper [Har66], states that among all subsets (of

104

the Hamming cube) of a given size, the ball is the one with the smallest boundary. Following

a similar proof as for Fact 81, one can get the following statement for the Hamming cube (see

e.g. Corollary 4.4 in [Bar05]):

Fact 83 (Concentration of measure on the Hamming cube). Let A ⊆ {0, 1}n be any set,

and define Ac = {x ∈ {0, 1}n : ∃y ∈ A, ∆(x, y) ≤ c
√

n}. Then

Pr(x ∈ A) Pr(x /∈ Ac) ≤ e−c2 , (5.4)

where the probabilities are taken according to the uniform distribution on the Hamming cube.

To compare these two statements, embed the Hamming cube in the sphere by mapping

x ∈ {0, 1}n to the vector vx = 1√
n
((−1)xi)i∈[n], so that two strings of Hamming distance c

√
n

are mapped to vectors with Euclidean distance 2
√

c/n1/4. While on the sphere inequality (5.1)

indicates that most points are at distance roughly 1/
√

n from any set of measure half, if we are

restricted to the Hamming cube then very few points are at a corresponding Hamming distance

of 1 from, say, the set of all strings with fewer than n/2 1s, which has measure roughly 1/2

in the cube. This difference is crucial: it indicates that the n-dimensional cube is too rough

an approximation of the n-dimensional sphere for our purposes, perhaps explaining why our

combinatorial bound in Section 5.4 yields a somewhat weaker dependence on the number of

rounds.

5.3 Main Result

Our main result is the following.

Theorem 84. Let 0 ≤ ε ≤ 1/50. There exist constants C, C ′ depending only on ε such that

the following holds for any γ > 0 and any integers n ≥ ε2/(4γ2) and k ≤ C ′/(γ ln(1/γ)): if

105

P is a randomized ε-error k-round communication protocol for GHDn,γ then some message

has length at least C
k2 ln k

· 1
γ2 bits.

Using Proposition 1 we immediately get a lower bound for the Hamming cube version

GHD = GHDn,
√

n:

Corollary 85. Any ε-error k-round randomized protocol for GHD communicates

Ω(n/(k2 ln k)) bits.

This follows from Theorem 84 when k = o(
√

n/ log n). If k is larger, then the bound stated

in the Corollary is in fact weaker than the general Ω(
√

n) lower bound which we sketched in

the introduction.

5.3.1 Proof Outline

We now turn to the proof of Theorem 84. Let ε, γ and n be as in the statement of the theorem.

Since lowering n only makes the GHDn,γ problem easier, for the rest of this section we assume

that n := ε2/(4γ2) is fixed, and for simplicity of notation we write GHDγ for GHDn,γ .

Measurability. Before proceeding with the proof, we first need to handle a small technicality

arising from the continuous nature of the input space: namely, that the distributional protocol

might make decisions based on subsets of the input space that are not measurable. To make

sure that this does not happen, set δ = γ/6 and consider players Alice and Bob who first round

their inputs to the closest vector in a fixed δ-net, and then proceed with an ε-error protocol for

GHDγ/2. Since by definition rounding to the δ-net moves any vector a distance at most δ, the

rounding will affect the inner product x · y by at most 2δ + δ2 ≤ γ/2. As a result, Alice and

Bob will succeed with probability 1−ε provided they are given valid inputs to GHDγ . Hence

any randomized ε-error protocol for GHDγ/2 can be transformed into a randomized ε-error

protocol for GHDγ with the same communication, but which initially rounds its inputs to a

106

discrete set. We prove a lower bound on the latter type of protocol. This will ensure that all

sets encountered in the proof are measurable.

Distributional complexity. By Yao’s principle it suffices to lower-bound the distributional

complexity, i.e., to analyze deterministic protocols that are correct with probability 1−ε under

some input distribution. As our input distribution for GHDγ we take the distribution that is

uniform over the inputs satisfying the promise |x · y| ≥ γ. Given our choice of n, Claim 87

below guarantees that the ν×ν-measure of non-promise inputs is at most ε. Hence it will suffice

to lower-bound the distributional complexity of protocols making error at most 2 ε under the

distribution ν × ν. We define an ε-protocol to be a deterministic communication protocol for

GHDn,γ whose error under the distribution ν × ν is at most ε, where we say that a protocol P

makes an error if P(x, y) 6= sgn(x, y).

We prove a lower bound on the maximum length of a message sent by any ε-protocol, via

round elimination. The main reduction step is given by the following technical lemma:

Lemma 86 (Round Elimination on the sphere). Let ε, γ > 0, n = ε2/(4γ2), and 1 ≤ κ ≤ k.

Assume there is a κ-round ε-protocol P such that the first message has length bounded as

c1 ≤ C1
n

k2 ln k
− 7 ln(2k) where C1 is a universal constant. Then there is a (κ−1)-round

ε′-protocol Q (obtained by eliminating the first message of P), where ε′ ≤
(
1 + 1

k

)
ε + 1

16k
.

Before proving this lemma in Section 5.3.2, we show how it implies Theorem 84.

Proof. [Proof of Theorem 84] We will show that in any k-round (2 ε)-protocol, there is a

message sent of length at least C1n/(k2 ln k)− 7 ln(2k). The discussion in the “Distributional

complexity” paragraph above shows this suffices to prove the theorem, by setting C = C1ε
2/8,

and choosing C ′ small enough so that the bound on k in the statement of the theorem implies

that 7 ln(2k) < C1n/(2k2 ln k).

Let P be a k-round (2 ε)-protocol, and assume for contradiction that each round

of communication uses at most C1n/(k2 ln k) − 7 ln(2k) bits. Solving the recurrence

107

εκ = (1 + 1/k)εκ−1 + 1/(16k), ε0 = 2 ε gives εκ = (1 + 1/k)κ(2 ε + 1/16)− 1/16, so that

applying Lemma 86 k times leads to a 0-round protocol for GHDγ that errs with probability

at most ε′ ≤ e (2 ε + 1/16)− 1/16 ≤ 1/4 over the input distribution ν × ν. We have reached

a contradiction: such a protocol needs communication and hence cannot be 0-round. Hence P

must send a message of length at least C1n/(k2 ln k)− 7 ln(2k).

2

5.3.2 The Main Reduction Step

Proof. [Proof of Lemma 86] Let P(x, y) denote the output of the protocol on input x, y. Define

x ∈ Sn−1 to be good if Prν×ν(P (x, y) errs |x) ≤ (1 + 1/k)ε. By Markov’s inequality, at least

a 1/(k+1)-fraction of x (distributed according to ν) are good. For a given message m, let Am

be the set of all good x on which Alice sends m as her first message. The sets Am, over all

messages m ∈ {0, 1}c1 , form a partition of the set of good x. Define m1 := argmaxmν(Am)

and let A := Am1 . We then have ν(A) ≥ 1
k+1

2−c1 ≥ e−c1−ln(k+1).

We now define protocol Q. Alice receives an input x̃, Bob receives ỹ, both distributed

according to ν. Alice computes the point x ∈ A that is closest to x̃, and Bob sets y := ỹ. They

run protocol P(x, y) without Alice sending the first message, so Bob starts and proceeds as if

he received m1 from Alice.

To prove the lemma, it suffices to bound the error probability ε′ of Q with input x̃, ỹ dis-

tributed according to ν × ν. Define d1 = 2
√

c1+6 ln(2k)+2
n

. We consider the following bad

events:

• BAD1 : d(x̃, A) > d1,

• BAD2 : P (x, y) 6= sgn(x · y),

• BAD3 : d(x̃, A) ≤ d1 but sgn(x · y) 6= sgn(x̃ · ỹ).

108

If none of those events occurs, then protocol P outputs the correct answer. We bound each of

them separately, and will conclude by upper bounding ε′ with a union bound.

The first bad event can be easily bounded using the measure concentration inequality from

Fact 81. Since x̃ is uniformly distributed in Sn−1 and Pr(A) ≥ e−c1−ln(k+1), we get

Pr(BAD1) ≤ 4 e−d2
1n/4+c1+ln(k+1) ≤ 4 e−5 ln(2k)−2 ≤ 1

32k
.

The second bad event has probability bounded by (1 + 1/k) ε by the goodness of x. Now

consider event BAD3. Without loss of generality, we may assume that x̃ · ỹ = x̃ · y > 0 but

x · y < 0 (the other case is treated symmetrically). In order to bound BAD3, we will use two

claims. The first shows that the probability that x̃ · y is close to 0 for a random x̃ and y is small.

The second uses measure concentration to show that, if x̃ · y is not too close to 0, then moving

x̃ to the nearby x is unlikely to change the sign of the inner product.

Claim 87. Let x, y be distributed according to ν. For any real α ≥ 0, we have Pr(0 ≤ x · y ≤

α) ≤ α
√

n.

Proof. With ωn the volume of the n-dimensional Euclidean unit ball, we write (see for

example [BGK+98], Lemma 5.1)

Pr(0 ≤ x · y ≤ α) =
(n− 1) ωn−1

n ωn

∫ α

0

(1− t2)
n−3

2 dt ≤ α
√

n,

where we used ωn−1

ωn
<
√

n+1
2π

<
√

n. 2

Claim 88. Let x, x̃ be two fixed unit vectors at distance ‖x − x̃‖ = d ∈ [0, d1], and 0 < α ≤

1/(4
√

n). Let y be taken according to ν. Then Pr(x̃ · y ≥ α ∧ x · y < 0) ≤ e−α2n/(8d2
1).

Proof. Note that x · x̃ = 1 − ‖x − x̃‖2/2 = 1 − d2/2. Since the statement of the lemma is

109

rotationally-invariant, we may assume without loss of generality that

x̃ = (1, 0, 0 . . . , 0),

x = (1− d2/2,−
√

d2 − d4/4, 0, . . . , 0),

y = (y1, y2, y3, . . . , yn).

Therefore, y1 ≥ α when x̃ · y ≥ α. Note that

x · y = x1y1 + x2y2 ≥ (1− d2/2)α−
√

d2 − d4/4 y2.

Hence the event x̃ · y ≥ α ∧ x · y < 0 implies

y2 >
(1− d2/2) α√

d2 − d4/4
≥ α

2d
,

where we used the fact that d ≤ d1 ≤ 1, given our assumption on c1. By Fact 80, the probability

that, when y is sampled from ν, y2 is larger than α/(2d) is at most e−α2n/(8d2). Hence the

probability that both x̃ · y ≥ α and x · y < 0 happen is at most as much. 2

Setting α = 1/(128k
√

n), by Claim 87 we find that the probability that 0 ≤ x̃ · y ≤

α is at most 1/(128k). Furthermore, the probability that x̃ · y ≥ α and x · y < 0 is at

most exp
(
− n

219k2(c1+6 ln(2k)+2)

)
by Claim 88. This bound is less than 1/(128k) given our

assumption on c1, provided C1 is a small enough constant. Putting both bounds together, we

see that

Pr(x̃ · y ≥ 0 ∧ x · y < 0) < 1/(64k).

The event that x̃ · y < 0 but x · y ≥ 0 is bounded by 1/(64k) in a similar manner. Hence,

Pr(BAD3) < 1/(32k). Taking the union bound over all three bad events concludes the proof

of the lemma. 2

110

5.4 A Simple Combinatorial Proof

In this section we present a combinatorial proof of the following:

Theorem 89. Let 0 ≤ ε ≤ 1/50. There exists a constant C ′′ depending on ε only, such that the

following holds for any g ≤ C ′′√n and k ≤ n1/4/(1024 log n): if P is a randomized ε-error k-

round communication protocol for GHDn,g then some message has length at least n
(512k)4 log2 k

bits.

Even though this is a weaker result than Theorem 84, its proof is simpler and is based on

concentration of measure in the Hamming cube rather than on the sphere (we refer to Sec-

tion 5.2.2 for a high-level comparison of the two proofs). Interestingly, the dependence on the

number of rounds that we obtain is quadratically worse than that of the proof using concentra-

tion on the sphere.

We proceed as in Section 5.3.1, observing that it suffices to lower-bound the distributional

complexity of GHDn,g under a distribution uniform over the inputs satisfying the promise

|∆(x, y) − n/2| ≥ g. In fact, as we did before, by taking C ′′ small enough we can guarantee

that the number of non-promise inputs is at most ε 2n. Hence it will suffice to lower-bound

the distributional complexity of protocols making error at most 2 ε under the uniform input

distribution. We define an ε-protocol to be a deterministic communication protocol for GHD

whose distributional error under the uniform distribution is at most ε. The following is the

analogue of Lemma 86, from which the proof of Theorem 89 follows as in Section 5.3.1.

Lemma 90 (Round Elimination on the Hamming cube). Let ε > 0 and κ, k be two integers

such that k ≥ 128 and 1 ≤ κ ≤ k ≤ n1/4/(1024 log n). Assume that there is a κ-round

ε-protocol P such that the first message has length bounded by c1 ≤ n/((512k)4 log2 k). Then

there exists a (κ − 1)-round ε′-protocol Q (obtained by eliminating the first message of P)

where ε′ ≤
(
1 + 1

k

)
ε + 1

16k
.

111

Proof. Define x ∈ {0, 1}n to be good if Pr(P (x, y) errs |x) ≤ (1 + 1/k)ε. By Markov’s

inequality, at least a 1/(k + 1)-fraction of x ∈ {0, 1}n are good. For a given message m, let

Am := {good x : Alice sends m given x}. The sets Am, over all messages m ∈ {0, 1}c1 ,

together form a partition of the set of good x. Define m1 := argmaxm|Am|, and let A := Am1 .

By the pigeonhole principle, we have |A| ≥ 1
k+1

2n−c1 .

We now define protocolQ. Alice receives an input x̃, Bob receives ỹ, uniformly distributed.

Alice computes the string x ∈ A that is closest to x̃ in Hamming distance, and Bob sets y := ỹ.

They run protocol P(x, y) without Alice sending the first message, so Bob starts and proceeds

as if he received the fixed message m1 from Alice.

To prove the lemma, it suffices to bound the error probability ε′ of Q under the uniform

distribution. Define d1 := 9
√

n/((1024k)2 log k). As in the proof of Lemma 86, we consider

the following bad events:

• BAD1 : ∆(x, x̃) > d1

√
n,

• BAD2 : P (x, y) 6= GHD(x, y),

• BAD3 : ∆(x, x̃) ≤ d1

√
n but GHD(x̃, y) 6= GHD(x, y).

If none of those events occurs, then protocol P outputs the correct answer. We bound each of

them separately, and will conclude by a union bound. BAD1 is easily bounded using Fact 83,

which implies

Pr(x̃ /∈ Ad1) ≤ e−81n/((1024k)4 log2 k)2c1+log(k+1) ≤ 2

k2
≤ 1

32k
,

given our assumptions on c1 and k. The second bad event is bounded by (1 + 1/k) ε, by

definition of A.

We now turn to BAD3. The event that GHD(x̃, y) 6= GHD(x, y) only depends on the

relative distances between x, x̃, and y, so we may apply a shift to assume that x = (0, . . . , 0).

112

Without loss of generality, we assume that ∆(x̃, y) > n/2 and |y| < n/2 (the error bound when

∆(x̃, y) < n/2 and |y| > n/2 is proved in a symmetric manner). Note that, since y is uniformly

random (subject to |y| < n/2), by a standard head estimate for the binomial distribution with

probability at least 1 − 1/(128k) we have |y| ≤ n/2 −
√

n/(128k) (this is analogous to the

estimate from Claim 87 that we used in the continuous setting). Hence we may assume that

this holds with an additive loss of at most 1/(128k) in the error. Now

∆(x̃, y) > n/2⇐⇒ |x̃|+ |y| − 2|x̃ ∩ y| > n/2⇐⇒ |x̃ ∩ y| < |x̃|+ |y| − n/2

2
.

It is clear that the worst case in this statement is for |y| = n/2 −
√

n/(128k) and |x̃| =

∆(x, x̃) = d1

√
n. By symmetry, the probability that this event happens is the same as if we fix

any y of the correct weight, and x̃ is a random string of weight d1

√
n. The expected intersection

size is |y||x̃|/n = |x̃|/2− d1/(128k), and so by Hoeffding’s inequality (see e.g. the bound on

the tail of the hypergeometric distribution given in [Chv79]), for a =
√

n/(256k)−d1/(128k),

we have

Pr

(
|x̃ ∩ y| ≤ |x̃|+ |y| − n/2

2

)
= Pr (|x̃ ∩ y| ≤ E[|x̃ ∩ y|]− a) ≤ e−2a2/(d1

√
n).

Given our choice of d1 we have a ≥ 3
√

n/(4 · 256k), and hence the upper bound is at most

1/k2 ≤ 1/(128k), given our assumption on k. Applying the union bound over all bad events

then yields the lemma. 2

113

Chapter 6

Conclusions

Communication Complexity plays a central role in proving lower bounds and hardness results

in theoretical computer science. This thesis described some of our work in this area and gives

new lower bounds for three communications problems, with applications to circuit complexity,

wireless sensor networks, and streaming algorithms.

We give several new lower bounds for multiparty pointer jumping for both myopic and col-

lapsing protocols. While these lower bounds do not extend to general MPJk protocols, we hope

that the intuition from these results will prove fruitful to proving a general lower bound that

would place MPJk outside ACC0. We also leverage the work of Pudlák, Rödl, and Sgall [PRS97]

to achieve the first nontrivial o(n) upper bound for MPJk, thus showing that the complexity of

MPJk is deeper than previously suspected.

For the distributed functional monitoring problem, we consider several non-monotone func-

tions and provide a suite of new lower bounds, including a generic adversarial lower bound

technique. Together with our upper bound for monitoring empricial entropy [ABC09], we tell

a contrasting story for functional monitoring of non-monotone functions. When deletions are

disallowed, efficient non-monotone functional monitoring is possble; however, when deletions

are permitted, essentially nothing nontrivial is possible, even when the monitoring protocol is

114

randomized.

Finally, we give the first multiround lower bound for the Gap-Hamming-Distance problem,

answering a long-standing open problem [Kum06]. As a result, we extend Ω(1/ε2) lower

bounds for streaming algorithms that estimate frequency moments Fk to a constant number

of passes. Our result also implies a lower bound for streaming algorithms that use a constant

number of passes to compute the empirical entropy of a stream, given the work of Chakrabarti

et al. [CCM07].

Several of our results use the Round Elimination Lemma. Together, these results show the

power of this classic lower bound technique. In particular, the Ω̃(n/k2) lower bound for Gap-

Hamming-Distance from Chapter 5 is the first round elimination result that remains nontrivial

even for a ω(log n) number of rounds. Its use of isoperimetry appears to be a promising line of

attack for other problems.

115

Bibliography

[AB07] Sanjeev Arora and Boaz Barak. Complexity Theory: A Modern Approach. Available online

at 〈http://www.cs.princeton.edu/theory/complexity/〉, 2007.

[ABC09] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. Functional monitoring with-

out monotonicity. In Proc. 36th International Colloquium on Automata, Languages and

Programming, pages 95–106, 2009.

[Abl96] Farid Ablayev. Lower bounds for one-way probabilistic communication complexity and

their application to space complexity. Theoretical Computer Science, 175(2):139–159,

1996.

[ADHP06] Micah Adler, Erik D. Demaine, Nicholas J. A. Harvey, and Mihai Pǎtraşcu. Lower bounds

for asymmetric communication channels and distributed source coding. In Proc. 17th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 251–260, 2006.

[Ajt88] Miklós Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Combi-

natorica, 8:235–247, 1988.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. Preliminary version in

Proc. 28th Annu. ACM Symp. Theory Comput., pages 20–29, 1996.

[Bal97] K. Ball. An elementary introduction to modern convex geometry. Flavors of Geometry,

31, 1997.

116

[Bar05] A. Barvinok. Lecture notes on measure concentration, 2005.

[BC09] Joshua Brody and Amit Chakrabarti. A multi-round communication lower bound for gap

hamming and some consequences. In Proc. 24th Annual IEEE Conference on Computa-

tional Complexity, pages 358–368, 2009.

[Bez87] Sergei Bezrukov. Specification of the maximal sized subsets of the unit cube with respect

to given diameter. Problems of Information Transmission, 1:106–109, 1987.

[BF99] Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem. In Proc. 31st

Annual ACM Symposium on the Theory of Computing, pages 295–304, 1999.

[BG06] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data streams. In

Proc. 14th Annual European Symposium on Algorithms, pages 148–159, 2006.

[BGK+98] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, and M. Simonovits. Approxi-

mation of diameters: Randomization doesn’t help. In Proc. 39th Annual IEEE Symposium

on Foundations of Computer Science, pages 244–251, 1998.

[BHK01] László Babai, Thomas P. Hayes, and Peter G. Kimmel. The cost of the missing bit: Com-

munication complexity with help. Combinatorica, 21(4):455–488, 2001.

[BJK+04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting

distinct elements in a data stream. In Proc. 6th International Workshop on Randomization

and Approximation Techniques in Computer Science, pages 128–137, 2004.

[BJKS02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics

approach to data stream and communication complexity. In Proc. 43rd Annual IEEE Sym-

posium on Foundations of Computer Science, pages 209–218, 2002.

[BNS92] László Babai, Noam Nisan, and Márió Szegedy. Multiparty protocols, pseudorandom

generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232,

1992.

117

[BO03] Brian Babcock and Chris Olston. Distributed top-k monitoring. In Proc. Annual ACM

SIGMOD Conference, pages 28–39, 2003.

[BPS05] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász-Schrijver

systems and beyond follow from multiparty communication complexity. In Proc. 32nd

International Colloquium on Automata, Languages and Programming, pages 1176–1188,

2005.

[BT94] Richard Beigel and Jun Tarui. On ACC. Comput. Complexity, 4:350–366, 1994.

[CCGL03] Amit Chakrabarti, Bernard Chazelle, Benjamin Gum, and Alexey Lvov. A lower bound

on the complexity of approximate nearest-neighbor searching on the hamming cube. Disc.

Comput. Geom.: The Goodman-Pollack Festschrift, pages 313–328, 2003. Preliminary

version in Proc. 31st Annu. ACM Symp. Theory Comput., pages 305–311, 1999.

[CCM07] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm

for computing the entropy of a stream. In Proc. 18th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 328–335, 2007.

[CFL83] Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party protocols. In

Proc. 15th Annual ACM Symposium on the Theory of Computing, pages 94–99, 1983.

[Cha07] Amit Chakrabarti. Lower bounds for multi-player pointer jumping. In Proc. 22nd Annual

IEEE Conference on Computational Complexity, pages 33–45, 2007.

[Chv79] Vaclav Chvátal. The tail of the hypergeometric distribution. Discrete Mathematics,

25(3):285–287, 1979.

[CJP08] Amit Chakrabarti, T. S. Jayram, and Mihai Pǎtraşcu. Tight lower bounds for selection

in randomly ordered streams. In Proc. 19th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 720–729, 2008.

118

[CMY08] Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional

monitoring. In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1076–1085, 2008.

[CMZ06] Graham Cormode, S. Muthukrishnan, and Wei Zhuang. What’s different: Distributed,

continuous monitoring of duplicate-resilient aggregates on data streams. In Proc. 22nd

International Conference on Data Engineering, page 57, 2006.

[CR04] Amit Chakrabarti and Oded Regev. An optimal randomised cell probe lower bound for ap-

proximate nearest neighbour searching. In Proc. 45th Annual IEEE Symposium on Foun-

dations of Computer Science, pages 473–482, 2004.

[CR10] Amit Chakrabarti and Oded Regev. A tight lower bound for gap hamming distance. Private

communication, 2010.

[DGGR04] Abhinandan Das, Sumit Ganguly, Minos N. Garofalakis, and Rajeev Rastogi. Distributed

set expression cardinality estimation. In Proc. 30th International Conference on Very Large

Data Bases, pages 312–323, 2004.

[DJS98] Carsten Damm, Stasys Jukna, and Jiřı́ Sgall. Some bounds on multiparty communication

complexity of pointer jumping. Comput. Complexity, 7(2):109–127, 1998. Preliminary

version in Proc. 13th International Symposium on Theoretical Aspects of Computer Sci-

ence, pages 643–654, 1996.

[EGHK99] Deborah Estrin, Ramesh Govindan, John S. Heidemann, and Satish Kumar. Next century

challenges: Scalable coordination in sensor networks. In MOBICOM, pages 263–270,

1999.

[Fel68] William Feller. An Introduction to Probability Theory and its Applications. John Wiley,

New York, NY, 1968.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base

applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

119

[GM07] Sudipto Guha and Andrew McGregor. Lower bounds for quantile estimation in random-

order and multi-pass streaming. In Proc. 34th International Colloquium on Automata,

Languages and Programming, pages 704–715, 2007.

[GM08] Sudipto Guha and Andrew Mcgregor. Tight lower bounds for multi-pass stream computa-

tion via pass elimination. In Proc. 35th International Colloquium on Automata, Languages

and Programming, pages 760–772, 2008.

[Gol09] Alexander Golynski. Cell probe lower bounds for succinct data structures. In Proc. 20th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 625–634, 2009.

[Gro06] Andre Gronemeier. NOF-multiparty information complexity bounds for pointer jump-

ing. In Proc. 31st International Symposium on Mathematical Foundations of Computer

Science, 2006.

[GW95] Michel Goemans and David Williamson. Improved approximation algorithms for maxi-

mum cut and satisfiability problems using semidefinite programming. J. ACM, 42:1115–

1145, 1995.

[Har66] L. H. Harper. Optimal numberings and isoperimetric problems on graphs. Journal of

Combinatorial Theory, 1:385–394, 1966.

[HG91] Johan Håstad and Mikael Goldmann. On the power of small-depth threshold circuits.

Comput. Complexity, 1:113–129, 1991.

[HNO08] Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming en-

tropy via approximation theory. In Proc. 49th Annual IEEE Symposium on Foundations of

Computer Science, pages 489–498, 2008.

[HS05] Don Hush and Clint Scovel. Concentration of the hypergeometric distribution. Statistics

and Probability Letters, 75(2):127–132, 2005.

120

[IW03] Piotr Indyk and David Woodruff. Tight lower bounds for the distinct elements problem. In

Proc. 45th Annual IEEE Symposium on Foundations of Computer Science, pages 283–289,

2003.

[JKS08] T. S. Jayram, R. Kumar, and D. Sivakumar. The one way communication complexity of

hamming distance. Theory of Computing, 4(1):129–135, 2008.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University

Press, Cambridge, 1997.

[Kum06] Ravi Kumar. Story of distinct elements, 2006. talk at IITK Workshop on Algorithms for

Data Structures.

[KW90] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-

logarithmic depth. SIAM J. Disc. Math., 3(2):255–265, 1990. Preliminary version in Proc.

20th Annual ACM Symposium on the Theory of Computing, pages 539–550, 1988.

[Lév51] P. Lévy. Problèmes concrets d’analyse fonctionnelle. Gauthier-Villars, 1951.

[LS07] Nati Linial and Adi Shraibman. Lower bounds in communication complexity based on

factorization norms. In Proc. 39th Annual ACM Symposium on the Theory of Computing,

pages 699–708, 2007.

[LS08] T. Lee and A. Shraibman. Disjointness is hard in the multi-party number-on-the-forehead

model. In Proc. 23rd Annual IEEE Conference on Computational Complexity, pages 81–

91, 2008.

[Mat02] Jiřı́ Matoušek. Lectures on Discrete Geometry. Springer-Verlag, 2002.

[Mil94] Peter Bro Miltersen. Lower bounds for union-split-find related problems on random access

machines. In Proc. 26th Annual ACM Symposium on the Theory of Computing, pages 625–

634, 1994.

121

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures

and asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49, 1998.

Preliminary version in Proc. 27th Annual ACM Symposium on the Theory of Computing,

pages 103–111, 1995.

[Mut03] S. Muthukrishnan. Data streams: Algorithms and applications. In Proc. 14th Annual

ACM-SIAM Symposium on Discrete Algorithms, page 413, 2003.

[New91] Ilan Newman. Private vs. common random bits in communication complexity. Information

Processing Letters, 39(2):67–71, 1991.

[NW93] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited.

SICOMP, 22(1):211–219, 1993. Preliminary version in Proc. 23rd Annu. ACM Symp.

Theory Comput., pages 419–429, 1991.

[NW99] Ashwin Nayak and Felix Wu. The quantum query complexity of approximating the median

and related statistics. In Proc. 31st Annual ACM Symposium on the Theory of Computing,

pages 384–393, 1999.

[Pǎt10] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd

Annual ACM Symposium on the Theory of Computing, 2010.

[PRS97] Pavel Pudlák, Vojtěch Rödl, and Jiřı́ Sgall. Boolean circuits, tensor ranks and communica-

tion complexity. SIAM J. Comput., 26(3):605–633, 1997.

[PT06] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proc.

38th Annual ACM Symposium on the Theory of Computing, pages 232–240, 2006.

[PV10] Mihai Pǎtraşcu and Emanuele Viola. Cell-probe lower bounds for succinct partial sums.

In Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms, 2010.

[Raz02] Alexander A. Razborov. Quantum communication complexity of symmetric predicates.

Izvestiya of the Russian Academy of Science, Mathematics, 67:0204025, 2002.

122

[Sau72] N. Sauer. On the density of families of sets. J. Combin. Theory Ser. A, 13:145–147, 1972.

[Sen03] Pranab Sen. Lower bounds for predecessor searching in the cell probe model. In Proc.

18th Annual IEEE Conference on Computational Complexity, pages 73–83, 2003.

[She08] Alexander A. Sherstov. The pattern matrix method for lower bounds on quantum com-

munication. In STOC ’08: Proceedings of the 40th annual ACM symposium on Theory of

computing, pages 85–94, New York, NY, USA, 2008. ACM.

[SSK07] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to monitoring

threshold functions over distributed data streams. ACM Trans. Database Syst., 32(4), 2007.

[SV08] Pranab Sen and S. Venkatesh. Lower bounds for predecessor searching in the cell probe

model. J. Comput. Syst. Sci., 74(3):364–385, 2008.

[SW73] D. Slepian and J. K. Wolf. Noiseless coding of correlated information sources. IEEE

Trans. Inf. Theory, 19(4):471–480, 1973.

[VW07] Emanuele Viola and Avi Wigderson. One-way multi-party communication lower bound for

pointer jumping with applications. In Proc. 48th Annual IEEE Symposium on Foundations

of Computer Science, pages 427–437, 2007.

[Woo04] David P. Woodruff. Optimal space lower bounds for all frequency moments. In Proc. 15th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 167–175, 2004.

[Woo07] David P. Woodruff. Efficient and Private Distance Approximation in the Communication

and Streaming Models. PhD thesis, MIT, 2007.

[Woo09] David Woodruff. The average case complexity of counting distinct elements. In Proc. 12th

International Conference on Database Theory, 2009.

[Xia92] B. Xiao. New Bounds in Cell Probe Model. PhD thesis, UC San Diego, 1992.

123

[Yao77] Andrew C. Yao. Probabilistic computations: Towards a unified measure of complexity. In

Proc. 18th Annual IEEE Symposium on Foundations of Computer Science, pages 222–227,

1977.

[Yao90] Andrew C. Yao. On ACC and threshold circuits. In Proc. 31st Annual IEEE Symposium

on Foundations of Computer Science, pages 619–627, 1990.

[YZ09] Ke Yi and Qin Zhang. Multi-dimensional online tracking. In Proc. 19th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 1098–1107, 2009.

124

	Some Communication Complexity Results and their Applications
	Recommended Citation

	tmp.1595520363.pdf.4cfO1

