3,670 research outputs found

    Programming support for an integrated multi-party computation and MapReduce infrastructure

    Full text link
    We describe and present a prototype of a distributed computational infrastructure and associated high-level programming language that allow multiple parties to leverage their own computational resources capable of supporting MapReduce [1] operations in combination with multi-party computation (MPC). Our architecture allows a programmer to author and compile a protocol using a uniform collection of standard constructs, even when that protocol involves computations that take place locally within each participant’s MapReduce cluster as well as across all the participants using an MPC protocol. The highlevel programming language provided to the user is accompanied by static analysis algorithms that allow the programmer to reason about the efficiency of the protocol before compiling and running it. We present two example applications demonstrating how such an infrastructure can be employed.This work was supported in part by NSF Grants: #1430145, #1414119, #1347522, and #1012798

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use

    Scather: programming with multi-party computation and MapReduce

    Full text link
    We present a prototype of a distributed computational infrastructure, an associated high level programming language, and an underlying formal framework that allow multiple parties to leverage their own cloud-based computational resources (capable of supporting MapReduce [27] operations) in concert with multi-party computation (MPC) to execute statistical analysis algorithms that have privacy-preserving properties. Our architecture allows a data analyst unfamiliar with MPC to: (1) author an analysis algorithm that is agnostic with regard to data privacy policies, (2) to use an automated process to derive algorithm implementation variants that have different privacy and performance properties, and (3) to compile those implementation variants so that they can be deployed on an infrastructures that allows computations to take place locally within each participant’s MapReduce cluster as well as across all the participants’ clusters using an MPC protocol. We describe implementation details of the architecture, discuss and demonstrate how the formal framework enables the exploration of tradeoffs between the efficiency and privacy properties of an analysis algorithm, and present two example applications that illustrate how such an infrastructure can be utilized in practice.This work was supported in part by NSF Grants: #1430145, #1414119, #1347522, and #1012798

    Consortium blockchain management with a peer reputation system for critical information sharing

    Get PDF
    Blockchain technology based applications are emerging to establish distributed trust amongst organizations who want to share critical information for mutual benefit amongst their peers. There is a growing need for consortium based blockchain schemes that avoid issues such as false reporting and free riding that impact cooperative behavior between multiple domains/entities. Specifically, customizable mechanisms need to be developed to setup and manage consortiums with economic models and cloud-based data storage schemes to suit various application requirements. In this MS Thesis, we address the above issues by proposing a novel consortium blockchain architecture and related protocols that allow critical information sharing using a reputation system that manages co-operation amongst peers using off-chain cloud data storage and on-chain transaction records. We show the effectiveness of our consortium blockchain management approach for two use cases: (i) threat information sharing for cyber defense collaboration system viz., DefenseChain, and (ii) protected data sharing in healthcare information system viz., HonestChain. DefenseChain features a consortium Blockchain architecture to obtain threat data and select suitable peers to help with cyber attack (e.g., DDoS, Advance Persistent Threat, Cryptojacking) detection and mitigation. As part of DefenseChain, we propose a novel economic model for creation and sustenance of the consortium with peers through a reputation estimation scheme that uses 'Quality of Detection' and 'Quality of Mitigation' metrics. Similarly, HonestChain features a consortium Blockchain architecture to allow protected data sharing between multiple domains/entities (e.g., health data service providers, hospitals and research labs) with incentives and in a standards-compliant manner (e.g., HIPAA, common data model) to enable predictive healthcare analytics. Using an OpenCloud testbed with configurations with Hyperledger Composer as well as a simulation setup, our evaluation experiments for DefenseChain and HonestChain show that our reputation system outperforms state-of-the-art solutions and our consortium blockchain approach is highly scalableIncludes bibliographical references (pages 45-52)

    Sharing big biomedical data

    Get PDF

    Architecture for privacy-preserving brokerage of analytics using Multi Party Computation, Self Sovereign Identity and Blockchain

    Get PDF
    In our increasingly digitized world, the value of data is clear and proved, and many solutions and businesses have been developed to harness it. In particular, personal data (such as health-related data) is highly valuable, but it is also sensitive and could harm the owners if misused. In this context, data marketplaces could enhance the circulation of data and enable new businesses and solutions. However, in the case of personal data, marketplaces would necessarily have to comply with existing regulations, and they would also need to make users privacy protection a priority. In particular, privacy protection has been only partially accomplished by existing datamarkets, as they themselves can gather information about the individuals connected with the datasets they handle. In this thesis is presented an architecture proposal for KRAKEN, a new datamarket that provides privacy guarantees at every step in the data exchange and analytics pipeline. This is accomplished through the use of multi-party computation, blockchain and self-sovereign identity technologies. In addition to that, the thesis presents also a privacy analysis of the entire system. The analysis indicated that KRAKEN is safe from possible data disclosures to the buyers. On the other hand, some potential threats regarding the disclosure of data to the datamarket itself were identified, although posing a low-priority risk, given their rare chance of occurrence. Moreover the author of this thesis elaborated remarks on the decentralisation of the architecture and possible improvements to increase the security. These improvements are accompanied by the solutions identified in the paper that proposes the adoption of a trust measure for the MPC nodes. The work on the paper and the thesis contributed to the personal growth of the author, specifically improving his knowledge of cryptography by learning new schemes such as group signatures, zero knowledge proof of knowledge and multi-party computation. He improved his skills in writing academic papers and in working in a team of researchers leading a research area

    Staging European Union Democracy: Discussion Paper Prepared for the 'Round Table on a Sustainable Project for Europe'. EPIN Working Paper No. 10, December 2003

    Get PDF
    Much of the malaise surrounding EU democracy can be accounted for by the fact that there is no effective staging of political debate between the European Parliament and EU executive power. This paper explores the options to increase the visibility of political choices in the European Union, to open ways to have political positions challenged and, thereby, to improve the staging of the democratic process. It starts from the relationship between the European Parliament and the Commission as this is the relationship that has come to resemble most the dynamics of representative democracy at the EU level. In turn, possible reforms are then explored to strengthen the articulation of political alternatives in the European Parliament, to allow for a well-calibrated politicisation of the Commission and to subject EU executive powers beyond the Commission to democratic accountability. The paper concludes with 20 concrete recommendations for reform – some of which would preferably still be taken on board by the current Intergovernmental Conference, but most of which can be followed up upon by the European actors in the years to come
    • …
    corecore