2,167 research outputs found

    Temporal solitons in optical microresonators

    Full text link
    Dissipative solitons can emerge in a wide variety of dissipative nonlinear systems throughout the fields of optics, medicine or biology. Dissipative solitons can also exist in Kerr-nonlinear optical resonators and rely on the double balance between parametric gain and resonator loss on the one hand and nonlinearity and diffraction or dispersion on the other hand. Mathematically these solitons are solution to the Lugiato-Lefever equation and exist on top of a continuous wave (cw) background. Here we report the observation of temporal dissipative solitons in a high-Q optical microresonator. The solitons are spontaneously generated when the pump laser is tuned through the effective zero detuning point of a high-Q resonance, leading to an effective red-detuned pumping. Red-detuned pumping marks a fundamentally new operating regime in nonlinear microresonators. While usually unstablethis regime acquires unique stability in the presence of solitons without any active feedback on the system. The number of solitons in the resonator can be controlled via the pump laser detuning and transitions to and between soliton states are associated with discontinuous steps in the resonator transmission. Beyond enabling to study soliton physics such as soliton crystals our observations open the route towards compact, high repetition-rate femto-second sources, where the operating wavelength is not bound to the availability of broadband laser gain media. The single soliton states correspond in the frequency domain to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low phase-noise microwave generation.Comment: Includes Supplementary Informatio

    Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Full text link
    Infrared spectroscopy is a powerful tool for basic and applied science. The molecular spectral fingerprints in the 3 um to 20 um region provide a means to uniquely identify molecular structure for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy. Driven by such applications, the development of low-noise, coherent laser sources with broad, tunable coverage is a topic of great interest. Laser frequency combs possess a unique combination of precisely defined spectral lines and broad bandwidth that can enable the above-mentioned applications. Here, we leverage robust fabrication and geometrical dispersion engineering of silicon nanophotonic waveguides for coherent frequency comb generation spanning 70 THz in the mid-infrared (2.5 um to 6.2 um). Precise waveguide fabrication provides significant spectral broadening and engineered spectra targeted at specific mid-infrared bands. We use this coherent light source for dual-comb spectroscopy at 5 um.Comment: 26 pages, 5 figure

    High-Energy and High-Power Multi-Octave Pulse Generation

    Get PDF

    High-energy and high-power multi-octave pulse generation

    Get PDF

    Shock transmission in coupled beams and rib stiffened structures

    Get PDF
    Shock transmission in a simple coupled beam structure and in a ring-stringer stiffened cylinder is investigated experimentally and analytically using wave transmission and statistical energy analysis concepts. The use of the response spectrum to characterize the excitation provided to a simple beam by a force pulse is studied. Analysis of the transmission of a dilatation wave in a periodically stiffened plate indicates that the stiffeners are fairly transparent to the wave, but some of the dilatational energy is scattered into bending at each support

    Observation of entanglement between two light beams spanning an octave in optical frequency

    Full text link
    We have experimentally demonstrated how two beams of light separated by an octave in frequency can become entangled after their interaction in a second-order nonlinear medium. The entangler consisted of a nonlinear crystal placed within an optical resonator that was strongly driven by coherent light at the fundamental and second-harmonic wavelengths. An inter-conversion between the fields created quantum correlations in the amplitude and phase quadratures, which were measured by two independent homodyne detectors. Analysis of the resulting correlation matrix revealed a wavefunction inseparability of 0.74(1) < 1 thereby satisfying the criterion of entanglement.Comment: 4 pages, 4 figure
    • …
    corecore