1,473 research outputs found

    MODELLING AND CONTROL OF MULTI-FINGERED ROBOT HAND USING INTELLIGENT TECHNIQUES

    Get PDF
    Research and development of robust multi-fingered robot hand (MFRH) have been going on for more than three decades. Yet few can be found in an industrial application. The difficulties stem from many factors, one of which is that the lack of general and effective control techniques for the manipulation of robot hand. In this research, a MFRH with five fingers has been proposed with intelligent control algorithms. Initially, mathematical modeling for the proposed MFRH has been derived to find the Forward Kinematic, Inverse Kinematic, Jacobian, Dynamics and the plant model. Thereafter, simulation of the MFRH using PID controller, Fuzzy Logic Controller, Fuzzy-PID controller and PID-PSO controller has been carried out to gauge the system performance based parameters such rise time, settling time and percent overshoot

    Concurrent Engineering of Robot Manipulators

    Get PDF

    Intelligent control of mobile robot with redundant manipulator & stereovision: quantum / soft computing toolkit

    Get PDF
    The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed. An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced. Design of robust knowledge bases is performed using a developed computational intelligence – quantum / soft computing toolkit (QC/SCOptKBTM). The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described. The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described. The general design methodology of a generalizing control unit based on the physical laws of quantum computing (quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal) is considered. The modernization of the pattern recognition system based on stereo vision technology presented. The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments

    Get PDF
    One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    A Multiagent Architecture for Mobile Robot Navigation Using Hierarchical Fuzzy and Sliding Mode Controllers

    Get PDF
    The challenge of this work is to implement an algorithm which enables the robot to achieve independent activities in the purpose of achieving a common goal, which consists in autonomous navigation in a partially unknown environment. The use of multiagent system is convenient for such a problem. Hence, we have designed a structure composed of four agents dedicated to perception, navigation, static, and dynamic obstacle avoidance. Those agents interact through a coordination system

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link
    • …
    corecore