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ABSTRACT

Shock transmission in a simple coupled beam structure

and in a ring-stringer stiffened cylinder is investigated

experimentally and analytically using wave transmission

and statistical energy analysis concepts. The use of

the response spectrum to characterize the excitation

provided to a simple beam by a force pulse is studied.

Analysis of the transmission of a dilatation wave in a

periodically stiffened plate indicates that the stlffeners

are fairly transparent to the wave, but some of the dila-

tational energy is scattered into bending at each support.
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I. INTRODUCTION

The high frequency vibration environments generated

by pyrotechnic shocks are an important aspect of space

vehicle dynamics. Pyrotechnic sources used for separating

vehicle stages or sections typically generate short duration,

high level forces which may excite bending, dilatational,

and shear waves in the structure.

When the waves traveling out from the source region

reach a discontinuity in the structure, such as a stiffening

ring or longitudinal, they are partially reflected and

partially transmitted. The discontinuities are usually

quite transparent to compressional waves and shear waves

which therefore transmit quickly away from the source

and decay slowly with distance from the source. The

decay arises from internal structural damping and from

small scattering into bending waves at the discontinuities.

On the other hand the discontinuities can be strong

reflectors of bending waves, so that.multiple reflections

result in reverberant build-up and subsequent slow tempora,!

decay of the bending vibrational energy in a panel bay

defined by the circumferential and longitudinal stiffehers.

Because the bending wave transmission and reflection

characteristics of the stiffeners are quite selective

in frequency, the bending vibration response of a panel

bay may be quite narrow band in nature even though the

pyrotechnic shock spectrum is broadband. A representative

bending vibration response measured some distance from

the pyrotechnic shock excitation point is shown in Fig. 1.

The generation and transmission of pyrotechnic shock

induced vibration in space vehicles is a quite complicated

process, and a complete analytical description of the



process is not available. In this report some analytical

and experimental results for a simple coupled beam structure

and a model ring-stringer stiffened cylinder are presented

with the hope that these results will provide some insight

and guidance for formulating scaling laws or semi-empirical

methods for treating full scale complex structures.

Part II of the report discusses the use of response

measurements on distributed structures to define the

energy spectrum of a pulse-like shock input. Part III

presents a study of shock induced bending wave transmission

in a simple coupled beam system. Part IV deals with

the model ring-stringer stiffened cylinder and contains:

(a) a statistical energy analysis of bending energy

transmission, (b) measurements of bending energy trans-

mission, (c) comparisons of transient and steady state

transmission, and (d) an analysis and measurements of

dilatational wave transmission and scattering into bending

waves.
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II. DETERMINATION OF THE SHOCK PULSE ENERGY SPECTRUM FROM
MEASUREMENT OF THE RESPONSE OF A CONTINUOUS SYSTEM

Analytical methods for predicting the shock response of

aerospace structures to pyrotechnic devices are essentially

nonexistent. One of the reasons is that the exciting forces

are seldom known. Generally, the forcing mechanisms are so

complex that they are bypassed- and we look directly at the

structural response [1]. For instance, an almost constantly

used device in shock analysis is the response shock spectrum

[2], It yields information concerning the frequency content

of the response, but its applicability to subsequent pre-

diction of the response of any equipment which might be

attached to the structure is not straight-forward. It also

seems useless for predicting the response of different
>

structures to similar pyrotechnic devices. The problem, of

course, is that it has no physical interpretation related to

the actual shocked structure.

Recently, a rational procedure called "Statistical

Energy Analysis" (SEA) [3], [4], [5] has been adapted to shock ,

transmission problems [6]. • Rather than attempting to describe

the response of a structure on a mode by mode basis, this

theory is concerned with quantities such as time average

energies of various distinct groups of modal oscillators and

with time average power flow between them on a band-limited

basis. Originally developed for steady state calculations,

the adaptation has been made to shock by considering so-called

"short-time averages," this being possible because it has been

-3-



observed that the shocks can generally be described as quasi-

steady vibrations of the resonant-ringing type with slowly

varying envelope [7].

In very basic terms the complex shock transmission might,

for instance, be described in the following manner. Consider

two finite beams, connected, with some mismatch in impedance

at the junction, one of the beams being excited by a complex

point input force pulse, and both responding flexurally.

Observed in each pass band will be a wave packet carrying

energy away from the source. When the packet strikes the

juncture, a direct wave will be observed in the second beam.

If the impedance mismatch is large enough the level of the

direct wave in the second beam will be small, almost all of

the energy in the packet being reflected, establishing a

reverberant vibration field in the first beam. The direct

wave transmitted to the second beam also induces reverber-

ation, but at a much lower energy level. Energy leaks out of

the first beam into the second at the rate predicted by energy

analysis. The dispersive nature of flexural waves assures that

the flexural energy density moves in time toward spatial uni-

formity in each beam, and that the short-time average intensity

of waves incident at the juncture eventually levels out, decay-

ing slowly (we invoke the requirement that the response truly

be resonant, the coupling and dissipative loss factors both

being small).

From this discussion, it should be apparent that it is

impractical to attempt to describe the direct waves in either

-4-



beam without knowing the exact forcing function. Prediction of

the reverberant response of the second should be possible

if the short-time space averaged response of the first is

known. In this section, it is shown that the maximum short-

time space averaged square of the response acceleration of

the first beam is related to the band-limited energy spectrum

of the forcing function.

A. The Energy Spectrum

Consider a complex mechanical system, a ribbed, multi-bayed

shell, or a frame work consisting of beam elements. At suf-

ficiently high frequencies, the panel bays or the beams will

more or less respond as separate modal subsystems. If the

ribs of the shell (or the junctures of the beams) represent

sufficiently high impedances (say to flexural motion) and if

the structural damping is light, energy injected by a device

into one of the bays will be "trapped" by the ribs, giving

rise to a resonant structural response. If the boundary imped-

ances were infinite, and if there was absolutely no structural

damping present, the panel (or beam) would store information

concerning the Fourier amplitude spectrum of the pulse.

The response of a single mode, s, of the quasi-isolated

system is obtained from

_s + ̂ ^ = _ /p(Xjt)^(x)da , (II-l)
dt s s M

where M is the modal mass, i|/s(x) the modal function, w the
S — 5
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resonance frequency, and Q the modal dynamic magnifications

factor. The Fourier transform of the modal coordinate, £ (t),
S

is

E (w) =
( x ) d a

(II-2)

where

Y (u) = u > [ l - (<o/a> ) + in ]
O O O O

We consider a point input at x1

p(x,t) = 6(x - x')f(t)

Then

S (u>) = (H-3)

According to Parseval's theorem [8], the temporal and frequency

response amplitudes are related by

00

— oo «B(t)
•2̂ 1

-i _
2TT

S (to) "du

Assuming that excitation begins at t = 0, and ceases at t = T,

then

-6-



The integration indicated on the left-hand side is over the

so-called residual vibration period. The concern here is to

predict the maximum residual vibration amplitude (or energy).

For sufficiently short pulses it is easy to show that the

maximum residual response exceeds all maxima occurring during

the forcing era (ultimately, a'delta function input has all

residual response).

If at t = T, £s = 6g and £s = 6 , a solution for t > T

can be obtained from Eq. (II-l),

5s(t) = exp [- -|-£ (t - T)]£scos(o>sD(t - T) - <J>s) (II-6)

1/2

where ^ = {[^ + VsVs + Ws6s] /wsD} > (II-7)

and

For light damping, this is a damped sinusoid at frequency

u n * co , with a maximum residual amplitude approximatelyS U S
A

given by £ .
o ••

-7-



The substitution of Eq.II-6 into the left-hand side of Eq.II-5

yields

T

(0

'dt =
"J T-N -1s sD 2

5— cos
^w-5

cos <j, sin • (II-9)

For light damping, the first term dominates

2,, „ ''s
dt - -7T-—- (11-10)

With Eqs. H-3 and 11-10, Eq. II-5 becomes

:2

'S

S S

TT M
r~ \*M\2*« 2n u /|
-« | Y s ( W ) | 2

(t) 'dt (11-11)

If the force is sufficiently short, |F(w)| will be relatively

flat around w . Since the square of the magnitude of the modes

admittance function is highly peaked at w = w , and since,
5

by hypothesis, |F(u))l is smooth over a band of frequencies

exceeding the modal bandwidth,Eq.11-11 can Be approximated by

/N /̂  T1

r2 = -J
( x ' ) | F ( u

[1 -
dw

)2 ]2 + n2

b S

(11-12)'

-8-



yielding

s « ^ 2M2 2T1sws 'o I 5 8 ( t ) | 2 d t . (11-13)
s s

The first term on the right-hand side of Eq. 11-13 is the best

estimate of the maximum response which we can make without

knowledge of the time history of the modal displacement during

the forcing era. The second term we assume can be ignored.

Its presence is due to the finite forcing era and the dis-

sipative and coupling losses. If n =0, the Fourier amp-
S

litude spectrum is sampled by the modes, and conserved. We

note that we must restrict the estimate in 11-13 to those

frequencies below that for which the first zero of |F(u)|

occurs.

In frequency band Aw, if the density of modes is n,

there are nAto modes * The maximum energy of each cannot

exceed

*s(x))d-q.' ,
O '. *" .

where p is the areal or lineal material densi'ty.

From Eq. II-13S it follows that our estimate. is ,

E = - = - : - §_ - .^ (11-15)



The maximum energy contained by all of the modes in band Aw

at the conclusion of the force pulse cannot exceed

max r * U')|F(w ) 2
Emax = I = § . (11-16)
Aa) s,Ato 1»M

For the higher order modes of a two-dimensional structure,

M a M /4, where M is the total panel mass. If |F(w )ls p p s

is slowly varying over Aw,

0|2 2'— y ips (XT . (n-17)
Mp s,Aw

The expected value of the maximum energy in band Aw is then*

<E
max> = n'F(a))| . (11-18)

%

This energy is related to the filtered, maximum short

time-space averaged square of the physically measurable accel- .

eration of the panel. The panel energy at any instant after

the pulse has concluded is approximately constant (except for

the slow decay owing to the presence of some losses, it would

be constant). We can write the instantaneous panel kinetic energy

*We can'interpret this as the expected value for all
possible source input positions, or, provided there are a
sufficient number of modes in Aw, as an average over all modes
having a wavenumber near the mean wavenumber for the band.

-10-



as
2

KE(t) = I i/po>V (x)ifexp[-n <•> Q (t-T) ]cos
2(u) (t-T)-<f> )da .Q

, s ~ s ss s s

(11-19)

A short-time average, which must be performed over at least a

moderate number of half-periods, yields

e*
<KE(t)>. <= I M u2 — exp [-n u> (t-T)] . (H-20)

t s,Au S s 1| s s

If all modes are equally energetic, the total short-time average

energy is

nM _ ~~
<E(t)>t = -f- w

2 ? exp [-nw(t-T)]Aw - , -(11-21)

where n is the average loss factor, w is the band center
/\

frequency, and £ is the average maximum modal displace-

ment amplitude. The maximum short-time average energy is

nM »
2 Aw (11-22)

Here ^ is the maximum modal acceleration amplitude. This

quantity is related to the maximum short time-space averaged

square of the physically measurable acceleration. The actual

physically measurable acceleration at any point is

a(x,t) = £€s(t)r(x) . (11-23)
s

-11-



Assuming uniform areal mass, a space average of the squared

acceleration gives

<a2(t)> = i 7 £2(t) . .(11-24).
s 4 s,Aco s

The maximum short-time average is

"2
1 v s n '12. fll-PS)~§ I Y~ - -g C Aw . V-1-1- ̂-)'1

s,Aw

Thus

M <a2>ma*

or
2 <a2>max
E BJL- . (H-27)
nw

It can be shown that this result holds also for a one-dimen-

sional structure if the total panel mass is replaced by the

t.otal beam mass. The quantity on the left in Eq. 11-27 is

an approximation for the band-limited energy spectrum of the

forcing function, I, given by the relation

IE /AjF(w)|
2du) . (11-28)

-12-



For a two-dimensional structure, with mass density, p,

area, A , thickness, h, and longitudinal wave speed c«,

,
I -- * P s,t f, (11-29)

or alternately

27TM <a2>ma*
I = - E^ - Bjt. ^ (11-30)

W G co

where G^ is the frequency averaged . point input conductance

of the plate (or equivalently , the infinite plate point

input admittance) [5]. ' .

For a one-dimensional structure (beam), with lineal

density, p., longitudinal wave speed, c.,, length, £, and

radius of gyration, K,

s,t

-13-



B. Experimental Investigation

In order to check the reasonableness of these estimates,

a simple set of experiments was performed. Basically the

procedure consisted of:

(a) excitation of a simple system with a known force

pulse,

(b) computation of the Fourier amplitude spectrum of

the pulse, and then, for a fixed bandpass, Aw,
the energy spectrum, I, and,

(c) comparison of I obtained directly/from the force

pulse with that computed from the system response
by either Eq. H-29 or 11-31.

The mechanical system tested consisted of a cross, con-

structed from four 1 x 1/8-inch x 5-ft long rectangular

aluminum bars, welded along the one-inch dimension. The
coupling (juncture) and structural loss factors were both

_2
less than 10 . The estimate for I, based on the response
acceleration of the segment upon which the input was located,

is given by Eq. 11-31 which becomes

9 max ,/?
I « 1.26<g^> ./f*/d , (11-32)

O j b

2 max
where <g > is the maximum short time-space average square

S } V

of the response acceleration in gravitational units.

-IH-



The experimental configuration is shown in Fig. 2. A

Wilcoxon Model Z-602 impedance head was mounted close to

the free end of one beam segment. Since it was fairly

massive, the beam was essentially terminated at the impedance

head. By locating it near the end of the beam, its effect

on the beam response could be minimized. A mechanical

impacting device was used to strike the impedance head. The

resulting force pulse, transmitted to the beam, was measured

and is shown in Fig. 3. It is essentially a symmetrical

triangle with a duration of approximately 0.25 msec.

Shown in Figs. Ma) - Mf) are the filtered, squared, and

averaged response (for different time constants of the low

pass filter network) of an accelerometer mounted 39 inches

from the impedance head. The maximum space averaged mean

square acceleration, can be estimated from these curves. This

is possible because of the dispersion occurring. It, in effect,

causes all points to become typical (if we can wait long enough,

that is; the energy loss must not be so fast that dispersion

cannot effectively spread the energy spatially). Consider, for

example, Fig. Me). When the beam is struck, an energy packet

travels down it at the group velocity. At 4000 Hz, the group

velocity is approximately 2300 ft/sec. The first peak (for the

1 msec averaging time constant) occurs approximately 1.3 msec

after the first peak occurs at the accelerometer located very

near the input (it incidentally does not occur simultaneously

with the force). In another 0.6 msec, this packet strikes the

right end of the beam, and is reflected. About 3 msec after the

first response at the accelerometer is noted, the mean square

acceleration levels outs, then decays slowly. The maximum space

-15-



averaged mean square acceleration is given by the maximum value

of this slowly decaying signal. It is indicated on the curves

by the dashed line labeled "LEVEL". That this is a good estimate

of the space average level can be seen directly from Fig. 4(e)

by comparing the solid curve (for the accelerometer at 39 inches)

with the broken curve, the response of the accelerometer at

25 inches. The responses at both points, at any instant after

the leveling out has occurred, are essentially the same. The

estimates for the maximum space averaged mean square accelerations,

based on the levels found in Figs. 4(a)-4(f) are given in Table I.

The estimates for the octave band energy spectrum, I, computed

from the response is also given. The "true" energy spectrum was

computed directly from the force pulse using the relation

o 4
I = — Ao> . . (24)

The results are compared in Fig. 5. Of'course,

what has been used here in the prediction is the measured maximum

short time-space average of the squared acceleration resulting

from a source shock at only one input position. It is unlikely

that either the effects of beam damping or the change in the

beam dynamics due to the attached impedance head are dominant

in causing the 2 to 8 dB error which exists (the pulse length

is sufficiently short that the role which damping plays during

the forcing era must be negligible, the effect of damping is

probably greater during the time in which we wait for dispersion

to spread the energy uniformly along the beam so that measure-

ment at only one position will suffice). A more complete

experiment would have involved comparisons for a large number

of source locations.

-16-



Table I. Reverberant response of the Impacted beam segment

of the cross to the symmetrical triangular pulse.

Octave Band ,2 max wiv,2 n\
Center Frequency <& >s,t I(lb 'sec)

250 0.025 . . 7.9 x 10~6

500 0.50 4.0 x 10~5

1000 0.50 2.0 x 10~5

2000 2.50 3.52 x 10~5

• -fi
i+000 1.00 • " M.98 x 10

8000 0.17 2.99 x 10~7

-17-



III. SHOCK INDUCED WAVE TRANSMISSION IN A SIMPLE COUPLED

BEAM SYSTEM

Theoretical and experimental studies to estimate the shock

transmission between connected beams were performed with

the beam-beam junction described in the preceding section.

Excitation was provided by a point input off the center

line of one beam segment.

A. Power Balance Equations

The structure is considered to consist of four discrete

sets of modal oscillators. A power balance for any one

of the four reverberant beam segments yields

i in r trans diss >

where E. is the short time average total energy of segment, I,

•

•FT. is the time average input power for segment, i,

rTT. . is the time average power being transmitted,
-*• J

and 7rfiss is the time average power dissipated in segment, i,

-18-



The power being dissipated is given by

and that being transmitted by

trans
TJ .

where w is the band center frequency, t). . and n. are the

coupling and dissipative loss factors, and n. is the beam

modal de'nsity.

Here only the residual or free vibration period is considered,

Thus, we take ir. =0 and assume that at t = 0, the energy Is

diffused spatially in beam 1 and has a level, E..(0), and that

the other beams are at rest.

For beam segment 1, Eq. III-l becomes

d6l

= 0

where 6, = E, /n, .

-19-



Since the beams are identical, we have

ni =

= nik S'

Further, according to the consistency relations

ninij = njnji

and since n. = n . , it also follows that

(III-9)
nij = nJl ' ' -

Thus the response of the cross is given by the two equations

~ + uCn^Sn^)]^ - swn12.e2 = o (in-io)

- wn12e]L
 + [t + W(n1+n1 2)]e2 = o . (iii-ii)

-20-



The solution of these equations can be most conveniently

obtained using Laplace transforms. The solutions are

E,(t) -"V -Hwn-.t '12

- a''""'12*) . (I"-");

These relations hold for each of the various frequency bands.

B. Calculation and Measurement of Loss Factors

The value of the coupling loss factor depends upon the distri-

bution of energy over the various mode forms of each segment.

Assuming the input shock spectrum is relatively flat over

a band of frequencies, Aw (typically an octave or third-

octave), the input energy is shared equally by all modes.

If E is the total resonant energy in a beam then the energy
f

in flexural modes E is

E . (111-14)

f T s a,
where n , n , n and n represent the modal densities of

flexural5 torsional, shear, and longitudinal modes respectively

Ef =
fn

[nf H ~T X- n + S O
4- n

-21-



The modal densities are given by the following relations:[9]

Flexural modes (two planes)

(2TTKC0 f1 / 2)

1+ /£ . .(111-15)

where h is the smaller of the beam dimensions (1/8-inch)

Si is the length (5 ft)

K is the flexural radius of gyration (based on h)

and c^ is the longitudinal wave speed (17,000 ft/sec)

\

Torsional modes

n = /3&w/c.h • . (III-16)

Shear modes

nS =

Longitudinal modes

n* = 2£/cA . (111-18)

With the. assumed equipartition of modal energies, the distribution

of energy over the various mode forms is shown.in Fig. 6.

This, figure shows that the low-frequency behavior is dominated

by flexural modes, and by torsional modes above about 8500 Hz.

The energy in longitudinal and shear modes contribute, but

insignificantly. Although these results cannot be considered

universal, for the assumed flat spectrum as input, and for

the slender beam, they are quite reasonable. On the basis
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of these results, the longitudinal and shear modal energies

are neglected. The coupling loss factor between the i—

and j — beam segments is then given by

-trans

ti*s.ns 1~ v~i
where n. . . is power flowing from the i~ segment into segment J

which has. been appropriately terminated (i.e., as if infinite

as viewed from the junction), and

nTnT + f f
. ' ' ( 111-20),

« ~ n* + nf '

m f
where r\*. is the torsional coupling loss factor and n.y

is the flexural coupling loss factor.

4- ya flY"! S

Because of the cross configuration, we assume that II is
m -L J

due to flexure only at the cross (n.j. = 0). The total energy

is equiparted among the flexural and torsional modes after

passing through the junction.

1. Computation of the coupling .loss factor n^j

The moment impedance of a semi-infinite beam is given by [10]

Zj = ci + i^..c; >

where p. is lineal density

c,, is the flexural wave speed.

For the cross configuration (^ semi-infinite beams)

ZT '
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If the i— segment is reverberant, the field in that segment

is composed of a large number of standing waves, centered

at frequency w. If X/2 is the complex amplitude of a flexural

wave incident upon the junction, the space-time mean-square

displacement of the beam is

<x2>s,t
(111-22)

The complex incident angular velocity amplitude at the junction

due to the incoming wave is related to the complex displacement

amplitude by '-•' -

2 2

2 2 2
" <* >8,t .

(HI-23b)

This can be related to the total time average beam energy

Eflex
(III-2M)

or

M •inc

Jflex kfi

(111-25)

The power transmitted from i to j is given by

n

"
trans
ij

(111-26)

A moment, T, applied to the cross by beam segment i induces

an angular velocity of the cross

8cross = 8i = TTj' = 6j ' (111-27)



The moment, -T, that the cross exerts on the beam yields a

beam angular velocity -T/ZI. Continuity at the junction requires

- T/Z. , (111-28)

where 6^^ = angular velocity at the end of segment i, if discon-
nected from the junction, and is given by

= 20];nc

Prom Eqs. Hi-27, 28

(111-29)

6i -

or ' _ Zi 'fei " z 8i
'Inc29i z (111-30)

Now n
"
trans
ij

From Eq.-lli_i9, it follows that

Finally

. 2k

'U
fi

T T
ninij

f f

n
f

ni

•Inc 2

f
>i f
T ni:n

(111-31)

(HI-32)
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So that

2(
. , i c.

avg. torsionalV n^ ^̂ fj
and flexural = -̂ -~t ~m.
modes / ^i ^i ^

Zi
(111-33)

2. Measurement of Coupling and Internal Loss Factors

The coupling loss factor, r\. ., was measured by terminating

three of the beam segments. The decay of the energy in the

i— segment from the steady state level, E is then given by

= e -1" ij (111-34)

since all segments j are terminated. The internal loss
factor for the i— segment was also measured for an identical

(disconnected) segment and is shown in Fig. 7.

A comparison of the theoretical coupling loss factor and

that experimentally measured is also shown in Fig. J.

The measured values were found to be bounded by Eqs. 111-32, 33•

C. Calculated and Measured Energy Transmission Results

The analytical predictions of the energy as a function of

time in the driven and undriven beams given by Eqs. 111-12, 13
are plotted in Figs.8 and 9 respectively using the measured

values of the coupling and dissipation loss factors shown

in Fig. ?.

The short time average energies of the driven and undriven

beams were measured using the experimental configuration

shown in Fig. 2. The response "of the undriven beam for

the octaves centered at 2, ^, and 8 kHz is shown in Fig. 10..
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p
The calibration is 2 volts/g as in Part III. The curves

shown are for a typical point on beam 2, and represent

the space averaged, mean square response. The curves are

labeled according to the time constant of the low pass

filter network.

The theoretical predictions given in Pig. 9 can be mapped

on to Fig. 10. We have

(IH-35)

El(0)

Since

E2(t)

The maximum short time-space averaged square of the response

acceleration of beam 1 is given in Table I of Part II.

The mapping is

r / s /^ /^\-i 2 max „ ,. / 2 . Voltage scale of
CE2(t)/E1(0)] x <gl>Sjt x 2 volts/g / Flgs.%(d)_i,(f)

(111-37)
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The results are shown in Pigs. 10(a) - 10(c). In each

case, the shape of the curve is predicted very well, as

is its duration. The levels are reasonably accurate.

The 2000 Hz case is almost perfectly predicted. The

levels of the prediction for the other two cases are

lower than experimentally observed, by factors of two

to four. Since these are ratios of energies, this re-

presents a 3 to 6 dB error.
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IV. SHOCK TRANSMISSION IN A MODEL RING-STRINGER STIFFENED

CYLINDER

A. Statistical Energy Analysis (SEA) of Pyrotechnic Shock

Bending Energy Transmission

This problem is amenable to SEA because the high-frequency

energy content of a pyrotechnic shock excites a large number

of vibration modes. However, in using SEA we must be careful

to distinguish between the direct shock pulse and the rever-

berant vibration buildup and decay.

The direct pulse is that part of the pyrotechnic shock which

propagates along the structure without reflection. At each

discontinuity in the structure part of the energy of the

direct pulse is reflected and forms the reverberant vibration

field. SEA can be used to study the reverberant vibration

field. However, classical wave propagation techniques must

be used to study the direct pulse. The direct pulse may

consist of both bending and dilatational energy, but the

bending energy in the direct pulse is attenuated rapidly

by discontinuities and therefore is generally unimportant.

In this section, we investigate the reverberant bending

energy field, and in Section D we return to the direct

dilatational wave and its scattering into bending waves.

The use of SEA results in a more simplified formulation of

the shock transmission problem than would use of a more classical

approach. However, the SEA formulation for shock transmission in

a cylindrical shell with many ribs and stringers is still quite

complex because of the large number of structural sub-elements

required in the formulation. Because of this complexity we will

study, first, a number of simplified problems involving ribbed

plates. Solution of these problems will give us some basic
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insight into shock transmission in a cylindrical shell with many

ribs and stringers. Then, we will use this insight to gain an

understanding of the more complex problem.

The steps involved in SEA are:

1. Divide the complete structural assembly being studied into

groups of modes;

2. Determine the paths of energy exchange;

3. Write the power balance equations for each group of modes;

4. Compute the required input powers, coupling loss factors,

damping loss factors and modal densities;

5. Solve the power balance equations for the modal energies in

each mode group;

6. Relate the modal energies to the response variable of interest.

Each of these steps will be discussed in turn for the particular

problems under consideration.

The first problem which we will consider is shock transmission in

a plate across a number of beams which divide the plate into

subelements as shown in Fig. 11. The beams shown have rectangular

cross-sections. However, our analysis will be equally valid, for

"T", "I", "U", "L" or other cross-sections.

The first step of SEA is to divide the structure into groups of

modes. This step is accomplished in two parts. First, the

complete structural assembly is divided into structural subele-

ments. Then, the modes of the subelements are futher divided into

groups of similar modes—similar to the extent that they have
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resonance frequencies in the. same band of frequencies, are simi-
larly coupled to modes in other groups, have nearly equal damping

loss factors and are similarly excited by external sources of

vibration.

The division of the complete assembly into structural subelements

is quite obvious for the problem at hand, as it is for most

problems. The subelements of the ribbed plate consist of each
subpanel and beam.

Although the division into subelements is usually obvious, the
choice of boundary conditions for each subelement"is not. The

boundary conditions must be selected so that the motion of the
complete assembly in a given frequency band can be accurately

described by the collective motion of all substructure modes

which have resonance frequencies in the band. A technique which

insures the correct choice of boundary conditions for each
substructure will be used in computing the coupling loss factors.

The division of the substructure modes into groups of similar

modes requires much insight and some idea as to the power input,
coupling and damping of each mode. This second division is

particularly difficult for the problem under consideration
because the coupling between modes of the beams and the modes of

the subpanels can vary significantly for the different subpanel
modes because of wave coincidence effects.

Ungarfll] and Heckl[10] have studied beam-plate.structures like that
shown in Fig. 11. Ungar obtained expressions for the vibration
transmission across infinite beam-plate structures, Fig. 12a.

These expressions show that the ratio of power transmitted,

II , to the power incident, II. , for steady state vibration
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at a given frequency depends strongly On the angle of incidence

( a typical result is shown in Fig. 12b).In general,* two large

peaks occur at which IT = II. These peaks occur at anglestrans inc
where the trace wavelength of the incident wave equals the free

bending wavelength or the free torsional wavelength in the beam

(conditions of wave coincidence.) For waves with angles of

incidence less than these coincidence angles, the vibration

transmission is governed by the density per unit length and the

rotational moment of inertia of the beam. For waves with angles

of incidence above the coincidence angles, the vibration trans-

mission depends on the bending and torsional stiffness of the

beam. Angles of incidence between the two coincidence angles

represent a mixed condition.

Heckl [10] has found a similar result for beam-plate structures

infinite in one direction and simply supported along two lines

in the other direction, Fig. l3a,Two large peaks in the ratio of

power transmitted to power incident occur for a given mode

shape in the transverse (y) direction at the resonance frequen-

cies of the bending and torsional modes with the same mode shape

in the y direction (a condition of wave coincidence). A typical

result is shown in Fig. 13b.

We conclude, based on Ungar's and Hecklrs results, that in a

given frequency band some of the resonant plate modes can be

well .coupled to beam modes while other modes are not. Strictly
speaking, however, this result is limited to beam plate

configurations in which the beam mode shapes agree identically

is possible for only one peak to occur. This happens when the

bending wavespeed in the beam equals the torsional wavespeed.
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with the y dependence of some of the plate modes. This

condition only occurs when the plate and beam boundary conditions

are simple supports. For other more realistic boundary

conditions the beam mode shapes will differ from the y de-

pendence of the plate mode shapes in the "edge correction
~ft ***ft v Tt**y i

terms" (exponential terms, e and e , in the bending mode

shapes.) Because of the differences in these edge correction
terms, each mode in the plate will be coupled to some extent

with each mode of the beam. The extent of the coupling depends,

of course, on the exact mode shapes and resonance frequencies
of the beam and plate modes. The coupling between a beam mode
and various plate modes will be more uniform at low frequencies

where the wavelength of the beam vibration is comparable to the
length of the beam, since then the edge correction terms will
enter more significantly into the mode shape.

The difference in the edge correction terms for the beam and the

plate also tend to couple the modes of the plate (we mean here

the modes of the plate with three edges simply-supported and
the four edge clamped.)

',
We now come to a branching point in our analysis. We can solve

exactly an idealized model of the bearn-plate structure following,

for example, Ungar's approach [12], or we can. .make some hypotheses
about the type of vibration field in the structure and follow the

SEA approach. In this report we follow the latter approach.
We hypothesize that each mode of the subpanels with a resonance
frequency in a given octave band has the same energy (equiparti-

tion of energy). 'We further1 hypothesize that each, beam bending

mode with a resonance in a given octave band will be strongly

coupled to beam torsional modes and will have the same modal
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energy. With these two hypotheses the division of the modes

into groups is' straight-forward. Modes with resonance frequencies

in a given octave band .should be divided into subpanel modes

and beam modes. We group beam bending modes and torsional modes

together since, by. hypothesis, they have the same modal energy.

The division is shown in Fig. 14.

The second step of SEA is to determine the paths of energy

exchange. One path is obvious. This path is between the subpanel

modes and the beam modes. A second path is less obvious. The
modes of adjacent subpanels will be coupled through nonresonant
motion of beam bending and torsional modes with resonant fre-

quencies below the frequency band of interest. The paths of
energy exchange are shown in Fig. 14.

The third step of SEA is to write the power balance equations.
For the i th plate we write

„ (in) _ n (diss) .IU s np +
Pi Pi=;

, r n

V

TTn (trans)
p
Pi » Bj

(trans) , d

(IY-1)

^ is the short time-average power input from external
(diss)

is the short time-

where n

sources in the octave band Aw, lip,

average power transmitted to other groups of modes and Ep. is the
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short time-average vibratory energy in plate i. By "short time-
average" we mean an average over a few cycles of vibration at
the band center frequency.

For the i th beam we write

„ (in) _ - (diss) . ~ n (trans)
tin "" tin "** /. , U
Bi Bi =i

* dt EBi

(IV-2)

where the power and energy variables are short time-averages.

The power input in Eqs. iv-1,2 is the power input from two

sources. First it includes the power input from the pyrotechnic

device, if any, which acts on the i th element, and second, it

includes the power tto the reverberant field from the direct

shock pulse. The remaining power and energy variables can be

related to the modal energies through a loss factor and a modal

density. The power dissipated is given by

n.(diss) s wn." ,. n. AW e. , (iv-s)i x,diss i -i

where w'is the band center frequency, n. j,«,,., is the dissipation
JL. , GISS

loss factor, *i. is the modal density and Q. is the modal energy.
The power transmitted is given by
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trans) s w n_ n.AwO. -9.) , -(IV-4)

where i)« . is a coupling loss factor. It follows from Eq. IV-4
that since H. . <trans> « JI. .{trans)

. . n. a r>. . «. CIV-5)
i»3 1 3,3. j

This result is often useful in simplifying the power balance
equations.

The total energy is written

E,. « n± A« 0,. . (IV-6)

With these results we can write £qs. IV-1,2 as

np P 0p - 0P
i* J i J

(in)
Pi
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and

B.

dt
GBBi Pi'Pj

B

1 n
(onQ ACD i

Bi

(iv- 8)

Eqs. iv-7,8 are the basic SEA equations describing the beam-

plate structure. To find a history of the short time-average

modal energy we solve the coupled differential equations.

However, we must first calculate the required loss factors,

modal densities and input powers. The fourth step of SEA is to

calculate these needed variables .

The modal density of a flat panel is found in Ref. 5 to be

- Ap

where Ap. is the area of the subpanel, < is its radius of

gyration and c is the longitudinal wavespeed in the panel
jC

terms of a bending moment of inertia we can write
In

8
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where E is Young's modulus, I is the bending moment of inertia,
and pa is the density per unit area of the panel,s

The modal density of the beams in our problem is taken to be the
sum of the modal densities of bending and torsional modes,

where nfiB(w) is the density of bending modes and nB_(w) is the
density of torsional modes.. These two modal densities are found
in Ref. 5 to be

S Iff
2JI

and

nBT (W) = fc^

where L is the length of the beam and c is the torsional wave-
speed in the beam.

The dissipation loss factors are impossible to calculate unless
a special damping treatment has been applied to the structure.
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Thus, we must rely either on measurements or on empirical

estimates of the damping loss factor. For this problem we will

take

and

J^, diss " ,

>Pt. diss

The coupling loss factor between a beam and a subpanel used in

Eqs. iv-7,8 is a composite loss factor accounting for power
exchange between the plate modes and both bending and torsional
modes of the beam. Since we have;assumed equipartition of energy

between the bending and torsional modes, we can write this

composite coupling'loss factor as,

n = , n + n (IV-16)
Bi» i n + n BB»t n + n Br»p
1 x nBB BT BB BT

where !!„„ p is the coupling loss factor between bending modes of

the beam and the subpanel modes, nfiT p is the coupling loss

factor between torsional modes of the beam and the-subpanel modes
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rigg is the modal density of bending modes and n T is the modal
density of torsional modes in the beam. The modal densities are
given by Eqs. IV-12,13.

In calculating the coupling loss factors, nnn D
 a^d nn™ D> we

DD 5 Jr Di. y &

can use either a mode by mode computational approach or a
wave- impedance approach. Because of its simplicity we choose
the wave-impedance approach. Using this approach to compute

we prescribe the motion of the beam as

(x,t) * Vi ̂  (x) elulit * (IV-l?)

where v» is the velocity of the beam in a direction normal to
the subpanels, V. is a complex amplitude, ijj.(x) is the i th mode
.shape and w. is the i th mode resonance frequency. The force
between the beam and the subpanels due to this prescribed motion
can be written as

f-p Cx,t) s e
lwiT I F. i[».(x> , (IV-18)

i

where F. are complex amplitudes to be determined and t|».(x) is the
j th mode shape of the beam. Using a generalized impedance
formulation we can write

F..



where Z.. is the impedance (normally a function of frequency)

The time-average power radiated from the beam to one subpanel

can be written in terms of this impedance as

] LB
fl-j ~ T IV. I 2 Re Z. . (oj. ) / dxti.2(x) >• (IV-20)in 4 i' 11 i £ a.

where L is the length of the beam. In deriving Eq. IV-20 we

have made use of the orthogonality of the mode shapes. By

proper normalization of the mode shapes we can write Eq. IV-20

as

LB Re

Equation IV-21 gives the time-average power input from the

ith bending mode of the beam to one subpanel. To find the

coupling loss factor we must average Eq. IV-21 over all bending

modes of the beam with resonant frequencies in the band Aw.

Then by analogy to the basic power flow relation, Eq. IV-4,

we can write

where zT. (WT) is the impedance averaged over all bending modes of

the beam with . resonant frequencies in the band Au> and n^ is the

mass per unit length of the beam. If the spatial variations of
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the mode shapes #.(x) have a scale which is long compared to the
bending wavelength in the plate at w., the impedance Z..(w.) will
be approximately equal to the line impedance of the subpanel,

Zline (wi) ' (IV-23)

If we assume that the resonance frequencies of the beam are

random variables distributed in frequency as a Poisson process,

we can replace the average over modes with an average over fre-

quency. Then, if we futher assume that the bandwidth Aw encom-

passes many resonances of the subpanel we can replace the fre-

quency average value of the impedance with that of an infinite

subpanel. With these steps Eq. IV-22 becomes

"BB.P * 2i
D

where Z,. . f .is the line impedance of an infinite panel and

w is the band center frequency. The line impedance of the infin

ite panel is well known yielding the result

mP 1 "
~ ~TT > (IV—

where mp is the mass per unit area of the panel and kp is the
free bending wavenumber in the panel.
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Following an identical approach we find the coupling loss factor
between torsional modes in the beam and the subpanel modes to be

nBT,P S pT ' (IV-26)

where pfl is the material density in the beam and Ifi is the rota-

tional moment of inertia of the beam.

The coupling loss factors given by Eqs. lV-25,26 along with the
modal densities given by Eqs. IV-12,13 : can be used in Eq. IV-16 to

calculate the composite coupling loss factor'between a beam and
a subpanel.

Finally, we must calculate the coupling loss factor between modes

of adjacent subpanels through nonresonant motion of the beam.
Calculation of this coupling loss factor is made quite difficult

because of the coherance between nonresonant bending and tor-
sional motion of the beam. As for our previous calculations we
will use the wave-impedance approach in calculating this coupling

loss factor. Following this approach we replace the finite beam-
plate structure by the infinite structure shown in Fig. 15. Our
assumption, made previously, that every subpanel mode has the

same energy allows us to represent the subpanel vibration field
by a diffuse field in each semi-infinite subpanel. The diffuse

field consists of incoherent bending waves traveling in every

direction. Waves traveling in different directions have the same
amplitude so that the panel mean-square velocity at a point x

can be written as



2ir

<v2(x, t» t > A w = <vQ
2> t j A w J dO , ' • ' ( IV-27)

0

2
where <Vp >^ ̂  d0 is the mean-square, velocity of waves with

frequencies in the band Ao> incident from the angles 0 to 0 + dG.
We see from Eq.IV-27 that the mean-square velocity in the band Au>

does not depend on the value of x« By assuming a diffuse field
we can compute the power transmitted from one subpanel to the

other using Ungar's results. The mean-square velocity of the
transmitted wave is related to the mean-square velocity of the

incident wave by a transmission coefficient, T,

In general the transmission coefficient varies both as a func-
tion of 0 and as a function of w. We have assumed that Aw is

small so that the value of T<0,w) at the .band-center-frequency
is used in Eq.iv-28.Ungar presents expressions for the trans-
mission coefficient. Typically, they appear as in Fig. 16
with large peaks occurring at angles corresponding to coincidence

between incident waves and bending waves in the beam and between
incident waves and torsional waves in the beam. The transmission
coefficient for angles above the coincidence angles, Region V in
Fig. 16,is governed by the bending and torsional stiffness of

the beam and is typically very small. The transmission coeffi-

cient in Regions II and IV is large because in these regions the



motion of the beam-is resonant (either in bending or torsion).

However, since we have already obtained coupling loss factors for

resonant bending and torsional motion of the beam, we will

ignore these regions here. In Region I the transmission coeffi-

cient, is governed by the mass density per unit length and the

rotational moment of.inertia of the beam. In Region III, the

transmission coefficient is governed by the rotational stiffness

and the mass density per unit length if the angle of coincidence

for bending modes is greater than that for torsional modes; or

by the bending stiffness and the rotational moment of inertia if

the angle of coincidence for bending modes is less than that for

torsional modes. ;

To compute the transmission of energy via nonresonant motion of
»*

the beam, we will neglect transmission from waves with angles of

incidence in Region V. Furthermore we will approximate the

value of the transmission coefficient for angles below the
largest coincidence angles by its value at 0 = 0, normal in-

cidence to the beam. The approximation is shown in Fig. 16. With

this approximation the average power transmitted across length

LR of the beam is given by
fcJ ' \

"trans ' cb,P(tt)
sin 0 lim T<O,U>> Ln 3 (IV-29)

D

where 0... is the largest coincidence angle and c,(w) is the

bending wavespeed in the subpanel. From Ref.10 we find

1 +
/ a -
1. n

^nfln '

O n ' 2 \
• 8n * •*}

2 -1

(IV-30)
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where

n

and

"V i '
* L • (IV-32)

k

We can write the time-average energy in an area Ap of the panel
as

. mpAp 2, <v0
2>t>Au . ' CIV-33)

It follows then, from Eqs. IV-29,33 and from the definition of
the coupling loss factor, that

Ln sin 9.. T(0,u>)

27T kp

We have now completed step •* of SEA.
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The next step, step 5, is to solve the power balance equations,

Eqs. IV-7,8 : These equations take the form

£ ' . (IV-35)

where, by convention,

and 0. represents the short-time-average modal energy in group i,
n-< is a coupling loss factor between group i and group j,
n- is the modal density of group i, to is the band center fre-

JL

quency, Au is the bandwidth and II. is the short-time-average
power input to group i.

Since all modal energies can be set to zero at t=0, a Laplace
transform solution is quite simple, at least conceptually. By

taking the Laplace transform of Eq-. IV-35 we obtain a set of
linear algebraic, equations which can be solved for the Laplace
transform of each modal energy. Inverse transformation into the
time domain can be difficult if there are many mode groups.
However, in most cases sufficient simplifications can be made
that the inverse transformation can be accomplished.

The sixth and last step of SEA is to relate the short-time-

average modal energies to the response variable of.interest.



Since we have assumed the vibration of each group of modes to be
resonant, the short-time-average kinetic energy equals the short-
time-average potential .energy in each structure, Thusi we can
write \

2(
i , ' i ' i ' i ' i

nP. ep. « mP. AP. <VP.

(IV-37)

3 Ep A <ep
X «L

2
where <v_ (x,t)>. A/, „ is the short-time-average space-average

* i ~~ TjiiuJjX

velocity squared in the band Ao> for plate P., E0 is Young's
2 i * i •

modulus and <eD. (x,t)>, Al> vis the short-time-average space- .
Jti ™~ T j t i U J j X

average strain squared in the band Aw on the surface of plate P.

We can write similar expressions for each bean.

If the frequency bandwidth Aw is an octave or less we can write

and

2 , 9 9 • / Tir -> O><ap (x,t)> A - w <vp (x,t)> A > \iv~30j
X • . " *"*' • . • :' X ' - ' *""" ' . '

<d^ 2(x, t )> . •«*' ~ <v 2(x, t)> ' • ' (IV-39)t* •« * "T* A *i* v ^? r^ «1 * -4* A i.» *^* * ^^ L j t j l i U « * % £. i'* ^^ U 3 OlO »*v
X —"* • (A) X ^"™
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where a(x3t) is the acceleration, d(x,t) is the displacement,

and a) is the band center frequency.

In many problems of practical interest, one needs more than

spatial-average response estimates. For example, one may only

be interested in the response at one point or in the response

at a point where stress concentrations are known to occur.

Lyon [13] has developed procedures to estimate spatial response

concentrations based on the spatial-average estimates for

steady-state vibrations. Whether his results can be used

for the transient case or not is unclear at the present time.

B. Experimental Study of Shock Bending Energy Transmission

A number of experiments have been carried out to determine

the transmission of bending wave energy across ribs and

stringers on the model ring-stringer stiffened cylinder

shown in Fig. 17- A point impulsive source was -used to

inject energy into one subpanel of the shell at t = 0.

Acceleration time-histories were obtained at the center-point

of each subpanel and at a number of points on the ribs and

stringers using the test set-up shown in Fig. 18. A number

of recorded acceleration time-histories are shown in Figs. 19-29.

The measured attenuation of the bending-wave shock from subpanel

to subpanel is compared with measured values for attenuation

of steady-state bending-wave vibrations and with SEA predictions

in Section IV-C of this report.

The set-up shown in Fig. 18 for the shock transmission experiments

utilized a Tektronix pulse generator to generate an electronic

pulse 50 ysec in duration. This pulse was then fed into a

Macintosh 40 watt ac power amplifier. Output from the power

-49-



amplifier was used to excite ~a point-drive mechanical shaker

connected to the center-point of one subpanel (panel 4-2)

shown in Fig. 17. The orientation of the applied force

was normal to the subpanel so that excitation of longitudinal

waves in the shell would be negligible. The frequency

response of the power amplifier and shaker is nominally flat,

±3 dB from 50 Hz to 10,000 Hz. Thus, the shape of the elec-

tronic impulse — which has a Fourier amplitude spectrum

that is flat from 0 Hz to 20,000 Hz — was somewhat altered

in being converted into an applied force on the cylindrical

shell. Since' the frequency range in which we took measurements

was within the 50 Hz to io,000 Hz limits, the loss of signal

energy outside of this range was not important. The phase

response of the power amplifier-shaker combination is not

known. However, by driving a simple mass with the shaker,

it was determined that the decay-rate of the impulse response

of the shaker is at least an order of magnitude faster than

the measured vibration decay-rate on the driven subpanel

for all frequencies in the 50-10,000 Hz range. Therefore,

we can consider the force applied to the subpanel to be

impulsive.

Acceleration measurements were taken using a B & K 2 gm.

accelerometer. The accelerometer output was conditioned

and amplified using a General Radio Sound Level Meter and

then filtered into octave bands using a General Radio Filter

Set. The filtered acceleration signal was attenuated by

a HP-variable attenuator and displayed on a- Tektronix oscilloscope

The attenuator was used to change the level of the displayed

signal in controlled 1 dB steps so that visual selection

of the peak acceleration envelop amplitude could be easily

made. The frequency response of the acceleration measurement
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system is flat (±3 dB) over the range 50-20,000 Hz. The

transient response is sufficiently accurate to measure the

slowly varying envelopes of the observed acceleration signal.

Mass loading of the subpanels by the 2 gm. accelerometer

is not significant in the frequency range of interest.

The measurement procedure was to excite the shell with

periodic .impulses. The interval between pulses was made

long enough that the vibration resulting from one pulse

decayed almost to zero before the next pulse. The

pulse input to the shaker was used to trigger the oscilloscope

sweep so that the complete response time-history could be

observed. Acceleration measurements were taken by mounting

the accelerometer on the structure with Due-Seal — a special

clay. This mounting technique is valid for lightweight

accelerometers which are not to be excited to high g levels.

Gain on the accelerometer output was adjusted using the

GR Sound Level Meter and HP attenuator so that the peak

of the acceleration envelope was 3 cm from zero on the

oscilloscope display.

Acceleration measurements were taken at a number of points

on the cylindrical shell. A code was used to number each

subpanel, rib segment, and stringer segment as shown in

Fig. I?. Using this code panel i-j is the ith circumferential

subpanel and the j'th longitudinal subpanel of the shell.

For the test structure used there are 8 stringers so that

i = 1 to 8 and 4 rings — including each end ring -- so

that j = 1 to 3. The excited subpanel is panel 4-2. Ring

and stringer segments are identified by the subpanels they

separate. Ring segment 4-2/4-1 is between panels 4-2 and 4-1.

Stringer segment 4-2/5-2 is between panels 4-2 and 5-2.
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All panel measurements, except those on the excited .panel,

were taken at the center point of the panel. Measurements

at the center point of the excited panel, panel 4-2, could

not be taken because of space limitations near the shaker

attachment point. Thus, measurements at 3 points on panel

4-2 were taken. The location of these 3 points was selected

randomly.

All ring and stringer measurements were taken at the mid-point

of each ring or stringer segment. The orientation of the

accelerometer was such as to measure acceleration in the'

radial direction — normal to the surface of the shell.

Measurements of the torsional motion of each segment were

not taken.

Figures 19-29 show photographs of the oscilloscope traces

with a smoothed-signal envelope superimposed. The envelope

curves were drawn in after visual inspection of the time-

histories. These curves do not follow the signal envelope

exactly. They represent a best effort at smoothing out

the fluctuations in signal amplitude. These seemingly

random fluctuations result from complex interactions of

the different frequency components of the shock. SEA does

not take into account these complex interactions and, therefore,

cannot predict the extent of the resulting fluctuations.

The photographs in Figs.19-29 show typical characteristics

of pyrotechnic shock pulses. As the measurement point is

moved away from the point of excitation — the peak of the

shock envelope is at a lower level of vibration and occurs

later.
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C. Comparison of Transient and Steady-State Bending Energy

Decay from Substructure to Substructure

1. Simplified Solution to the Transient Power Balance

Equations

The use of SEA for transient problems leads to a set of

ordinary differential equations describing the dynamic

behavior of a complex structure (see Section IV.A). This

set of equations is much easier to solve than the partial

differential equations of motion. However, solution of the

SEA equations is still quite difficult and often requires

use of analog or digital computational facilities.

SEA is often used in the design stage of a vehicle to obtain

vibration estimates for the structure. In such a case,

an exact solution to the SEA transient power balance equations

is not needed. In this section a simplified solution to

the SEA equations is found. This solution is based on

approximations which in many cases of practical interest

are valid. It will show that the decrease in peak vibration

envelope levels from bay to bay of the ring-stringer stiffened

cylinder for transient excitation equals the decrease in

steady-state vibrations.

To show the above result we consider the case in which

shock transmission takes place in a chain of coupled sub-

structures. The first element of the chain is excited

by an impulsive source. Thus, the transient power, balance

equation for the first element is

d6n
r^ ̂ — + tor̂ n"̂ ! + wn12n1(e1 - 92) = EQ6(t) , (IV
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where 6^ is the modal energy in element 1, ni is the damping

loss factor, n12
 is tne coupling loss factor between elements 1

and 2, n-^ is the modal density of element 1, E is the

total energy injected into the element from external sources,

and 6(t) is the impulsive Dirac-Delta function

e

[dt 6(t) = 1 , • (IV-41)

-e

where e is arbitrarily small.

The transient power balance equations for the second and all

other elements except the last is

d9.ni dt-+ wnini9i + wni,i+i ni (ei -
(IV-42)

where i refers to a particular element in the chain, i-1

is the element closer to the source, and i+1 is the element

further away from the source. For the last element in the

chain the transient power balance equation is

d6 ;

nN dt~ + WnNnN9N ' UT1N,N-1 nN(9N-l " 9N} ' (IV^3)

where N refers to the last element in the chain.

Equations TV-40-42 can be simplified if the ratio

-1?1-1 « l , (IV-HI)
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where

ni,t = ni + "i.i-i + "i.i+i > (IV

for all values of i. When Eq. 17-44 holds a perturbation solution

in the variables n . • -, /n • <_ can be obtained which shows
1 j 1 — • JL l^t

that the power flowing from element i to element i+1 is

small compared to the power dissipation in element i. Then

Eq. IV- 40 can be simplified to

i _
+ un-|n-|9i =E 6 ( t ) , if — — « 1 . • ( IV-46).- | - ,j- at j. x j. o ri]_

Equation IV- 4 2 can be simplified to

ni dt + UT1iniei =^i,i-iniei-i' if

and Eq. IV- 4 3 can be simplified to be

nN d^+ w n N n N 9 N = W nN3N-lnN9N-l '

If we further assume that all elements in the chain are

equally damped,

r\± = n for all i ,

Eqs . IV-46 through IV-48 can be solved for the modal energies

as a function of time. The solutions are

E ,
0..(t). = ~ e-wnt , t > 0 » (IV-50)

1
lp

92(t) = ̂  wn21 t e~
unt , t > 0 ' ' (IV-51)

and „ . _,
fl - -° 1 (i-D rr .( i- l) -9 - (1
i - nx (i - 1)1 w -j

t > 0 , ( IV-52)
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where

i! = 1(1 - l ) ( i - 2 ) ( i - 3) --- (1) , (IV-53)

and

1-1
--- "1,1-1 •

The solutions given by Eqs . IV- 50 through IV- 5 2 are in the

general form

e . ( t ) = ^ A. t'1-15 e-wnt , (IV-55)

where A. is an amplitude

1 (1-1) "*'"""'"
Ai = (i - 1)! w " n j + l , j . (IV-56)

J -1-

A maximum in the modal energy occurs when

The amplitude o f^ the peak is

QMAX = , , _ ^o (i - I/"1 (1 - i) • (IV-58)
9i W " n. i ( con ;

It is now interesting to compare the peak amplitude of

the modal energy in element i with that in the next element

1 + 1 . To do this we find the ratio of peak modal energies

6MAX n 1-1
!i±l = ni+l>i e'1 f i } fIV-59)
^MAX n e (± - 1> ' C1V 5y;
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For large values of i we can write simply

MAXfl

= , . ,TV
QMAX n ' . (IV-
9i

where we have assumed

n± f n all i , (IV-61)

ni i+l* « 1 all i , and (IV-62)
ni

i » 1 . . (IV-63)

Using the conditions given by Eqs. IV-61, 62 in obtaining

solutions for the transmission of steady-state vibrations

we obtain a result identical to Eq. IV-60,

e?s •„.

ss
where 6. represents the steady-state modal energy of element i.

\

Our conclusion then is that THE DECREASE IN PEAK MODAL ENERGY

FROM ELEMENT TO ELEMENT DURING TRANSIENT EXCITATION IS EQUAL

TO THE DECREASE IN MODAL ENERGY DURING STEADY-STATE EXCITATION.

Sufficient conditions for this conclusion are given by Eqs. IV-61 to 63

However, these conditions may not be necessary. We expect

that the conclusion above is of general use for all pyrotechnic

shock problems. Since steady-state data and/or calculations

are generally available, this is a very useful conclusion.
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2. Experimental Data

The peak level of the bending wave shock signal was obtained

for each measured time-history shown in Figs. 19-29. The

decrease in these levels from subpanel to subpanel and from

beam segment to beam segment is shown in Figs. 30-36. In

these figures the ratios of the envelope peak acceleration .

of one subpanel or beam segment to the envelope peak acceleration

of a subpanel or beam segment farther away from the excited

subpanel are plotted in dB as a function of the octave-band

center frequency. The dB scale is defined as

dB = 20 log -i^ , (IV-65)
10 a j ,pk .

where a. ,-. is the envelope peak acceleration of substructure i
1 j pK '

and a. , is the envelope peak acceleration of substructure jJ jpk
where substructure j is farther from the excited panel than

substructure i. Positive dB values in Figs. 30-36 indicate
a reduction in the amplitude as the distance between source

and measurement point increases.

Also plotted in Figs. 30-36 are data from steady-state\
vibration measurements on the same cylindrical shell. In

general the agreement between the decrease in steady-state
vibration levels from substructure to substructure and the

decrease in the peak shock envelope levels is good. The

only trend which can be observed is a tendency for the

reduction of shock levels to be greater than that for
steady-state vibration levels. The data indicate that

the steady-state vibration data can be used to form an

approximate upper bound for the bending-wave shock envelope

peak level. This result is in keeping with analytical

results obtained in Section IV-C-1.
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3. Comparison of Calculated and Measured Spatial Decay

of Peak Bending Energy

In Section IV. C.I an expression (Eq . IV-64) for the ratio

of maximum bending in subpanel i+1 to that in subpanel i

was derived. In this section that expression is evaluated

and compared with the model cylinder data.

The value of the coupling loss factor from subpanel i+1

to subpanel i is given by Eq. IV- 3 4 for nonresonant transmission

and is related to the loss factor nR 3p given by Eq. IV- 1 6
i ifor resonant transmission.

In the steady-state case, the ratio of the subpanel modal

energies computed on the basis of resonant transmission . is C9]

C ( n B + n B p ) ( n p + n p f i ) -

which with the assumptions,

pB

reduces to

Pi + l

nB « nBp , (IV-67a)

n »'n/2 , (iv-67b)

e p n p
 V J - V U 1

i

Comparison of Eq. IV-68 with Eq. IV-64 and utilizing the modal

density and coupling loss factor' relation in Eq. IV-5 indicates

that for resonant transmission
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(nRR
n P P l|n B P 'i+l, i 4 P i, i

where r\ n is given by Eq . IV-16 .
Bi,Pi

Numerical evaluation of the resonant and nonresonant subpanel

to subpanel coupling loss factors given by Eqs . IV-69 and

IV-3^ respectively for the model cylinder shown in Fig. 17

indicates that the resonant coupling dominates over the

entire frequency range of interest.

The peak shock bending energy decay from subpanel to subpanel

calculated from Eqs. IV-64 and IV-69 and an assumed internal
— 2loss factor of n . - 10 is shown in Pig. 37. Also shown on

Fig. 37 are the peak shock transmission data taken from

Fig. 30. The measured decay from the driven panel ( 4 - 2 )

to the adjacent panel (5-2) agrees well with the analytical

prediction. The data show somewhat less decay from undriven

panels to adjacent panels farther removed from the source

than the theory predicts, particularly at high frequencies.

This anomaly has .been previously observed in periodically

supported structures
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•D. Dilatational Wave Transmission and Scattering into

Bending Waves

The preceding extension of statistical energy analysis

to transient problems has been possible because complex

structures usually can be subdivided into lightly coupled

substructures (modal sets). In flexure, ribs on a panel

can be subdivided into individual beam elements extending

between junctures. This subdivision is possible because

flexural waves will be almost totally reflected at a

juncture, the flexural modes of one beam segment being

lightly coupled to the modes of the other segments forming

the juncture. Similarly, the flexural modes of one panel

bay will be lightly coupled to those of another bay,

flexural waves being almost totally reflected by the ribs.

Consider, however, the transmission of panel dilata-

tional waves through a rib. The rib will reflect poorly

except at very high frequencies (or at incidence angles well

removed from the normal). If the panel is broken into bays

by other ribs, dilatational reverberation cannot arbitrarily

be assumed to exist within the bays. An essentially blocked

or free termination is required to ensure sufficient re-

flection. For a finite panel, only the boundaries clearly

represent strong reflectors. This suggests that the dila-

tational modes of the entire panel are an appropriate modal

set.
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If the dilatational modes are lightly coupled to the

flexural modes of the individual bays, say through the ribs,
/

statistical energy analysis can be used to determine the rate

at which energy flows to flexure. This leads to the flexural

response. While identification of lightly coupled modal

groups does not in itself assure that statistical energy

analysis will give the correct answers, if reverberation of

the modal groups exists, reasonable estimates might be

obtained. A factor which complicates the simple picture

given here is that a rib represents a non-conservative

coupling device, since power will be dumped to distortion

as well as to flexure.

Reflections at boundaries and ribs will induce a con-

tinuous energy exchange, from dilatation to distortion and

vice versa. Without losses to flexure, and in the absence of

structural damping, some proportioned time average energy

could be related to each. With rib losses, this conversion

process continues as the total energy level decreases. If

the ribs losses were due solely to dilatation, ultimately

all energy input to dilatation (or distortion for that matter)

could be assigned to dilatation. A similar statement could

be made, for'distortion. Since dilatation and distortion

will induce panel flexure through physically similar rib

interactions, it seems reasonable to assume that power flow

from dilatation and distortion to flexure is proportioned

as the energies. If equipartition of modal energies is
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assumed, the power to flexure Is proportioned as the modal

densities. This assumption infers, from a flexural standpoint,

that ail energy can be assigned to either dilatation or

distortion because the coupling loss factors would be equal.

In this report, all energy is assumed to be in dilatation.

Whenever the term "dilatational energy".-is used, it implies

the sum of the instantaneous dilatation and distortion energy.

This section is devoted to the development of analytical

methods for predicting the short time-space average flexural

response of a ribbed panel to an in-plane dilatational shock.

Without a priori knowledge that ribs do not induce dilata-

tional reverberation, the harmonic problem is first solved

to show that this is the case and to show that dilatational

modes are lightly coupled to flexural modes. With the

information derived, the nonresonant dilatation to flexure

coupling loss factor is computed and the solution formulated

within the statistical energy analysis format.

1. Transmission of Harmonic Dilatational Waves Through

Reinforcing Beams

In order to deal with a tractable problem, the analysis

of an infinite plate to which a uniform straight beam is

attached is considered, the line of attachment being narrow,

extending from x = 0~ to 0 , as shown in Pig. 38. The

shear center of the rib and its center of gravity are not
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necessarily coincident, but lie on the same line normal

to the panel surface, the e.g. being a distance R away

from the panel and the shear center a distance e away from

the e.g. (e positive in the outward direction).

Specific Normal Impedance of the Rib -

Let f (y,t) be the load applied to the rib, acting along

the attachment. The flexural motions are governed by

• • " • i
? 4

3 x 3 x

'rAr - + YoVr ~ = *'^ • (IV

dy

where x is the displacement of the e.g. and x_. is theo s c

displacement of the shear center.

Let x be the displacement along the line of attachment.

Then

and

x = x + R6 , (IV-7Do r

x = x + (R + 8)0̂  . (IV-72)
S C I

Let f be of the form

f = PQ exp[i(kty - ut)] , (IV-73)

We take x = X exp[i(k,y - ut)] , (IV-72!)
t

6r = 9"r exp[i(k ty - to t ) ] . (IV-75)



Substitution of Eqs. IV-71 to 75 into IV-70 and use of

v = -iwx, where v is the velocity of the line of attachment

gives

r)
 e

r
 = F

0 > (IV-76)

where Y~r = {-iwprAr[l - (k^k^] T1 , (IV-77)

and Y- = {-icop A [R - (R + e) (k, /k ) 1] T1 ' (IV-78)
J- X -L L/ X

' • S
\,

The torsion of the beam is governed by

2 2
3 8 3 6

J | = GK | + m£ - (R + e)f . (IV-79)

Here J is the polar moment of inertia per unit of length

of the beam, G is the shear modulus, K is the torsional

constant of the beam cross section [151> GK is the torsional

stiffness, and m is the moment per unit length applied

along the line of attachment. For harmonics, this becomes

- u)2J)6 = ivf - (R + e)Pn . (IV-80)
J/ O O

For applied moment Mp (per unit length) to the panel,
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m

where ZJj? is the moment impedance per unit length of the panel

given by [10 J-•

m
" (IV-82)

k being the panel bending wavenumber.

Continuity requires

and

MQ >

0r = 9 - 0 .

(IV-83)

(IV-81)

Substitution of Eqs. IV-81, 83 and 84 into IV-80- yield

+ u>J - k G K ) F = (R -I- e)FQ. (IV- 85)

Elimination of 9 from iv-85 and 76 gives the specific

rib impedance:

-1
1 -

-1
iw(Y.p (B * e)

(R - k l G K ]

. (IV-86)
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The resistive part is due to a power loss to panel

flexure. The imaginary part reveals a'reduced reaction

of the rib owing to its rotation.

E'ower Loss to Flexure

The time average power per unit length dumped to

panel bending by the harmonic dilatational wave is

1 1

e) |Y I ..„
~ i --S-̂  ~ 5 -5- _ OIV-87)

m * (R +

Harmonic Transmission Coefficients

As previously noted, the incidence of a harmonic

dilatational wave on a rib will result not only in

reflected and transmitted dilatational waves, but in

distortional- waves as well. In this section we will

develop the 'harmonic transmission coefficients.
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In Pig.. 39, the four possible reflected and transmitted

in plane waves are shown, two dilatational waves and two

distortional waves. The displacement normal to the wavefront

for the incident longitudinal wave is

<j>1 = Pi-L exp [-i(wt+~- cosa x+£— sin a^) . (IV-88)

The x and y displacements are

cos a- > ^ = * sln a- (IV-89)

For the reflected and transmitted waves, we have

4>2 = A2 exp[-i(ut-£~ cos a^x+^~ sin a2y + 6 2 ) ] , (IV-90)

COS a2 ' n2 = *2 Sln a2 ' (IV-9D

)' = A_ exp[-i(a)t-— cosa_x+— sin a,y + 6 ^ ] , (IV-92)
J J Cr j Cr J J

= «j> sin a ; n = 4> cos c* , .(IV-93)
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^- sin c^y + 6^] , CIV-91*)
X* .

cos a ; r) '= 4> sin a > (IV-95)

A,, exp[-i(a)t+~ cosac;x+— sinewy + 6)] , (IV-96)
'

£(. = <|> sin (*(- ; r)c- = -4>c cos a^ > (IV-97)

The stresses and strains are related through the Lame constants,

X and y, by [16]

X(6xx + 6yy

a = 2y 6 + A(6 +6 + 6 ) > (iv-QQ)yy . •• yy xx yy zz' v v yyj

axy == 2y 6xy , ' (IV-100)

where oxx> a , o^- are the normal and shear stresses and

the strains are given by

- ny

6xy
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Summing forces along a rib element yields

J3_ rfTU
EAr

 L°xy at
(IV-103)

Continuity of particle displacement along the rib gives

ru + ru + nO = ru + He) = n
J x=0 D x=0

Summing forces across a rib element, we obtain

h[a'i-
2'3) -xx xx

1 = 7 .2
Jx=0 *r 3t

(IV-10^1)

" c J x=0

(IV-105)

where it is assumed that all shear at x = 0 is carried by the

rib. Continuity of particle displacement requires

x=0 x=0

(IV-106)

After some manipulation, the following results can be obtained:

Transmission Coefficient (the ratio of the transmitted power

in the dilatational wave, <j>, , to that in the incident wave, <J>, ]

at = (IV-107)
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Reflection Coefficient (the ratio of the reflected power in

the dilatatlonal wave, 4>p, to that in the incident wave, <(>-,)

2A,
(IV-108)

Flexural Loss Coefficient (the ratio of•the power flowing

away from the rib due to panel flexure to that in the

incident wave, (j>, )

u (R + e)' ^ -1
nr 'A- -Dcbsa, -^ 7^;

af =

hpc^cosa-j^ m (R - k^GK]

(IV-109)

where the complex amplitude ratios are to be determined by

solving the following set of equations:

32 33 3^ 35

e O Q Q
rj PQ Po P T / - I7 o 9 10

311 x ~311 1

n o n o-1 312 -1 -312

4

f A2/A1 1

VAi
A/A

1

5 1

^ {

r - - f i i '
-e6

~Bn
^ -i • *

with

3r= — cos
X + 2y cos a.

> J

(IV-110)

(IV-111)
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2Z A + 2y .cos ot
~~ COS a ~

3 = - sin a, + cos a Sin aq (IV-113)j n j Cm j j

2A + 2u cos a,.

cos a,, sin a^ . (IV-115)

2

% ^sln al ~ sin3 ai^ + i 15 o~ sln ai cosc r A

(IV-116)

2
i = —5 (sin a, - sin a, ) + i ̂ -r̂ - (~ sin a« cos
7 ^ ! 1 EA~ c, 2

(IV-117)

2 2
3p.= % cos a_ - ~ sin a, cos a_ + ̂ -̂ - ̂ — (cos a_ - sin a0)
0 ^ -> \ r.^ -> -5 ^Rr> <T ~> ->c^ CT r i

i

(IV-118)

69 = M H~ cos a4 sln1

-72-

(IV-120)

= sin a-L/cos a- (IV-121)

312 = sin aVcos a.^ ' (IV-122)



(IV-123)

Cm

a, = 0[. = arc sin (— sin a,) (IV-124)2 °

62 = S = 63 ="63 = 65 = ° ' (IV-125)

= 7- sin a, (IV-126)

The Lame constants can be.computed from the material para-

meters YQ (elastic modulus) and a (Poisson's ratio):

aY
X = 2 ; (IV-127)

-̂-̂
2(l+a) (IV-128)

The relations between the wavespeeds and the Lame constants

are

/ A + 2jJ , (IV-129)
P

(IV-130)
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Estimates for the Harmonic Transmission Coefficients for

a Model Panel-Rib System

Shown in Fig. 40 is a.ribbed cylinder model which is

similar to the cylinder used in the bending wave experiments

(Fig. 17) except for the stiffener cross-section dimensions.

It is of a configuration reasonably suited for application

of the theoretical relations. The transmission, reflection,

and flexural loss coefficients for a rib of the configuration
\

on the cylinder, and for the same skin thickness are shown

in Fig. 41. These indicate that reflection of harmonic

dilatational waves by a rib will not induce dilatational

reverberation within the bays except perhaps at very high

frequencies.

2. Determination of the Coupling Loss Factor

The time average power dumped to panel bending by a

harmonic dilatational wave originating from any direction
O

is given by Eq. (IV-87), where |v| is the square of the mag-
i

nitude of the complex velocity along the rib line. In

terms of the time mean square velocity along the rib line,

p p
we may rewrite (IV-87) using <v >, = |v| /2. This can be .

U

related to the incident incoming wave complex velocity

amplitude.



If <}>-, is the incoming wave displacement, then the incoming

wave velocity is

(IV-13D

The incoming wave complex displacement amplitude A-, i's related

to the rib line complex velocity amplitude by

-î - sin c^y A A c

v = iuA,e- * \_(- - l)cos 0 - -1 -I sm a,] (IV-132)

Thus the incoming wave complex velocity amplitude V, = -icoA,

is related to the rib line complex velocity amplitude.

Assuming reverberation exists, then

I V l
Ap Aq Cm

j- - Does ai - ji _ sin O <v2>
da-

s ,t 7T
(IV-133)

where <v > is the band-limited space-time mean squares, u

in-plane particle velocity over the entire panel. The time
2

average totaL energy' of the panel is E = M<v > , *s , u,

where M is the total panel mass, and the time average power

*We assume that the time average kinetic energy is equal

to the sum of the time average potential energies of the
2

dilatation and the distortion. Recall <v > . - i s the sums ,t
of the space-time mean square velocities for simultaneous

diffuse (incoherent) dilatation and distortion fields.
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flow from the in-plane modes to the flexural modes is

M<V (17-13*0

where to is the band center frequency and ndf is the dilata-

tion to flexure coupling loss factor.

The time average power flow from the dilatational modes

to the flexural modes is, from Eq. (IV-87), also given by

<ir>t = 2* (IV-135)

where £ is the total rib length, which is doubled to account

for waves incident, from both sides.

Prom (IV-13*0 and (IV-135), the coupling loss factor

is obtained,

.(R+e)'

ndf ~ M"

A, A_ c

Al CH

m [co2J -. t

where <>

(17-136)

indicates averages over the desired frequency

band and the frontal incidence angles.
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Prom Eq. IV-109, it is apparent that this becomes

£hpc0<a~cos a, >. •n _ K A f _ IjJiu.a, ,
df -- ifa - I ' UV-137)

Figure 43 shows that cu for the model cylinder is approxi-

mately independent of cu and is reasonably flat in frequency.

Frequency averaging is unnecessary if Aw doesn't exceed an

octave or so.

Since M = Aph, the nonresonant dilatation to flexure
\

coupling loss factor is approximately

(IV-138)
TT Af

To assure reverberation, the least dimension should be

not less than a dilatational wavelength (preferably two

wavelengths). For one wavelength,

w > 17000.

For the 6 ft long cylinder shown in Fig. 40, f . =2800 Hz.

The computed dilatation to flexure coupling loss factor for

the cylinder is shown in Fig. 42. Also shown is the value

measured with a Spencer-Kennedy Model 507 Decay Rate Meter.
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Excitation was pulsed band-limited random noise provided

by a shaker driving into the plane of the skin at one point

on the end of the cylinder. The dilatational energy decay

was observed by placing an accelerometer at the opposite

end. The rate of decay was essentially the same for all

circumferential positions of the accelerometer.

The agreement between theory and measurement is satis-

factory in view of the structural complexity of the cylinder

No attempt has been made to account for rib interactions,

rib stiffening of panels, or curvature. Obviously the

theory may be quite erratic in the quality of its predic-

tion from structure to structure. Without considerable

additional experimental verification, the dilatation to

flexure coupling loss factor should be viewed more quali-

tatively than quantitatively.
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3. • Shock Analysis

The ribbed panel is assumed >to consist of two discrete

sets of modal oscillators, dilatational panel modes {d}, and

flexural panel modes {f}. A power balance for either set

yields .

i ^in trans ';diss
dF~ a- ni " nij ~'ni

where E. Is the short time average total energy of set, i,

n-^n is the short time average input power for set, i,

]K*'ans is the short time average power being transmitted

ci~1 °? **?and n^ is the short time average power dissipated in

set, i.

The power being dissipated is ,

= niwiEi

and that being transmitted is

trans _ • '• Ei
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Here only the residual or free vibration period is con-

sidered. Let trd = 0, and assume at t = 0, the dilatational

energy is diffused spatially in the panel, and has a level,

Ed(0+), and that the flexural energy level is zero.

For dilatation, Eq. IV-l^O becomes

d8d
dt~ + u ( nd + n df ) 6 d - UT1dfef = ° > . (P

I

and for flexure ' t

n f d )e f - <onfded = o .

It is assumed that the dilatational dissipation loss

factor is much smaller than the coupling loss factor,

nd « ndf .

Since the flexural modal density of the panels is much

larger than the dilatational modal density,

nf ».nd
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Equations IV-1^3 and IV-lM become

dE

dTT + undfEd = ° > (IV-147)

dE
and ^j— + wnfEf - uri^E, ='0 . (IV-148)

The solution of Eq. IV-14? is

Ed =

Equation IV-1^9, of course, has no sense except as the total

energy in dilatation and distortion, which is assumed to be

proportioned according to the modal densities.

Substitution of this result into Eq. IV-1^8 gives the total

short time average energy of the flexural modes

Ef(t) = E,(0 + ) - - — e -e . (IV-150)
i a ndf - nf

Note the restriction r\,f if- nf. This result is shown in

Fig. 43. The band-limited short-time space averaged mean

square flexural acceleration of the panel is obtained from

<a?>Sjt
 = r
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W A V E S H O C K E N V E L O P E S
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PANEL: thickness, h

radius of gyration, K

mass density, D

longitudinal wavespread, eg

shear wavespread, c-r.

RIB: cross sectional area, A

mass density, Or

radius of gyration about axis z, Kr

elastic modulus, Y

longitudinal wave speed, c^

F I G U R E 3 8 . P A N E L R E I N F O R C I N G BEAM C O N F I G U R A T I O N



FIGURE 39. POSTULATED DISTORTIONS. AND DILATATIONAL WAVES
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FIGURE 40. RIBBED CYLINDER MODEL
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F I G U R E 43. P R E D I C T E D F L E X U R A L R E S P O N S E DUE TO A T R A N S I E N T
( I M P U L S I V E ) S O U R C E SHOCK D I R E C T L Y INTO T H E P L A N E
O F T H E S K I N


