6 research outputs found

    Modification of the Logarithm Methodology of Additive Weights (LMAW) by a Triangular Fuzzy Number and Its Application in Multi-Criteria Decision Making

    Get PDF
    The Logarithm Methodology of Additive Weights (LMAW) method is a very young method and in its basic form is defined for crisp values. In this paper, the LMAW method was improved by being modified with triangular fuzzy numbers. The modification significantly improved the capacity of the LMAW method to consider uncertainty in decision making. The special importance of the method is reflected in a relatively simple mathematical apparatus due to which it is possible to define, with high quality, weight coefficients of criteria and rank alternative solutions in uncertain environments. The method was tested in solving the problem of the location selection for a landing operations point (LOP) in combat operations of the army. The validation of the obtained results was performed: (1) by means of comparison with the Fuzzy Simple Additive Weighting (FSAW) Method, the Fuzzy Multi-Attributive Border Approximation area Comparison (FMABAC), the fuzzy Višekriterijumsko KOmpromisno Rangiranje (FVIKOR), the fuzzy COmpressed PRoportional ASsessment (FCOPRAS), and the fuzzy Multi Attributive Ideal-Real Comparative Analysis (FMAIRCA); (2) by means of sensitivity analysis by changing the weight coefficients of criteria; and (3) using simulation software. In comparison with other methods, the quality of the ranking of alternative solutions was confirmed, which highlighted the special importance of the fuzzy LMAW method relative to that of certain standard methods, respectively, the ones that are often used and confirmed in practice. On the other hand, the sensitivity analysis, including the changing of the weight coefficients of criteria, showed that the model could tolerate smaller errors in defining the weight coefficients of criteria, and it provided stable results. Finally, the validation of results achieved with the use of simulation software confirmed the obtained output results. The output results confirmed the quality of the modified method

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Advances in Fluid Power Systems

    Get PDF
    The main purpose of this Special Issue of “Advances in Fluid Power Systems” was to present new scientific work in the field of fluid power systems for hydraulic and pneumatic control of machines and devices used in various industries. Advances in fluid power systems are leading to the creation of new smart devices that can replace tried-and-true solutions from the past. The development work of authors from various research centres has been published. This Special Issue focuses on recent advances and smart solutions for fluid power systems in a wide range of topics, including: • Fluid power for IoT and Industry 4.0: smart fluid power technology, wireless 5G connectivity in fluid power, smart components, and sensors.• Fluid power in the renewable energy sector: hydraulic drivetrains for wind power and for wave and marine current power, and hydraulic systems for solar power. • Hybrid fluid power: hybrid transmissions, energy recovery and accumulation, and energy efficiency of hybrid drives.• Industrial and mobile fluid power: industrial fluid power solutions, mobile fluid power solutions, eand nergy efficiency solutions for fluid power systems.• Environmental aspects of fluid power: hydraulic water control technology, noise and vibration of fluid power components, safety, reliability, fault analysis, and diagnosis of fluid power systems.• Fluid power and mechatronic systems: servo-drive control systems, fluid power drives in manipulators and robots, and fluid power in autonomous solutions

    Reinforcement Learning Approach for Autonomous UAV Navigation in 3D Space

    Get PDF
    In the last two decades, the rapid development of unmanned aerial vehicles (UAVs) resulted in their usage for a wide range of applications. Miniaturization and cost reduction of electrical components have led to their commercialization, and today they can be utilized for various tasks in an unknown environment. Finding the optimal path based on the start and target pose information is one of the most complex demands for any intelligent UAV system. As this problem requires a high level of adaptability and learning capability of the UAV, the framework based on reinforcement learning is proposed for the localization and navigation tasks. In this paper, Q-learning algorithm for the autonomous navigation of the UAV in 3D space is implemented. To test the proposed methodology for UAV intelligent control, the simulation is conducted in ROS-Gazebo environment. The obtained simulation results have shown that the UAV can reach the target pose autonomously in an efficient way

    Reinforcement Learning Approach for Autonomous UAV Navigation in 3D Space

    Get PDF
    In the last two decades, the rapid development of unmanned aerial vehicles (UAVs) resulted in their usage for a wide range of applications. Miniaturization and cost reduction of electrical components have led to their commercialization, and today they can be utilized for various tasks in an unknown environment. Finding the optimal path based on the start and target pose information is one of the most complex demands for any intelligent UAV system. As this problem requires a high level of adaptability and learning capability of the UAV, the framework based on reinforcement learning is proposed for the localization and navigation tasks. In this paper, Q-learning algorithm for the autonomous navigation of the UAV in 3D space is implemented. To test the proposed methodology for UAV intelligent control, the simulation is conducted in ROS-Gazebo environment. The obtained simulation results have shown that the UAV can reach the target pose autonomously in an efficient way
    corecore