34 research outputs found

    Advances on mechanical designs for assistive ankle-foot orthoses

    Get PDF
    Assistive ankle-foot orthoses (AFOs) are powerful solutions to assist or rehabilitate gait on humans. Existing assistive AFO technologies include passive, quasi-passive, and active principles to provide assistance to the users, and their mechanical configuration and control depend on the eventual support they aim for within the gait pattern. In this research we analyze the state-of-the-art of assistive AFOs and classify the different approaches into clusters, describing their basis and working principles. Additionally, we reviewed the purpose and experimental validation of the devices, providing the reader with a better view of the technology readiness level. Finally, the reviewed designs, limitations, and future steps in the field are summarized and discussed.Comment: Figures appear at the end. Article submitted to Frontiers in Bioengineering and Biotechnology (currently under review

    Innovative magnetorheological devices for shock and vibration mitigation

    Get PDF
    Vibration and impact protection have been a popular topic in research fields, which could directly affect the passengers’ and drivers’ comfort and safety, even cause spines fracture. Therefore, an increasing number of vehicle suspensions and aircraft landing gears are proposed and manufactured. Magnetorheological fluids (MRFs), as a smart material, are growly applied into the above device owing to its unique properties such as fast response, reversible properties, and broad controllable range, which could improve the vibration/impact mitigation performance. MRF was utilized to achieve adaptive parameters of the vehicle suspensions by controlling the magnetic field strength of the MRF working areas. Generally, the magnetic field is provided by a given current, subsequently, it would consume massive energy from a long-term perspective. Thus, a self-powered concept was applied as well. This thesis reports a compact stiffness controllable MR damper with a self-powered capacity. After the prototype of the MR damper, its property tests were conducted to verify the stiffness controllability and the energy generating ability using a hydraulic Instron test system. Then, a quarter-car test rig was built, and the semi-active MR suspension integrated with the self-powered MR damper was installed on a test rig. Two controllers, one based on short-time Fourier transform (STFT) and a classical skyhook controller was developed to control the stiffness. The evaluation results demonstrate that the proposed MR damper incorporated with STFT controller or skyhook controller could suppress the response displacements and accelerations obviously comparing with the conventional passive systems

    Application of wearable sensors in actuation and control of powered ankle exoskeletons: a Comprehensive Review

    Get PDF
    Powered ankle exoskeletons (PAEs) are robotic devices developed for gait assistance, rehabilitation, and augmentation. To fulfil their purposes, PAEs vastly rely heavily on their sensor systems. Human–machine interface sensors collect the biomechanical signals from the human user to inform the higher level of the control hierarchy about the user’s locomotion intention and requirement, whereas machine–machine interface sensors monitor the output of the actuation unit to ensure precise tracking of the high-level control commands via the low-level control scheme. The current article aims to provide a comprehensive review of how wearable sensor technology has contributed to the actuation and control of the PAEs developed over the past two decades. The control schemes and actuation principles employed in the reviewed PAEs, as well as their interaction with the integrated sensor systems, are investigated in this review. Further, the role of wearable sensors in overcoming the main challenges in developing fully autonomous portable PAEs is discussed. Finally, a brief discussion on how the recent technology advancements in wearable sensors, including environment—machine interface sensors, could promote the future generation of fully autonomous portable PAEs is provided

    Theoretical Approaches in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare

    Automated Topology Synthesis and Optimization of Hybrid Electric Vehicle Powertrains

    Get PDF
    This thesis presents a framework to automate the process of designing Hybrid Electric Vehicle (HEV) powertrain architectures. An algorithm was developed to assemble and compare all possible configurations of powertrain components. Combinatorics was used to discover all possible combinations of: an internal combustion engine, high-torque low-speed electric motor, low-torque high-speed electric motor, planetary gearset, and five-speed discrete gearbox. The Graph Theoretic Method was used to generate the powertrain models. The powertrain models were comprised of steady-state equations in symbolic form. An optimal control strategy is required to fairly compare the different topologies because a powertrain control strategy is dependant on the configuration. Dynamic Programming was used to determine the control law that minimizes the energy consumption for a given drivecycle. Evaluating every possible topology would take an extremely long time, so topologies were evaluated using a multi-stage screening process. The first stage examined the structure of the powertrain and used heuristics to eliminate infeasible topologies; 512 topologies were feasible. The second stage eliminated topologies that could not meet basic driving performance; 193 topologies were feasible. Basic driving performance was tested using a section of the US06 drivecycle. The sizes of three components were optimized to ensure the topology is feasible independent of the size of the components. The third stage eliminated topologies which could not achieve driving performance design goals; 159 could achieve the performance requirements, but only 119 were reasonably fuel efficient. The driving performance goals were implemented with a drivecycle based on the Partnership for a New Generation of Vehicles (PNGV) goals. The sizes for five components were optimized at this stage. The 20 most fuel efficient powertrains were selected for further evaluation. Additionally, 4 common powertrains were evaluated for reference. The size of the components were optimized for a combination of the PNGV drivecycle and the HWFET drivecycle. The most fuel efficient topology was found to be a Powersplit hybrid which has a discrete gearbox between the final drive and the powersplit device. The electric motor, planetary carrier gear, and gearbox were connected in parallel. It was found that Parallel-like, Powersplit-like, and Complex-like topologies were were the most efficient powertrain configurations. Powertrains containing two gearboxes were more efficient because the geartrain models ignored mechanical inefficiencies

    Inverse Dynamics Problems

    Get PDF
    The inverse dynamics problem was developed in order to provide researchers with the state of the art in inverse problems for dynamic and vibrational systems. Contrasted with a forward problem, which solves for the system output in a straightforward manner, an inverse problem searches for the system input through a procedure contaminated with errors and uncertainties. An inverse problem, with a focus on structural dynamics, determines the changes made to the system and estimates the inputs, including forces and moments, to the system, utilizing measurements of structural vibration responses only. With its complex mathematical structure and need for more reliable input estimations, the inverse problem is still a fundamental subject of research among mathematicians and engineering scientists. This book contains 11 articles that touch upon various aspects of inverse dynamic problems
    corecore