
CONSORTIUM BLOCKCHAIN MANAGEMENT

WITH A PEER REPUTATION SYSTEM

FOR CRITICAL INFORMATION SHARING

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

SOUMYA PUROHIT

Dr. Prasad Calyam , Thesis Supervisor

December 2020



The undersigned, appointed by the Dean of the Graduate School, have exam-

ined the thesis entitled:

“CONSORTIUM BLOCKCHAIN MANAGEMENT” WITH A PEER REPUTATION SYSTEM FOR

CRITICAL INFORMATION SHARING

presented by Soumya Purohit, a candidate for the degree of Master of Science and

hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Prasad Calyam

Dr. Praveen Rao

Dr. Praveen Edara



ACKNOWLEDGMENTS

I would like to thank Dr. Prasad Calyam for his great support throughout

my entire Master’s degree. I appreciate the outstanding opportunity given to me

by Dr. Calyam to work in Virtualization, Multimedia and Networking (VIMAN)

Lab with a talented group of individuals on a state-of-art research area and lab

facilities. I would like to express my gratitude towards Dr. Praveen Rao and Dr.

Praveen Edara for their interest to be a part of my thesis committee. Next, I

would like to thank my research partner Songjie Wang for helping me throughout

this research.

I would like to thank my family for supporting and showing their confidence in

me. Finally, I would like to thank my friends for making this journey exciting and

joyful for me.

Soumya Purohit

ii



Contents

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background on Information Sharing . . . . . . . . . . . . . . . . . . 1

1.2 Need for Blockchain for Information Sharing . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 “DefenseChain” Solution Approach . . . . . . . . . . . . . . . . . 4

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Threat Intelligence Sharing . . . . . . . . . . . . . . . . . . 4

2.1.2 Reputation Systems . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Blockchain for Building Trust . . . . . . . . . . . . . . . . . 6

2.2 Solution approach of “DefenseChain” . . . . . . . . . . . . . . . . . 7

2.2.1 DefenseChain Platform Overview . . . . . . . . . . . . . . . 7

2.2.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 System Roles . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 QoD and QoM Protocols for Decision Making . . . . . . . . 11

2.2.5 Incentives for Sharing . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Experiment Testbed Setup . . . . . . . . . . . . . . . . . . . 16

2.3.2 Network Feature Analysis . . . . . . . . . . . . . . . . . . . 17

2.3.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . 18

3 HonestChain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Health Information Sharing Systems . . . . . . . . . . . . . 25

3.1.2 Guided Data Brokering with Trust . . . . . . . . . . . . . . 26

3.1.3 Blockchain in Broker Systems . . . . . . . . . . . . . . . . . 27

3.2 Solution approach of HonestChain . . . . . . . . . . . . . . . . . . . 28

3.2.1 HonestChain Platform Overview . . . . . . . . . . . . . . . . 28

3.2.2 HonestChain System Roles . . . . . . . . . . . . . . . . . . . 29

3.2.3 Reputation based Healthcare Data Brokering Protocols . . . 30

3.2.4 Incentives for Sharing . . . . . . . . . . . . . . . . . . . . . . 34

3.2.5 Exception Handling . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Experiment Testbed Setup . . . . . . . . . . . . . . . . . . . 35

3.3.2 Reputation Scheme Results . . . . . . . . . . . . . . . . . . 38

3.3.3 Scalability Results . . . . . . . . . . . . . . . . . . . . . . . 40

4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 42

4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



List of Tables

Table Page

2.1 Notations used in this paper. . . . . . . . . . . . . . . . . . . . . . . 15

v



List of Figures

Figure Page

2.1 Proposed DefenseChain reference architecture that features on-chain/off-

chain components within a federation of peers involving a cloud-

hosted application, dedicated controllers with Hyperledger configu-

rations, IPFS and QVMs integration. . . . . . . . . . . . . . . . . . 8

2.2 DefenseChain workflow with requester peer(s) and detector/mitigator

peer(s) sharing threat information co-operatively. . . . . . . . . . . 9

2.3 Sequence diagram of the DefenseChain detection protocol that in-

volves attack detection, IPFS data retrieval, and detection chain-

code to calculate QoD. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Sequence diagram of the DefenseChain mitigation protocol involv-

ing interactions of pretense initiation, redirection of attack traffic

and mitigation chaincode to calculate QoM. . . . . . . . . . . . . . 14

2.5 NSF Cloud [12] testbed setup used to evaluate DefenseChain per-

formance with experiments involving SDN for testing platform ca-

pabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Performance comparison of DefenseChain with First Come First

Serve, Random, and Distance-based schemes for detectors chosen

to determine QoD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Performance comparison of DefenseChain with First Come First

Serve, Random, and Distance-based schemes for mitigators chosen

to determine QoM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



2.8 Performance comparison of DefenseChain with First Come First

Served, Random, and Distance-based schemes for evaluating detec-

tors on the basis of the time taken for detection . . . . . . . . . . . 21

2.9 Performance comparison of DefenseChain with First Come First

Served, Random, and Distance-based schemes for evaluating miti-

gators on the basis of the time taken for mitigation . . . . . . . . . 22

2.10 Performance comparison of DefenseChain with First Come First

Served, Random, and Distance-based schemes for studying the their

performance trade-offs in the context of the attack reoccurence rate. 23

2.11 Performance comparison of DefenseChain with a SocialReputation

model proposed in [25] in order to evaluate reputation values for

rational and irrational mitigators. . . . . . . . . . . . . . . . . . . . 24

3.1 Proposed Honestchain reference architecture that features on-chain/off-

chain components within a consortium of peers involving an honest

broker service, dedicated blockchain nodes with Hyperledger con-

figurations, chaincodes and CDM. . . . . . . . . . . . . . . . . . . . 29

3.2 Cloud testbed used to evaluate HonestChain platform performance

with experiments involving a distributed network. . . . . . . . . . . 36

3.3 HonestChain performance comparison with state-of-the-art schemes

for reputation values for requesters . . . . . . . . . . . . . . . . . . 36

3.4 HonestChain performance comparison with state-of-the-art schemes

for service times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 HonestChain performance comparison with state-of-the-art schemes

for studying their performance trade-offs in terms of request resub-

mission rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 HonestChain Throughput results involving measurement of trans-

action rate in terms of block sizes ranging from 10,000 to 100,000. . 39

vii



ABSTRACT

Blockchain technology based applications are emerging to establish distributed

trust amongst organizations who want to share critical information for mutual ben-

efit amongst their peers. There is a growing need for consortium based blockchain

schemes that avoid issues such as false reporting and free riding that impact co-

operative behavior between multiple domains/entities. Specifically, customizable

mechanisms need to be developed to setup and manage consortiums with eco-

nomic models and cloud-based data storage schemes to suit various application

requirements.

In this MS Thesis, we address the above issues by proposing a novel consor-

tium blockchain architecture and related protocols that allow critical information

sharing using a reputation system that manages co-operation amongst peers using

off-chain cloud data storage and on-chain transaction records. We show the ef-

fectiveness of our consortium blockchain management approach for two use cases:

(i) threat information sharing for cyber defense collaboration system viz., De-

fenseChain, and (ii) protected data sharing in healthcare information system viz.,

HonestChain. DefenseChain features a consortium Blockchain architecture to ob-

tain threat data and select suitable peers to help with cyber attack (e.g., DDoS,

Advance Persistent Threat, Cryptojacking) detection and mitigation. As part of

DefenseChain, we propose a novel economic model for creation and sustenance

of the consortium with peers through a reputation estimation scheme that uses

‘Quality of Detection’ and ‘Quality of Mitigation’ metrics. Similarly, HonestChain

features a consortium Blockchain architecture to allow protected data sharing

between multiple domains/entities (e.g., health data service providers, hospitals

and research labs) with incentives and in a standards-compliant manner (e.g.,

HIPAA, common data model) to enable predictive healthcare analytics. Using an

OpenCloud testbed with configurations with Hyperledger Composer as well as a

simulation setup, our evaluation experiments for DefenseChain and HonestChain

viii



show that our reputation system outperforms state-of-the-art solutions and our

consortium blockchain approach is highly scalable

ix



Chapter 1

Introduction

1.1 Background on Information Sharing

Cloud-hosted services are targeted by ever-growing Distributed Denial of Service

(DDoS) attacks that aim to disrupt the service of major industries, conglomerates

and community organizations [47]. Attacks such as Advanced Persistent Threats

(APTs) also cause economic damage and leakage of sensitive information through

sophisticated malicious attack codes [19]. Another targeted attack type can be

seen in the cryptojacking attacks [48], where criminals compromise enterprise re-

sources for illegal bitcoin mining revenue gains.

To defend against such targeted attacks, a co-operative and collaborative at-

tack threat intelligence sharing platform can help raise the situational awareness

and foster mechanisms to protect targeted assets through pertinent detection and

mitigation of attacks. The platform can produce proactive measurements and

actionable information that can be available to multiple domains/entities in a

federation [49].

Moreover, organizations under a line of attack in close proximity can lever-

age the platform to form alliances for collaborative defense by sharing the bur-

den [52]. The need of information sharing is also seen in applications of healthcare
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where there is the increase in data-driven methods to create healthcare innovations

that requires utilization of voluminous, high-variety and standards-compliant (e.g.,

HIPAA [27], common data model [46]) distributed datasets that enable predictive

analytics.

The authorization step in health information systems can cause data access

bottlenecks due to trust issues among the data custodians and requesters. Such

trust issues lead to the fear of “Loss of Value” for the data being provided by the

data custodians. To cope with risks associated with “Loss of Value” and to ensure

assurance/auditability in data access [5], data custodians use high-touch methods

that require a governance committee to manually approve data requests. Conse-

quently, manual approvals in the data access transactions cause long queues of data

requests. In addition, human error in the forms filled out by data requesters can

prolong the deliberation of the governance committee and cause over-provisioning

or under-provisioning of data queries for data analytics/visualization. These fac-

tors cause frictions in the innovation process and causes delayed patient care de-

cisions, which ultimately leads to a “Loss of Opportunity” [23] in the requested

data. A trustworthy cooperation can allow faster accessibility and help in building

trust in protected healthcare records as well as in cyber threat data.

1.2 Need for Blockchain for Information Sharing

Creation of threat intelligence sharing platforms requires overcoming other sub-

stantial challenges that include issues such as: why should one domain share its

threat intelligence information with another domain? How can we opt-in the do-

mains/entities that are proximal (i.e., in geographic distance or units that are

distributed but belong to the same organization) or distant (i.e., relatively far in

geographic distance or belonging to different organizations) for collective attack

defense? How can the platform be used for co-ordinated threat detection and

attack impact mitigation in a timely manner with distributed trust? A subset
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of these issues have been addressed in prior works using methods such as crowd-

sourcing with incentives [26] [55]. Reputation systems also have been proposed

with algorithms to counter the impact of having false reporting and free riding

peers [53] [54] [14]. However, there is a lack of works that use Blockchain solutions

that can potentially be used to establish distributed trust, integrate reputation sys-

tems and create automated access control for threat intelligence data sharing in a

scalable and transparent manner.

In the field of healthcare, Blockchain technology can be a promising solution

for creating effective techniques that can help in minimizing the above Loss of

Value and the Loss of Opportunity issues in health information systems. How-

ever, a solution with Blockchain technology should address the following research

questions: How to convey diverse datasets and overcome the lack of trust be-

tween parties involved in health data sharing? How can the health records be

tamper-proof and distributed to allow for a faster data accessibility? How to en-

able a consistent representation of authorization to access health information in

a secured network platform? How to create a smart platform equipped with a

conversational agent i.e., a chatbot that interacts with the data consumer with a

knowledge-driven capability to have a better consumer-platform interaction? How

can the quality of health information service be improved by incentives for data

consumers and providers to cooperate?

1.3 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2, we describe

one of the usecase “DefenseChain” Solution Approach and evaluation. In Chapter

3, we elaborate on our second usecase on HonestChain Solution Approach and

evaluation. Adviser with system design and evaluation. Same way, Chapter 4

conclude thesis with future work.
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Chapter 2

“DefenseChain” Solution Approach

In this chapter, We discuss the various literature work that have led to the idea

and implementation of this research and then we discuss solution design for “De-

fenseChain”.

2.1 Related Work

2.1.1 Threat Intelligence Sharing

Due to the constant increase in the number and complexity of cyber attack in-

cidents, organizations are eager to have proactive and actionable knowledge for

efficiently defending their valuable assets i.e., cloud-hosted applications. Towards

this end, they need to develop the practice to share threat intelligence information

amongst their peers in order to effectively and collectively detect cyber attacks,

and stand up robust defenses that mitigate the attack impact on their assets.

Several works have been performed to enable cyber defenders to explore threat

intelligence sharing capabilities and construct effective defenses against the ever-

changing cyber threat landscape. The authors in [38] and [18] identify gaps in

existing technologies and introduce the Cyber Threat Intelligence model (CTI)

and a related cyber threat intelligence ontology approach, respectively. The work
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in [9] details a novel approach based on Structured Threat Information eXpres-

sion (STIX) to deal with system diversity during threat information sharing. An

encryption strategy for threat intelligence sharing is proposed in [10] in the form

of a privacy preserving protocol. The CYBEX work in [50] details an incentivized

approach and uses the concept of an admission fee, as well as interaction models

organizations for cybersecurity information exchange to defend against attackers

in a dynamic game. fThe novelty of our work is in the design of a threat in-

telligence sharing platform using consortium Blockchain in order to implement a

‘defense by pretense’ paradigm for cyber defense as detailed in the work on the

Dolus system [40]. We adapt the two-stage ensemble learning scheme to trigger

co-operation between multiple domains who collectively provide detection and im-

pact mitigation to defend a domain targeted by attackers through DDoS, APTs

and cryptojacking.

2.1.2 Reputation Systems

Several different reputation systems have been proposed in prior works that ad-

dress the issues of false reporting and free riding [55], [53], [54]. The work in [55]

proposed the design of a crowdsourcing tournament to maximize a service provider’s

utility in crowdsourcing and provide continuous incentives for users by rewarding

them based on the rank achieved. The authors in [53] presented schemes to elim-

inate dishonest behavior with the help from a trusted third party. In a related

effort [21], a reputation system is developed that overcomes the limitations in

decentralized systems and quantifies the reputation by removing human opinion

from the transactions. E-commerce applications [45] have also adopted reputation

systems that use Blockchain solutions for implementation of privacy-preserving

mechanisms involving Proof of Stake for determining any new block to be accepted

instead of accepting the highest difficulty block. The authors in [36] designed a

trust model that evaluates trust based on the reputation built up on historical

interactions and indirect opinions about the sender. The work in [29] introduces
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a proxy to transfer reputation values between anonymous contributions, and a

reputation anonymization scheme is shown to prevent the inadvertent leakage of

privacy.

The closest related work to our work is in [25]. Therein, a reputation and

reward scheme is proposed that considers potential information frauds and allows

automatic smart contract execution based on malicious peers. We adapt their Beta

reputation that is used for probabilistic rating and to identify and reward honest

participants. Our work also borrows the idea of using a InterPlanetary File System

(IPFS) [11] for creation of the reputation system and to store device attributes

as well as threat data in an off-chain manner in our Blockchain architecture. We

include the concept of a deposit, and a request/response deadline to eliminate

free-riding cases and false reporting similar to the work in [25]. Furthermore, we

propose a novel objective evaluation of attack detection and impact mitigation

through real-time threat intelligence sharing using novel QoD and QoM metrics.

Our reputation system also features a trust-based model implemented using threat

detection and attack impact mitigation protocols that are motivated by prior work

in [54] for incentivizing domains in a federation to co-operate and trust each other.

2.1.3 Blockchain for Building Trust

There have been several studies that utilize Blockchain as a solution in order to

solve the problems inherent in traditional transactional models. CrowdBC [33]

is an exemplar work that implements a reward/penalty scheme using smart con-

tracts, and explores the ability to abstract a user’s real world identity for providing

a unique method to ensure data privacy. In the area of IoT and sensor networks,

works such as [39] proposed security models based on Blockchain to ensure the

validity and integrity of cryptographic authentication data. A Blockchain-based

security model is proposed for forensic evidence preservation [17] in order to al-

low storage of metadata e.g., pieces of evidence using smart contracts amongst

the different entities involved in an investigation process. The authors in [42] use
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Blockchain to perform edge computing resource allocation to IoT devices using a

policy-based security model to regulate malicious requests. Similarly, iShare [44]

features a security model that leverages Blockchain to collect cyber attack informa-

tion and shares it across organizations in an anonymous fashion. The anonymity

afforded by this approach serves as inspiration to our approach to threat intelli-

gence sharing across a federation of proximal/distant domains. Anonymity issues

have also been tackled in [35], where Blockchain is used to enable anonymous rep-

utation estimation as part of establishing privacy-preserving trust for vehicular ad

hoc networks.

Our work on DefenseChain is motivated by the above works in the context of

designing our reputation system using Blockchain technologies, and for incentiviz-

ing federation peers via an economic model based on a deposit fee received from

potential detector and mitigator peers.

2.2 Solution approach of “DefenseChain”

2.2.1 DefenseChain Platform Overview

Fig. 2.1 illustrates our proposed reference architecture in a federation where a

cloud service provider is hosting several servers belonging to different organiza-

tion peers that may be vulnerable to cyber attack threats. Roles of the peers

involved in the federation area defined in Section III-C. The central part of our

DefenseChain architecture is the consortium Blockchain-based trust setup created

on top of the Dolus defense by pretense implementation as outlined in [40]. Within

this federation, we assume that there are organization peers requesting for a detec-

tion and mitigation service from cooperating domains. Furthermore, each domain

can perform their service using a suitable mitigation strategy such as e.g., moving

target defense, defense by pretense, network firewall defense using blacklisting,

etc. Our DefenseChain rates the detection and mitigation service quality of the
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peer(s), and provides the requesting peer(s) with the flexibility to choose the do-

main that can provide the higher levels of service quality measured through the

QoD and QoM metrics that are detailed in Section III-D. Furthermore, through

our economic model described in Section III-E, we implement an incentivized ap-

proach that allows the mitigator domains to collaborate and also eliminates the

issues of free riding and false reporting. Additionally, our platform design includes

Figure 2.1: Proposed DefenseChain reference architecture that features on-
chain/off-chain components within a federation of peers involving a cloud-hosted
application, dedicated controllers with Hyperledger configurations, IPFS and
QVMs integration.

on-chain and off-chain components for storage, processing and sharing of threat

intelligence information. We elaborate on these components in the following:

On-Chain: this component fetches and displays the details such as e.g., attacker

IP, source IP, number of packets, spoofed IP, blacklisted IP from the IPFS. These

details are fed into the detection and mitigation chaincodes that initialize and

manage ledger state through transactions submitted by applications. In our De-

fenseChain, they help in calculation of QoD and QoM in a federation of peers,

respectively.

Off-Chain: this component stores information such as the packet capture, band-

width capture and device attributes data. Depending on the number of transac-

tions and the attacks encountered, the storage of the related data will require large

amounts of storage (in the order of tera bytes or even peta bytes in core network

domain scenarios). For this purpose, we utilize the IPFS concept from [11] as an

off-chain storage that interacts periodically through the Oraclize [? ] service. The
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hashes of the IPFS data are referenced in our chaincodes. This approach allows

us to deliver a dynamic and efficient data retrieval in a peer-to-peer manner.

Figure 2.2: DefenseChain workflow with requester peer(s) and detector/mitigator
peer(s) sharing threat information co-operatively.

2.2.2 User Interface

We utilized the Hyperledger Composer playground for configuration, deployment,

and testing of our business network i.e., federation. A new federation can be cre-

ated by a requesting peer organization. The business networks are a combination

of identity and profile, and hence they are viable for permission and access control.

We created userIds and secret passwords for the peers to connect into a business

network. In our security policy, we use a Federated Identity and Access Manage-

ment scheme, where mapping of peers in the Hyperledger Composer matches with

the real-world identity of the peers. Initially, the requester, detector and mitigator

roles pay a deposit fee that initiates the transaction process, as shown in Fig. 2.2.

Upon successful validation by a detection or mitigation chaincode, the requester

can search and view the detectors/mitigators.

We share the threat information such as assets affected, attack tools, QVM IP

addresses, blacklisted IP addresses, attack duration times, etc. The attack data

is stored on the controller of the peer node, which is then fetched through the

IPFS as shown in Fig. 2.2. This dynamic fetching off-chain occurs rapidly. At this

step, some delays can be experienced depending upon the network performance.

Furthermore, proximal peers which are likely to be attacked can benefited from

this information by our mitigation protocol. We allow the requester to choose the

proximal peers, which are acceptable in the chance of getting attacked based on
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their geographical location or domain affinity.

2.2.3 System Roles

Requester

Requester is an actor who is affected by cyber attacks and submits the detec-

tion/mitigation requests to the federation. Once a threat is identified, the re-

quester has the option to search for detector(s) and mitigator(s), and can decide

which of the peer service providers are ideal to trust. All the actors have to pay

a deposit fee, which includes the transaction fee and a collateral. The transaction

fee is refunded in the case a mitigation strategy could not be effectively devised;

otherwise, the fee is credited to the detector(s)/mitigator(s) providing the services.

Detector

Detector is an actor who provides cyber attack detection services to the attack

defense requests from a Requester. Upon providing the service, the Detector

receives the transaction fee as payment for a successful detection. To incentivize

Detectors to provide high-quality services, a reward v and a monetary penalty πD

are required as deposit (depositD= v + πD) in the DefenseChain. This deposit

cannot be redeemed before the detection deadline.

Mitigator

Mitigator is an actor who provides mitigation services to all the attack defense

requests from Requesters. Upon providing the service, the Mitigator receives

the transaction fee as payment for successful mitigation. Each Mitigator must

make a deposit of πMj in the DefenseChain, which serves to significantly reduce

the possibility of Sybil and Collusion attacks (see Section III-G for definitions).

Efficient strategies by Mj will result in a corresponding reward vR.
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Watchdog

The Watchdog is a system Daemon which is essentially an admin role that is

used to: (a) analyse the detection and mitigation data, and (b) rate whether the

detection or mitigation has been successful. The Watchdog will also flag false

reports by analyzing the data that it monitors. False reporters will be penalized

in their transactions and could loose out on their collateral and in their ability

to perform future transactions. The output given by the Watchdog determines

the rating and reward that will be received by a Detector/Mitigator who claims

successful service completion.

2.2.4 QoD and QoM Protocols for Decision Making

Our reputation system allows objective rating of the detectors/mitigators after the

threat data has been shared by the requesters. We devise two protocols to govern

the detection and mitigation performed within DefenseChain. These protocols

allow threat data transmission sequentially through a software-defined network

(SDN) infrastructure.

Quality of Detection (QoD)

Fig. 2.3 describes the process of the attack detection protocol. When an attack is

active on a federation peer, the traffic within a cloud provider’s network through

the SDN switches can be monitored using a Frenetic run-time enabled monitor-

ing sub-component [40]. Next, in order to learn and classify the attacks, the

DefenseChain employs a two-stage ensemble learning scheme used in the Dolus

system on the incoming traffic, both from the attackers’ side and from the benign

users’ side. In order to differentiate attackers from benign users, the first stage

handles outlier detection to identify salient events of interest (e.g., connection ex-

haustion), whereas the second stage handles outlier classification to distinguish

different attack event types.
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Figure 2.3: Sequence diagram of the DefenseChain detection protocol that involves
attack detection, IPFS data retrieval, and detection chaincode to calculate QoD.

The controller calculates the “suspiciousness score” of a domain node as detailed

in [40] and summarized in Section IV-B. It stores the calculated score along with

the attack detection data (e.g., attacker ID, source IP, number of packets, attack

start time, attack end time, response time and deadline time) in the IPFS. From

the IPFS, the related data and score information is consumed by the detection

chain code. Using the data and the suspiciousness score information, the QoD

score is calculated and displayed on the user interface.

We present the following mathematical formulation to determine the QoD val-

ues (see Table I for notation details). Let ai ∈ [0, 1] be the accuracy used to

determine the closeness of measurement of detection. Snorm ∈ [0, 5] is the suspi-

ciousness score which is calculated on the basis of number of unique destinations,

total number of connections and the total number of bytes transferred for differ-

ent type of attacks encountered. Let k represent the number of types of attacks

encountered on the requester side. The time for QoD estimation is divided into

response and detection times. Let tr be the response time defined by -

tr = e
tdeadline−tr

tdeadline (2.1)
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and td be the detection time defined by -

td =
td − tmin

tmax − tmin

(2.2)

A = 1
n

∑n
i=1

ai∗
∑k

j=1
Snorm

k

td
(2.3)

Our final QoD calculation considers the response time as a deciding factor in

assigning the scores. Let y be a Watchdog defined penalty variable that is charged

when the response time is greater than the deadline time. For our use case, we

consider y as 0.8 that is a 20 percent reduction in the score. The QoD is thus

given by:
(2.4)

QoD =


A,iftr ≤ tdeadline

A · y,iftr > tdeadline

Quality of Mitigation (QoM)

Fig. 2.4 describes the process of the attack mitigation protocol. Once attack de-

tection is done, the Requester then submits the request for attack mitigation to

the mitigator(s) based on trust considerations. The mitigation chaincode has the

script that triggers the appropriate mitigation policy (i.e., to automate the miti-

gation mechanism). Once the appropriate mitigation policy is set, the controller

redirects the attack traffic to the QVMs. Meanwhile the mitigation mechanism for

a particular attack checks the resource availability and submits a response time to

the mitigation chaincode. The mitigation chaincode takes into account the avail-

ability of resources, the service response time and detection effectiveness in order

to calculate the QoM.

We propose the following mathematical formulation to determine the QoM.

Let tm ∈ [1, 10] be the time taken to mitigate an attack impact, which is given by

13



Figure 2.4: Sequence diagram of the DefenseChain mitigation protocol involv-
ing interactions of pretense initiation, redirection of attack traffic and mitigation
chaincode to calculate QoM.

-

tm =
tm − tmin

tmax − tmin

(2.5)

Let r ∈ [0, 1] be the attack reocurrence rate and Sr ∈ [10, 100] be the success rate

of the Mitigator. The QoM is thus given by:

QoM =
∑n

i=1 ·Sr

er·tm
(2.6)

2.2.5 Incentives for Sharing

We also consider domain reputation as a factor in performing decision making.

It allows the DefenseChain to choose a detector or a mitigator based on their

respective historic reputations. We follow a semi-legal approach, where we focus

on determining the reputation of a detector/mitigator based on their service per-

formance and deposit fee factors. With the historic reputation information, and

owing to the design of the detection/mitigation protocols in our scheme, we enable

a trust building platform in DefenseChain for threat detection and mitigation. A

14



Table 2.1: Notations used in this paper.

Notation Description
td time taken to detect an attack
tm time taken to mitigate an attack
tmin assumption made about minimum time taken to

detect/mitigate an attack
tmax assumption made about maximum time taken to

detect/mitigate an attack
tr service response time
Snorm Suspiciousness Score for each type of attack
y penalty factor
Sr successful rate to mitigate attack impact
er attack reoccurence rate
n number of interactions
β initial reputation
βk average reputation
βw overall reputation
f fee

higher reputation score leads to a higher probability of a peer being selected for

providing detection/mitigation services in the future.

We categorize βW into three intervals, where if the QoD/QoM value lies in the

range of [0,3], a score of -1 is assigned. If QoD/QoM value is in the range of [3,7],

then a score of 0 is assigned; similarly, a score of 1 is assigned if QoD/QoM is in

the range of [7,10]. Additionally, βk represents the mean reputation value of the

detector(s)/mitigator(s). If there is a case of no deposit submission, and if the

reputation is less than the mean reputation value, then the βW is set to negative

one. If the deposit fee and the reputation is higher than the mean reputation,

then the βW is set to zero. Following this logic, we define our βW as follows:

βW =


−1, if QoD/QoM ε [0, 3], β ≤ βk and f = 0

0, if QoD/QoM ε [3, 7], β ≥ βk and f = 0

1, if QoD/QoM ε [7, 10]
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2.3 Performance Evaluation

In this section, we evaluate our DefenseChain platform by performing real-time

threat sharing of DDoS, APTs and cryptojacking in realistic experiments. We

show how DefenseChain effectively allows a federation of peers to leverage the at-

tack threat information that is shared across multiple domains. Further, we com-

pare the performance of our DefenseChain solution with state-of-the-art schemes

proposed in related works such as [13] [34] [30] and [25].

2.3.1 Experiment Testbed Setup

Figure 2.5: NSF Cloud [12] testbed setup used to evaluate DefenseChain perfor-
mance with experiments involving SDN for testing platform capabilities.

We implemented our DefenseChain using the NSF Cloud [12] infrastructure

as shown in the Fig. 2.5. In this testbed, we created a peer federation network,

where each peer organization is connected through a central root switch. Each

peer organization has a dedicated QVM and a Controller to perform detection

and mitigation protocols. We installed the Hyperledger Composer platform on

the controllers of each organization. We introduced different channels on the

Blockchain by having the concept of inter and intra-organization and deploying
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them on virtual machines. All of these components were connected via a network

switch that facilitated interactions between the federation of users.

The Missouri InstaGENI and UMKC InstaGENI nodes Fig. 2.5 act as proxi-

mal peers, whereas the Michigan InstaGENI acts as a distant peer. We leverage

the IPFS deployed on a GPO ExoGENI node that is connected through the Or-

aclize service via a REST API. The interaction between on-chain and off-chain

components is done through REST API calls and the Oraclize service.

Reputation scores and threat metadata can also be queried using REST API

calls. Moreover, peers can query the transaction history, which includes fields such

as: reputation score, number of interactions, and source IP.

2.3.2 Network Feature Analysis

We use Frenetic (an open-source SDN controller platform [40]) to execute Python

scripts to identify suspicious packets, gather attack patterns in order to direct

switches via SDN to redirect packets to pertinent QVMs. We then broadcast this

information to the neighboring switches where the IP addresses of the attackers

are blacklisted by updating a corresponding network policy. We randomize the

attack data for DDoS, APTs and cryptojacking by changing e.g., the total bytes

transferred, rate of transfer, connections made, and attack duration. This allows

us to get dynamic suspiciousness scores of domain nodes for different targeted

attacks. For example, in case of a DDoS attack, we exhaust the targeted appli-

cation using a SlowHTTPTest and thereby cause random changes in e.g., number

of packets, and attack times. We also perform event-based simulations to get dif-

ferent suspiciousness scores for different types of targeted attacks by:

Destination suspiciousness for trace t:

dsti = wdst ×
numDsti − numDstMini

numDstMaxi − numDstMini

(2.7)
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Flow suspiciousness for trace t:

flowsi = wflows ×
numFlowsi − numFlowsMini

numFlowsMaxi − numFlowsMini

(2.8)

Bytes suspiciousness for trace t:

bytesi = wbytes ×
numBytesi − numBytesMini

numBytesMaxi − numBytesMini

;

wdst ∈ [0.0, 1.0];wflows ∈ [0.0, 1.0];wbytes ∈ [0.0, 1.0]

(2.9)

Device suspiciousness for trace t:

ssi =

√
dst2i + flows2i + bytes2i

3
(2.10)

We assume the weight parameters i.e., wdst, wflows,wbytes to be equal to 1 in a

general case of suspiciousness score calculations. Also, the Min and Max values are

assumptions made per device type based on the current knowledge of the device,

as well as the network and traffic expectations.

2.3.3 Evaluation Results

We evaluate our DefenseChain through experiments using metrics such as detec-

tion time, mitigation time, attack reoccurence and peers’ reputation. We compare

the performance of DefenseChain with state-of-the-art schemes i.e., First Come

First Serve (FCFS) [13], Random [34], Distance-based [30] and the Social Repu-

tation models [25]. We performed simulation experiments by choosing a different

set of Detectors and Mitigators over 25 iterations. This is to simulate real-world

situations that allow us to create a fair chance of interactions. Each Mitigator and

Detector have different values of data corresponding to the detection and mitiga-

tion strategies that they employ. Our DefenseChain picks a Detector or Mitigator

from a non empty set and a two-stage simulation experiment is conducted. In

these experiments, we consider the DDoS attack as our exemplar cyber attack

scenario.
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Figure 2.6: Performance comparison of DefenseChain with First Come First Serve,
Random, and Distance-based schemes for detectors chosen to determine QoD

Our first experiment was to evaluate the decision making process in choosing

a Detector and Mitigator, when a request arrives from a Requestor who is under

a targeted attack. We simulated a total set of 20 Detectors and Mitigators. From

this total set, we randomly generated a subset of 5, 10, 15, 20 Detectors and Mitiga-

tors for evaluating the various decision making schemes. With our DefenseChain,

the Requestor ended up choosing the Detector(s)/Mitigator(s) based on their cal-

culated QoD and QoM scores. The other schemes uses different algorithms for

choosing the Detector and Mitigator. For instance, the Random scheme will ran-

domly pick one DetecXtor/Mitigator, the FCFS scheme will choose the first peer

who has responded to the request submitted by the Requestor, and the Distance-

based scheme will choose the nearest Detector/Mitigator for detection/mitigation

of the cyber attack. Our results show that Mitigators and Detectors chosen by our

DefenseChain have better overall QoD/QoM scores when compared to the state-of-
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Figure 2.7: Performance comparison of DefenseChain with First Come First Serve,
Random, and Distance-based schemes for mitigators chosen to determine QoM.
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Figure 2.8: Performance comparison of DefenseChain with First Come First
Served, Random, and Distance-based schemes for evaluating detectors on the basis
of the time taken for detection

the-art schemes. This can be seen in Fig. 2.7 (a, b), where DefenseChain improved

performance ranges from 1.3x - 4x times higher in terms of QoD/QoM values. This

improvement obtained by our DefenseChain is due to the fact that we consider a

comprehensive set of parameters to determine the Detection and Mitigation capa-

bilities, rather than randomly choosing from a set of Detectors/Mitigators or using

simplistic decisions considering only the order in response to the request or the

distance from the Requestor, as in the other FCFS, Random, and Distance-based

schemes being compared, respectively.

Upon choosing the Detector/Mitigator using our DefenseChain, we analyze

the performance trade-offs in the detection time, mitigation time with the attack

reoccurence metric. As shown in Figs. 3.3.1 (a, b, c), DefenseChain takes up to 2

times more time in detection and mitigation of cyber attacks as compared to the
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Figure 2.9: Performance comparison of DefenseChain with First Come First
Served, Random, and Distance-based schemes for evaluating mitigators on the
basis of the time taken for mitigation

other schemes, due to its multiple stages, i.e., policy update, attack traffic redi-

rection and spoofing of the IP address during the detection/mitigation processes.

However, these processes only consume a few minutes and these overhead times

can be compensated by using the defense by pretense strategies that buy time for

federation peers to create a robust cyber defense solution.

It is however important to note that our DefenseChain produces the least at-

tack reoccurence rate, which is 10-100 times lower than other schemes, as shown

in Fig. 3.3.1 (c). This is because of our policy enforcement approach to mitigate

attacks with more secure mechanisms using the Dolus system. The reoccurence of

the cyber attack is an important measurement of the quality of detection and the

effectiveness of the mitigation services, and all Requestors will inherently give a

much higher weight in real-world scenarios. Thus, we show that our DefenseChain
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Figure 2.10: Performance comparison of DefenseChain with First Come First
Served, Random, and Distance-based schemes for studying the their performance
trade-offs in the context of the attack reoccurence rate.
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Figure 2.11: Performance comparison of DefenseChain with a SocialReputation
model proposed in [25] in order to evaluate reputation values for rational and
irrational mitigators.
has much higher performance considering trade-offs in comparison to other state-

of-the-art decision-making schemes in choosing the appropriate Detectors and Mit-

igators in a federation.

Lastly, we compared our reputation system implementation with the Social-

Reputation based model [25] to evaluate its efficacy in determining and dealing

with rational and irrational mitigators. In this evaluation, we initialized reputation

scores of rational and irrational mitigators as 11 and 6. Choosing a baseline helped

us to get results comparable to a real-world setting. For each iteration performed,

we show the cumulative reputation scores of both DefenseChain and SocialRepu-

tation. Using our feedback from our Watchdog service described in Section III-E,

our DefenseChain identifies the rational/irrational Detectors/Mitigators and pro-

vides them with pertinent feedback based on their historic data and social data in

the Blockchain. As shown in Fig. 2.11, with the increase in number of iterations,

our DefenseChain shows a faster increase in reputation for rational mitigators due

to its ability to choose the most capable and reliable Detectors/Mitigators using

our comprehensive QoD/QoM scoring. Additionally, the reputation of irrational

mitigators decreases at a much faster rate as our DefenseChain is more capable of

identifying false reporters and free riders, who are assigned negative scores.
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Chapter 3

HonestChain

3.1 Related Work

3.1.1 Health Information Sharing Systems

Health data sharing challenges have been widely approached by organizations

for many years around efficient and secure ways to conduct the data brokering

process. The data brokering process includes: data integration, data protection,

Institutional Review Board (IRB) approval, brokering auditability, data assurance,

and data request for analysis/visualization.

The data integration issue has been an extensively studied topic in prior works.

Related efforts focus on defining frameworks to consolidate healthcare data from

disparate sources into a unified platform. Authors in [16] proposed a common

data model to serve as data hub for data brokering processes, which improves

data accessibility and availability. Works such as [22] that aim to improve data

protection automate the data de-identification process and centralize the IRB

request evaluation.

While above works expedite the data brokering function, all of them however

require human intervention to evaluate requests and manually approve or deny
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them. Moreover, they don’t systematically address the issues related to auditabil-

ity and assurance of the brokering process, and don’t devise methods to minimize

human intervention. In contrast, there have been recent efforts such as the work

in [51] to semi-automate the honest broker processes through automation in com-

pliance checking to expedite the data sharing.

Our goal in the current work is to extend the above prior works and implement

a fully automated honest broker solution using Blockchain and chatbot technolo-

gies with minimal custodian-in-the-loop intervention. Our approach establishes

distributed trust by improving efficiency in compliance checking, incorporating

auditability, and including a common data model to improve data accessibility.

Thus, we address long delays in data accessibility due to human intervention based

on automation of assurance and auditability steps during requester-custodian co-

operation in protected data access.

3.1.2 Guided Data Brokering with Trust

The work in [51] proposed a semi-automated honest broker that partially addresses

the lack of trust between data custodians and data consumer in order to improve

the data sharing process. Their methodology does not focus on improving the con-

sumer interactions within a trusted health information sharing platform. Trust

can be established by having data custodians use guided interfaces such as con-

versational agents i.e., chatbots to avoid human errors in over/under-provisioning

of data requests or enable quick submission of protected complex data requests.

Advantages of using chatbots have been presented in works such as [20], where

mobile health care services have been improved using relevant knowledge bases to

provide fast requirement analysis and quick response to address conditions of pa-

tients impacted by accidents. However, the design of chatbot guided systems need

to be built in a manner that ensures maximum service, component re-usability

and scalability. In addition, chatbots need to be designed with suitable natural

language processing (NLP) techniques as detailed in [28] based on ranking and
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sentence similarity calculations.

The novelty of our approach is in the development of an automated brokering

system using a chatbot incorporated with the necessary NLP techniques that helps

in improving the data custodians’ and data consumers’ reputation. Our chatbot

development follows the best practices for chatbot creation as outlined in [3]. We

leverage chatbot technology to minimize the service times caused by human errors

and its integration with the Blockchain technology minimizes trust bottlenecks.

3.1.3 Blockchain in Broker Systems

Several prior works address the problem of lack of trust in sharing protected health-

care data. One of the exemplar works in [32] proposes a trust-building broker-

ing architecture that fosters patient-centric cloud eHealth services. This model

seeks user feedback and enables auditability by tracking transactions through a

Blockchain solution. Additionally, brokering systems with Blockchain technology

can both improve the quality of patient care and reduce the cost of care with tar-

geted safe sharing of healthcare data as shown in [6]. To overcome the limitations

in a centralized architecture of health information sharing such as high dependence

on network connectivity and a single point of failure, authors in [43] propose the

use of a Blockchain solution. Their approach uses distributed ledger technologies

to facilitate multi-site, collaborative studies in the data-intensive sciences such as

genetics/genomics, and enables auditability through single institutional ethics re-

view in their Blockchain platform. The work in [37] uses technologies such artificial

intelligence, machine learning and Blockchain to enable researchers to access med-

ical data by transforming simple facial pictures and videos into powerful sources

of data via predictive analytics. Blockchain technology when integrated with an

online machine learning platform as shown in [8] can further help in distribution

of partial models, and design new proof-of-information algorithms.

Our HonestChain is inspired by the above works and is a platform that takes

into account both the objective and subjective reputation attributes. Our repu-
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tation scheme with an automated risk assessment technique ensures that data re-

quests comply with health information sharing standards. Through our Blockchain

based platform, we incentivize the consortium of peers through rewards that use

the reputation of data custodians and data consumers. This interaction between

data custodians and data consumers in our HonestChain builds a trusted network

of peers e.g., data custodians automate data requests via audit log notifications

to data custodians, and serve data consumers with a faster data access decision

process.

3.2 Solution approach of HonestChain

3.2.1 HonestChain Platform Overview

Figure 3.1 illustrates our proposed reference architecture in a consortium where

our HonestChain is hosted on a cloud infrastructure that is accessible by different

peers that want to leverage the service. The key component in our HonestChain is

the consortium Blockchain-based trust setup built on top of our reputation scheme,

and incentives for information sharing as detailed later in this section. Within this

consortium, we assume that there are peers (Requesters) requesting for protected

health data, and peers (Providers) providing the records from cooperating do-

mains. Furthermore, peers in each domain are assigned with a reputation value

based on their contributions to the other consortium peers. Our HonestChain

rates the Requester and Provider peers using metrics such as compliance score,

dataset risk, and user’s feedback. Using our reputation scheme, we minimize the

issues of Loss of Value and Loss of Opportunity in enabling protected data access.

HonestChain platform design includes on-chain and offchain components for stor-

age, processing and sharing of health information:

On-Chain: this component fetches and displays the details such as e.g.,user_id,

dataset_id, risk_level, decision, reputation from the CDM and the related au-
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Figure 3.1: Proposed Honestchain reference architecture that features
on-chain/off-chain components within a consortium of peers involving an honest
broker service, dedicated blockchain nodes with Hyperledger configurations,

chaincodes and CDM.

tomated honest broker services in HonestChain. These details are fed into the

chaincode that helps in calculation of User and Provider Reputations.

Off-Chain: this component stores information such as the details about the do-

main form filled by requester, the requester details, compliance score, and dataset

details. Depending on the number of requests submitted and the heterogenity

of requested data, the storage of the related data will require large amounts of

storage (in the order of tera bytes or even peta bytes in core network domain sce-

narios) and a homogenized data format. For this purpose, we utilize the CDM as

an off-chain storage that interacts periodically through the related honest broker

services in HonestChain. The dataset_id from the CDM is fetched from honest

broker services and is referenced in our chaincode. This approach allows us to de-

liver a dynamic, standards-compliant and efficient protected data retrieval process

in a peer-to-peer manner.

3.2.2 HonestChain System Roles

There are three different roles i.e., Healthcare Data Requester, Healthcare Data

Provider, Healthcare Brokering System Administrator that serve as central actors

in our HonestChain implementation. In the following, we provide their definitions:
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Healthcare Data Requester

Requester is an actor who needs the health data and submits the requests to a

consortium of peers. Once the request is identified, our honest broker service in

HonestChain determines the parameters to send to the Blockchain network, and

determines the Requester’s reputation. The transaction gets submitted when all

the parameters are sent via REST API calls and the Provider is notified.

Healthcare Data Provider

Provider is an actor who provides health records to the requests from a Requester

if the decision is approved from the Blockchain chaincode. To incentivize Providers

to provide high-quality services, a reputation Rp is given to the Provider so that

their service is regarded as a trustworthy and reputable service.

Healthcare Brokering System Administrator

Admin is an actor who: (a) analyzes the data request, and (b) rates whether the

transaction has been successful. The Admin will also analyze and monitor the

submitted request data. The Admin is responsible for taking care of the ‘manual

approval required’ decisions by passing the details of the requester and requested

data to the honest broker governance process (manual or automated) for further

evaluation. Admin here is also the point of contact for further assistance for the

request related queries by the Requesters.

3.2.3 Reputation based Healthcare Data Brokering Proto-
cols

User Reputation

Prior works in [1, 2, 41] determine HIPAA compliance in order to consider func-

tionality of healthcare systems based on predefined regulations. Our proposed

HonestChain solution features an automated HIPAA [27] compliance checking
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method to establish the trust and ensures auditability through Blockchain of data

request transactions. To determine the trust of a Requester, we first calculate if

the data requested by the Requester is compliant or not. This process is done

by comparing the policies of requested data with the answers from the data do-

main request form filled by Requester. A Requester needs to fill the domain form

that consists of 18 questions. Each domain fields include Yes (Y), and No (N).

Additionally, each type of data (aggregated, de-identified, limited, or identified)

also maintains its own policies based on the sensitivity. The data policies are also

stored in the form of a list of 18 respective categories. Furthermore, we categorize

the policies based on the Requester role that is internal and external. The data

policies include 1 and 0, where 1 means compliant and 0 means not-compliant.

HonestChain retrieves the answers from the form and compares them to the

policies of the requested data. The recorded comparison outcomes are assigned

a compliance score as shown in Equation 3.1. The equation first computes the

score and then the resulting value is normalized in the range from [1, 10] as done

by Equation 3.2. We compute the risk on the basis of output of the average

function as shown in Table I. This function takes as an input compliance and

dataset risk. Once the average is computed, the risk levels are computed and are

described as Low (L), Medium (M) and High (H) risks as shown in Equation 3.3.

Our reputation scheme is based on two modules that is reputation of Requester

and reputation of Provider. The reputation of the Requester is computed based

on the risk levels. We describe our reputation as 0, -1 and +1 based on the risk

levels as shown in Equation 3.4. The base reputation default is set to 10 for a new

Requester, and this value is updated based on new requests submitted.

Table ?? shows the notations used in the remainder of this section. The Score

calculation (Si), Compliance score (Cs), Risk evaluation (Ru), and Reputation

value calculation (Bw) can be given as:
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Score calculation:

Si =

 1 if (ai = ri) or (ai = 1 and ri = 0)

0 if (ai = 0) and (ri = 1)
(3.1)

where (0 < i < n), and n = number of terms in domain form.

Compliance score normalization from 1 to 10:

Cs =

[(
n∑

i=1

(Si ∗ 10)

)
/n

]
(3.2)

User Risk Level definition:

Ru =


L : Cs ∈ [1, 3]

M : Cs ∈ [4, 6]

H : Cs ∈ [7, 10]

(3.3)

User Reputation calculation:

Bu =


−1 if (Ru = H); request is denied

0 if (Ru =M); manually evaluated

1 if (Ru = L); request is approved

(3.4)

Data Provider Reputation

Chatbot guidance in the request form helps the Requesters to fill the data more

accurately, which in return increases the reputation of the Requester. After the

request is handled successfully and protected data access is granted, the Re-

quester will fill out a feedback form where they subjectively give responses on

Provider’s performance. In this way, we account for subjective opinions in increas-

ing Providers’ reputation in addition to using objective metrics such as number

of requests handled, service time per request, number of feedback received, etc.

We calculate reputation of the Provider based on Equation 3.5 borrowed from a
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related work [4]:

Bp =


1 if (positive); trust worthy

0 if (neutral); no assessment

−1 if (negative); not trust worthy

(3.5)

In our consortium Blockchain, we ensure that the providers are incentivized to

provide the accurate data and the information is shared across the trusted peers.

We incorporate an optimistic approach where we provide rewards to Providers as

an incentive to share the protected healthcare data. This reward is the increase in

reputation that helps them by allowing more Requesters to be paired to use the

Provider’s data. Our reputation value calculation is given by:

Bp = K +

(
m∑
i=1

(Sp)

)
(3.6)

where: (0 < i < m); K is a constant that represents the initial reputation of

provider p; m is the number of feedback values received on Provider p; Sp is

the value given to Provider p on each feedback.

Initially, we assign a base reputation of 10 by default that is given by constant

K to the Provider. Through our reputation value calculation, Providers can in-

crease/decrease their reputation. The determination of reputation value is given

by Sp, which is obtained through a feedback form provided to the Requester af-

ter the user receives the requested data. Requester can rate the Provider and the

value goes into the -1, 0 or 1 category. The overall feedback given by the Requester

results in a cumulative value calculation for the Provider. In this optimistic model,

our goal is to allow Provider and Requesters to gain reputation by contributing

honestly and sharing the healthcare data in a trusted, automated manner via an

immutable ledger.
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3.2.4 Incentives for Sharing

We consider risk and reputation as the primary HonestChain factors in perform-

ing the decision making to authorize protected data access. This allows the Hon-

estChain to rate a Requester and a Provider based on their respective historic

feedback and risks. We follow a semi-legal approach including both objective and

subjective ratings as detailed above, where we focus on determining the reputa-

tion of a Requester and Provider(s) based on their service performance and data

request parameters. With the historic reputation information, and owing to the

design of the reputation protocols in our HonestChain, we enable a trustworthy

platform in HonestChain for health information sharing. A higher reputation value

leads to a higher probability of a Provider peer being selected for delivering service

to the Requester, and a higher reputation value leads to a higher probability of

Requester peer data being approved and delivered in a fast manner in the future.

3.2.5 Exception Handling

1) Prevention against Sybil attacks : Sybil attacks occur when the attacker dis-

guises as an authorized user and generates multiple illegitimate and fake identities

in order to disrupt the functioning of the service and to take undesired control

over the peers within the consortium. Our HonestChain platform allows an inbuilt

trust creation through certificates. When Hyperledger Composer is deployed to

the Fabric, all the Hyperledger Fabric Certificate Authority servers share the same

database for keeping track of identities and certificates. The identity management

here is centralized and helps in protection against Sybil attacks.

2) Replay attacks : Replay attack occurs when a user tries to delay or repeat the

data transmission in a network. Our scheme is immune to replay attacks due to

the incorporation of Admin authorization. It allows us to associate a certificate

and a private key. The ability to deploy a network is only given to the trusted

authority and furthermore, each transaction has a unique timestamp id that can
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be traced back to the user’s identity. Additionally, due to automatic generation

of a valid private key, a user without a key is unable to modify the content and

the transaction will not reach consensus.

3) Authorization: In our scheme, we first authorize the Requester through our UI

and then we map his/her identity to the Blockchain chaincode. Our scheme only

allows the trusted authorities to execute transactions. If the connection profile

matches with the peer’s details, then the chaincode is executed. This mapping

allows us to trace-back the real identity of Requesters to avoid potential frauds

and thefts.

3.3 Performance Evaluation

3.3.1 Experiment Testbed Setup

To evaluate our Honestchain, we implemented our solution using a realistic sim-

ulation testbed on a public cloud infrastructures as shown in Figure 3.2. In this

testbed setup, we included a node dedicated for the User Interface (UI). Our UI

is built using the Flask framework and is integrated with a chatbot created using

DialogFlow following the best practices [3]. Requester fills the protected data ac-

cess request in “request form” with the guidance of the chatbot. The Blockchain

implementation is hosted on an AWS EC2 instance and involves an Hyperledger

Composer installation that utilizes 20 GB memory. Additionally, we utilize an

AWS RDS instance for hosting the CDM service. To allow CDM service to handle

large datasets, we configure 40 GB memory on the RDS. The request details are

send to the HonestChain services for risk assessment calculations, and the peer

reputation calculations. Based on the calculated values, HonestChain allows data

custodians to automate decisions on approvals or denials of the data requests.
We considered state-of-the-art healthcare requester reputation schemes to com-

pare performance and evaluate reputation values of our HonestChain. Specif-

ically, we compare the performance of HonestChain with Recency-Based [15],
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Figure 3.2: Cloud testbed used to evaluate HonestChain platform performance
with experiments involving a distributed network.
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Figure 3.3: HonestChain performance comparison with state-of-the-art schemes
for reputation values for requesters

Catalog [31], and Manual [7] schemes. The Recency-based scheme includes the

information about the last two requests submitted, whereas the Catalog includes

requests that prompt users to choose particular dataset(s) from a limited cata-

log list; the Manual scheme involves filling out paper forms for data request and

authorization/acess processes. We choose these schemes because they help us in

deriving close-to-real results based on the types of request submissions.

We performed simulation experiments by choosing a different set of Requesters

and Providers over 25 iterations. The goal here was to simulate real-world situ-

ations that allow us to create a fair chance of interactions. Each Requester and
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Figure 3.4: HonestChain performance comparison with state-of-the-art schemes
for service times

Provider have different values of data corresponding to the dataset that they re-

quest, or the dataset that they provide. We performed simulations of the request

process by taking into account parameters such as: type of dataset required, com-

pliance score, and dataset risk levels to determine the reputation values. Each

request associated with these schemes have different values of data corresponding

to the data request parameters that they employ. We evaluate our HonestChain

in the testbed experiments using metrics such as: reputation values, service time

and request resubmission rate. Reputation value is the cumulative score assigned

to the Providers/Requesters based on the approval/denial of a series of requests.

Service time is the total time that our HonestChain takes to process each request.

Request resubmission rate is the number of requests that are resubmitted upon

denial in the previous transaction.
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Figure 3.5: HonestChain performance comparison with state-of-the-art schemes
for studying their performance trade-offs in terms of request resubmission rate

3.3.2 Reputation Scheme Results

Our first experiment was to evaluate the decision making process in pairing a

Provider, when a request arrives from a Requester for a particular dataset. We sim-

ulated a total set of 20 Requesters and Providers. From this total set, we randomly

generated a subset of 15 requests evaluating the various decision making schemes.

With our HonestChain, the Requestors ended up pairing with Provider(s) based

on their calculated Reputation values. The other schemes use different algorithms

for pairing the Requesters and Providers. For instance, the Recency-based scheme

will pair one Requester or Provider based on the last couple of requests, whereas

the Catalog scheme will pair the Requester/Provider peers based on the request

submission involving the completion of a pre-defined form (without guidance);

the Manual-based scheme will pair the Requester/Provider through a long te-

dious form submission process. Our results show that Requesters and Providers
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paired by our HonestChain have better overall reputation values when compared

to the state-of-the-art schemes. This can be seen in Figure 3.3.1(a), where the

HonestChain’s performance improvement ranges from 1.3x - 4x times higher in

terms of reputation values. This improvement in reputation in our HonestChain

is due to the fact that we consider a comprehensive set of parameters to determine

the Reputation values, rather than pairing Requesters/Providers based on a pre-

defined form filling criteria in Catalog or using last couple of submitted requests

in Recency-based approach.

Upon choosing the Provider using our HonestChain, we analyze the perfor-

mance trade-offs in the service time, with the request resubmission metric. As

shown in Figures 3.3.1 b and c, HonestChain takes up to 1.5 times more ser-

vice time in the worst case as compared to the Recency-based [15], Catalog [31],

and Manual [7] schemes. This is due to the rigorous multiple stages involved in

the HonestChain process of compliance checking, risk determination and decision

making process and data retrieval process using the CDM module. However, these

steps only consume a few minutes and the related overhead times can be compen-

sated by using automation to make the risk assessment strategies more efficient.
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Figure 3.6: HonestChain Throughput results involving measurement of
transaction rate in terms of block sizes ranging from 10,000 to 100,000.

More importantly, we should note that our HonestChain produces the least

request resubmission rate compared to the other schemes. It is due to our chatbot

guided interface, consoritum Blockchain architecture and the automation for effi-
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cient risk enforcement policy implementation that together ensure that protected

data requests are compliant with the security standards (thus minimizing Loss

of Value) and have inherent auditability that avoids manual intervention (thus

reducing the chance of Loss of Opportunity). The request resubmission rate is an

important measurement of the healthcare broker systems, and all Requestors will

inherently get a much higher weight or reputation in real-world scenarios if their

resubmission rate is low. Thus, we show that our HonestChain has much higher

performance overall considering trade-offs in comparison to the state-of-the-art

decision-making schemes in pairing the appropriate Requesters and Providers in

a consortium. any anomalies.

3.3.3 Scalability Results

Lastly, we evaluate our HonestChain based on the scalability performance as shown

in Figure 3.6. Specifically, we compare HonestChain throughput results involving

measurement of transaction rate (throughput rate per second) in terms of increas-

ing block sizes ranging from 10,000 to 100,000. For a fair comparison, we used

the same transaction chaincode for all experiments. Each transaction process in-

volves a series of independent read/write operations focusing on I/O, caching and

parallelism. We get transaction throughput of 210,000 (tx/sec) for a block size of

10,000 transactions. A smaller block size of 10,000 transactions corresponds to a

lower batch size as per [24], which produces a lower throughput. In contrast, a

higher block size of 40,000 transactions corresponds to a higher batch size, which

produces a larger throughput rate. As the block size further increases up to 40,000,

we see the highest transaction throughput. When the block size goes beyond and

reaches to a level of 60,000, there is a sharp decrease in the transaction through-

put. This decrease can be attributed to the delay in accepting the committed

transactions by the endorsing peers in the Hyperledger Fabric, and the limited

number of endorsing peers to accept the consensus mechanism. We also note that

this delay occurs due to the limited resources available in our cloud testbed setup
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to process transactions above 60,000. It is possible however to minimize this time

delay by allowing participation of higher number endorser peers, and by increasing

the resource availability in real-world HonestChain deployments to meet service

demands. In summary, the scalability experiment results show that by achieving

a highest throughput on 40,000 block size, our HonestChain platform is practical

and is able to scale for a reasonably large number of protected health data requests

in a consortium of Requesters and Providers.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we provided two applications : DefenseChain and HonestChain.

In the DefenseCahin, we developed a novel DefenseChain platform that leverages

advancements in Blockchain technology for providing threat intelligence sharing

platform capabilities to defend against cyber attacks such as DDoS, APTs and

cryptojacking. DefenseChain can be used to perform attack detection/mitigation

via threat intelligent sharing among a federation of domains using distributed

trust principles. We devised novel QoD and QoM metrics to determine which

Detector and Mitigator can be selected by a Requester in a trustworthy manner,

based on factors such as e.g., accuracy, suspiciousness score, service time, attack

type and attack reoccurence. Our consortium Blockchain reference architecture

implementation allows threat data sharing before and after attacks, so that the

Requester is able to request for Detector(s) and Mitigator(s) services to effectively

defend targeted attacks in a timely and robust manner. Our evaluation results

from a realistic experimental testbed and from simulation results show that our

DefenseChain is effective in choosing Detector(s) and Mitigator(s) based on QoD

and QoM values, and outperforms state-of-the-art schemes such as SocialRepu-
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tation model [25] in identifying and handling rational/irrational Detectors and

Mitigators within a federation of co-operating peers/domains.

In HonestChain platform, it leverages Blockchain and chatbot technologies to

enable health information sharing in a secured, expedited and standards-compliant

manner. Using a consortium Blockchain based approach, protected data shar-

ing is efficiently facilitated in HonestChain by using reputation value calcula-

tions of the peers (both Requesters and Providers) and by performing risk assess-

ment of each transaction using automation to ensure auto-assurance and auto-

auditability. HonestChain platform automation of distributed trust and chatbot-

based requester guidance minimizes the Loss of Value and Loss of Opportunity

issues, and thus allows Providers to perform faster data decision making when

processing protected data requests from Requesters. These Provider benefits for

multi-source data sharing and analysis can support rapid innovations for clin-

ical research informatics and engender next-generation decision support for re-

searchers/clinicians in the cure of diseases.

Our evaluation results from a realistic experimental cloud testbed of a health

information system show that our HonestChain is effective in increasing reputation

of both Providers and Requesters. Consequently, HonestChain reduces the request

re-submission rate in comparison to state-of-the-art requester reputation schemes

such as Recency-based, Catalog and Manual schemes that allow for secure and

speedy access to protected data for authorized Requesters. Lastly, we showed

that our HonestChain is practical and scalable to handle tens of thousands of

transactions per block with high-performance.

In the HonestChain, we developed a novel HonestChain platform that leverages

Blockchain and chatbot technologies to enable health information sharing in a se-

cured, expedited and standards-compliant manner. Using a consortium Blockchain

based approach, protected data sharing is efficiently facilitated in HonestChain by

using reputation value calculations of the peers (both Requesters and Providers)

and by performing risk assessment of each transaction using automation to ensure
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auto-assurance and auto-auditability. HonestChain platform automation of dis-

tributed trust and chatbot-based requester guidance minimizes the Loss of Value

and Loss of Opportunity issues, and thus allows Providers to perform faster data

decision making when processing protected data requests from Requesters. These

Provider benefits for multi-source data sharing and analysis can support rapid in-

novations for clinical research informatics and engender next-generation decision

support for researchers/clinicians in the cure of diseases.

4.2 Future Work

The future work scope for this solution is extension of it to more usecases to allow

distributed trust and information sharing. We plan to collaborate with regional

network service providers to integrate our Blockchain-based solutions in their in-

frastructures. We will identify additional real-world scenarios where distributed

trust principles can be applied to authorize access of protected threat data access

to defend against targeted cyber attacks. Additionally, our work can be inte-

grated and optimization strategies and related Blockchain policies for higher-scale

workloads. Towards this aim, one can use high-performance computing back-ends

in cloud platforms as well as Jupyter notebook front-ends to enable faster data

analysis/visualization for the requested protected datasets.

44



Bibliography

[1] Community cloud architecure for salesforce health care applications.) [online].

Available at https://www.salesforce.com/products/community-cloud/faq.

[2] Ibm services: Getting your data ready for precision medicine.(2020) [online].

Available at https://www.ibm.com.

[3] Lise embley, technical writer, national center for state courts(2020) [online].

Available at https://www.ncsc.org/ /media/Files/PDF/About.

[4] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-peer in-

formation system. In Proceedings of the tenth international conference on

Information and knowledge management, pages 310–317, 2001.

[5] H Afshari and Q Peng. Challenges and solutions for location of healthcare

facilities. Industrial Engineering and Management, 3(2):1–12, 2014.

[6] Cornelius Chidubem Agbo and Qusay H Mahmoud. Blockchain in healthcare:

Opportunities, challenges, and possible solutions. International Journal of

Healthcare Information Systems and Informatics (IJHISI), 15(3):82–97, 2020.

[7] Majed Al Dogether, Yahya Al Muallem, Mowafa Househ, Basema Saddik,

and Mohamed Khalifa. The impact of automating laboratory request forms

on the quality of healthcare services. Journal of infection and public health,

9(6):749–756, 2016.

[8] Abdullah Al Omar, Md Zakirul Alam Bhuiyan, Anirban Basu, Shinsaku Kiy-

omoto, and Mohammad Shahriar Rahman. Privacy-friendly platform for

45



healthcare data in cloud based on blockchain environment. Future genera-

tion computer systems, 95:511–521, 2019.

[9] Jean Andrian, Charles Kamhoua, Kevin Kiat, and Laurent Njilla. Cyber

threat information sharing: A category-theoretic approach. In 2017 Third

International Conference on Mobile and Secure Services (MobiSecServ), pages

1–5. IEEE, 2017.

[10] Shahriar Badsha, Iman Vakilinia, and Shamik Sengupta. Privacy preserving

cyber threat information sharing and learning for cyber defense. In 2019

IEEE 9th Annual Computing and Communication Workshop and Conference

(CCWC), pages 0708–0714. IEEE, 2019.

[11] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint

arXiv:1407.3561, 2014.

[12] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max

Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni: A feder-

ated testbed for innovative network experiments. Computer Networks, 61:5–

23, 2014.

[13] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max

Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni: A feder-

ated testbed for innovative network experiments. Computer Networks, 61:5–

23, 2014.

[14] Xiaoming Bi, Wenan Tan, and Ruohui Xiao. A ddos-oriented distributed

defense framework based on edge router feedbacks in autonomous systems.

In 2008 International Multi-symposiums on Computer and Computational

Sciences, pages 132–135. IEEE, 2008.

[15] Lubomir D Bourdev. Autocompleting form fields based on previously entered

values, March 11 2008. US Patent 7,343,551.

46



[16] Andrew D Boyd, Dale A Hunscher, Adam J Kramer, Charles Hosner, Paul

Saxman, Brian D Athey, John F Greden, and Dan C Clauw. The “hon-

est broker” method of integrating interdisciplinary research data. In AMIA

Annual Symposium Proceedings, volume 2005, page 902. American Medical

Informatics Association, 2005.

[17] Sotirios Brotsis, Nicholas Kolokotronis, Konstantinos Limniotis, Stavros Shi-

aeles, Dimitris Kavallieros, Emanuele Bellini, and Clément Pavué. Blockchain

solutions for forensic evidence preservation in iot environments. In 2019 IEEE

Conference on Network Softwarization (NetSoft), pages 110–114. IEEE, 2019.

[18] Eric W Burger, Michael D Goodman, Panos Kampanakis, and Kevin A Zhu.

Taxonomy model for cyber threat intelligence information exchange technolo-

gies. In Proceedings of the 2014 ACM Workshop on Information Sharing &

Collaborative Security, pages 51–60, 2014.

[19] Junho Choi, Chang Choi, Htet Myet Lynn, and Pankoo Kim. Ontology based

apt attack behavior analysis in cloud computing. In 2015 10th International

Conference on Broadband and Wireless Computing, Communication and Ap-

plications (BWCCA), pages 375–379. IEEE, 2015.

[20] Kyungyong Chung and Roy C Park. Chatbot-based heathcare service with

a knowledge base for cloud computing. Cluster Computing, 22(1):1925–1937,

2019.

[21] Richard Dennis and Gareth Owen. Rep on the block: A next generation

reputation system based on the blockchain. In 2015 10th International Con-

ference for Internet Technology and Secured Transactions (ICITST), pages

131–138. IEEE, 2015.

[22] Alex S Felmeister, Aaron J Masino, Tyler J Rivera, Adam C Resnick, and

Jeffrey W Pennington. The biorepository portal toolkit: an honest brokered,

47



modular service oriented software tool set for biospecimen-driven transla-

tional research. BMC genomics, 17(4):434, 2016.

[23] Thanassis Giannetsos, Tassos Dimitriou, and Neeli R Prasad. People-centric

sensing in assistive healthcare: Privacy challenges and directions. Security

and Communication Networks, 4(11):1295–1307, 2011.

[24] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. Fast-

fabric: Scaling hyperledger fabric to 20,000 transactions per second. In 2019

IEEE International Conference on Blockchain and Cryptocurrency (ICBC),

pages 455–463. IEEE, 2019.

[25] Andreas Gruhler, Bruno Rodrigues, and Burkhard Stiller. A reputa-

tion scheme for a blockchain-based network cooperative defense. In 2019

IFIP/IEEE Symposium on Integrated Network and Service Management

(IM), pages 71–79. IEEE, 2019.

[26] Andreas Gruhler, Bruno Rodrigues, and Burkhard Stiller. A reputa-

tion scheme for a blockchain-based network cooperative defense. In 2019

IFIP/IEEE Symposium on Integrated Network and Service Management

(IM), pages 71–79. IEEE, 2019.

[27] Joan Hash, Pauline Bowen, Arnold Johnson, CD Smith, and DI Steinberg. An

introductory resource guide for implementing the health insurance portability

and accountability act (HIPAA) security rule. US Department of Commerce,

Technology Administration, National Institute of . . . , 2005.

[28] D. S. Hormansyah, E. Amalia, Luqman Affandi, D. Wibowo, and Indinabilah

Aulia. N-gram accuracy analysis in the method of chatbot response. Inter-

national journal of engineering and technology, 7:152, 2018.

[29] Kuan Lun Huang, Salil S Kanhere, and Wen Hu. A privacy-preserving repu-

tation system for participatory sensing. In 37th Annual IEEE Conference on

Local Computer Networks, pages 10–18. IEEE, 2012.

48



[30] Xiaohong Huang, Cheng Xu, Pengfei Wang, and Hongzhe Liu. Lnsc: A

security model for electric vehicle and charging pile management based on

blockchain ecosystem. IEEE Access, 6:13565–13574, 2018.

[31] Jacqueline C Kirby, Peter Speltz, Luke V Rasmussen, Melissa Basford, Omri

Gottesman, Peggy L Peissig, Jennifer A Pacheco, Gerard Tromp, Jyotishman

Pathak, David S Carrell, et al. Phekb: a catalog and workflow for creating

electronic phenotype algorithms for transportability. Journal of the American

Medical Informatics Association, 23(6):1046–1052, 2016.

[32] Heba Kurdi, Shada Alsalamah, Asma Alatawi, Sara Alfaraj, Lina Altoaimy,

and Syed Hassan Ahmed. Healthybroker: A trustworthy blockchain-based

multi-cloud broker for patient-centered ehealth services. Electronics, 8(6):602,

2019.

[33] Ming Li, Jian Weng, Anjia Yang, Wei Lu, Yue Zhang, Lin Hou, Jia-Nan Liu,

Yang Xiang, and Robert H Deng. Crowdbc: A blockchain-based decentralized

framework for crowdsourcing. IEEE Transactions on Parallel and Distributed

Systems, 30(6):1251–1266, 2018.

[34] Qun Lin, Hongyang Yan, Zhengan Huang, Wenbin Chen, Jian Shen, and

Yi Tang. An id-based linearly homomorphic signature scheme and its appli-

cation in blockchain. IEEE Access, 6:20632–20640, 2018.

[35] Zhaojun Lu, Wenchao Liu, Qian Wang, Gang Qu, and Zhenglin Liu. A

privacy-preserving trust model based on blockchain for vanets. IEEE Access,

6:45655–45664, 2018.

[36] Zhaojun Lu, Qian Wang, Gang Qu, and Zhenglin Liu. Bars: a blockchain-

based anonymous reputation system for trust management in vanets. In

2018 17th IEEE International Conference On Trust, Security And Privacy

In Computing And Communications/12th IEEE International Conference On

49



Big Data Science And Engineering (TrustCom/BigDataSE), pages 98–103.

IEEE, 2018.

[37] Polina Mamoshina, Lucy Ojomoko, Yury Yanovich, Alex Ostrovski, Alex

Botezatu, Pavel Prikhodko, Eugene Izumchenko, Alexander Aliper, Kon-

stantin Romantsov, Alexander Zhebrak, et al. Converging blockchain and

next-generation artificial intelligence technologies to decentralize and accel-

erate biomedical research and healthcare. Oncotarget, 9(5):5665, 2018.

[38] Vasileios Mavroeidis and Siri Bromander. Cyber threat intelligence model:

An evaluation of taxonomies, sharing standards, and ontologies within cyber

threat intelligence. In 2017 European Intelligence and Security Informatics

Conference (EISIC), pages 91–98. IEEE, 2017.

[39] Axel Moinet, Benoît Darties, and Jean-Luc Baril. Blockchain based

trust & authentication for decentralized sensor networks. arXiv preprint

arXiv:1706.01730, 2017.

[40] Roshan Lal Neupane, Travis Neely, Nishant Chettri, Mark Vassell, Yuanxun

Zhang, Prasad Calyam, and Ramakrishnan Durairajan. Dolus: cyber defense

using pretense against ddos attacks in cloud platforms. In Proceedings of

the 19th International Conference on Distributed Computing and Networking,

pages 1–10, 2018.

[41] Sungyoung Oh, Jieun Cha, Myungkyu Ji, Hyekyung Kang, Seok Kim, Eun-

Young Heo, Jong Han, Hyunggoo Kang, Hoseok Chae, Hee Hwang, and Sooy-

oung Yoo. Architecture design of healthcare software-as-a-service platform

for cloud-based clinical decision support service. Healthcare Informatics Re-

search, 21:102, 04 2015.

[42] Jianli Pan, JianyuWang, Austin Hester, Ismail Alqerm, Yuanni Liu, and Ying

Zhao. Edgechain: An edge-iot framework and prototype based on blockchain

and smart contracts. IEEE Internet of Things Journal, 6(3):4719–4732, 2018.

50



[43] Vaso Rahimzadeh. Ethics governance outside the box: Reimagining

blockchain as a policy tool to facilitate single ethics review and data sharing

for the’omics’ sciences. Blockchain in Healthcare Today, 1:1–10, 2018.

[44] Danda B Rawat, Laurent Njilla, Kevin Kwiat, and Charles Kamhoua. ishare:

Blockchain-based privacy-aware multi-agent information sharing games for

cybersecurity. In 2018 International Conference on Computing, Networking

and Communications (ICNC), pages 425–431. IEEE, 2018.

[45] Alexander Schaub, Rémi Bazin, Omar Hasan, and Lionel Brunie. A trustless

privacy-preserving reputation system. In IFIP International Conference on

ICT Systems Security and Privacy Protection, pages 398–411. Springer, 2016.

[46] Yuqi Si and Chunhua Weng. An omop cdm-based relational database of clin-

ical research eligibility criteria. Studies in health technology and informatics,

245:950, 2017.

[47] Gaurav Somani, Manoj Singh Gaur, Dheeraj Sanghi, Mauro Conti, and Ra-

jkumar Buyya. Ddos attacks in cloud computing: Issues, taxonomy, and

future directions. Computer Communications, 107:30–48, 2017.

[48] Rashid Tahir, Sultan Durrani, Faizan Ahmed, Hammas Saeed, Fareed Zaffar,

and Saqib Ilyas. The browsers strike back: Countering cryptojacking and

parasitic miners on the web. In IEEE INFOCOM 2019-IEEE Conference on

Computer Communications, pages 703–711. IEEE, 2019.

[49] Deepak Tosh, Shamik Sengupta, Charles Kamhoua, Kevin Kwiat, and An-

drew Martin. An evolutionary game-theoretic framework for cyber-threat

information sharing. In 2015 IEEE International Conference on Communi-

cations (ICC), pages 7341–7346. IEEE, 2015.

[50] Iman Vakilinia, Deepak K Tosh, and Shamik Sengupta. 3-way game model for

privacy-preserving cybersecurity information exchange framework. In MIL-

51



COM 2017-2017 IEEE Military Communications Conference (MILCOM),

pages 829–834. IEEE, 2017.

[51] Samaikya Valluripally, Murugesan Raju, Prasad Calyam, Mauro Lemus,

Soumya Purohit, Abu Mosa, and Trupti Joshi. Increasing protected data

accessibility for age-related cataract research using a semi-automated honest

broker. Journal for Modeling in Ophthalmology, 2(3):115–132, 2019.

[52] Jisheng Wang, SHEN Min-Yi, Prasad Palkar, and Sriram Ramachandran.

Collaborative and adaptive threat intelligence for computer security, Novem-

ber 5 2019. US Patent 10,469,514.

[53] Xiang Zhang, Guoliang Xue, Ruozhou Yu, Dejun Yang, and Jian Tang. Keep

your promise: Mechanism design against free-riding and false-reporting in

crowdsourcing. IEEE Internet of Things Journal, 2(6):562–572, 2015.

[54] Xiang Zhang, Guoliang Xue, Ruozhou Yu, Dejun Yang, and Jian Tang. Keep

your promise: Mechanism design against free-riding and false-reporting in

crowdsourcing. IEEE Internet of Things Journal, 2(6):562–572, 2015.

[55] Yanru Zhang, Chunxiao Jiang, Lingyang Song, Miao Pan, Zaher Dawy, and

Zhu Han. Incentive mechanism for mobile crowdsourcing using an optimized

tournament model. IEEE Journal on Selected Areas in Communications,

35(4):880–892, 2017.

52


