68,337 research outputs found

    Lower bounds for approximation schemes for Closest String

    Get PDF
    In the Closest String problem one is given a family S\mathcal S of equal-length strings over some fixed alphabet, and the task is to find a string yy that minimizes the maximum Hamming distance between yy and a string from S\mathcal S. While polynomial-time approximation schemes (PTASes) for this problem are known for a long time [Li et al., J. ACM'02], no efficient polynomial-time approximation scheme (EPTAS) has been proposed so far. In this paper, we prove that the existence of an EPTAS for Closest String is in fact unlikely, as it would imply that FPT=W[1]\mathrm{FPT}=\mathrm{W}[1], a highly unexpected collapse in the hierarchy of parameterized complexity classes. Our proof also shows that the existence of a PTAS for Closest String with running time f(ε)no(1/ε)f(\varepsilon)\cdot n^{o(1/\varepsilon)}, for any computable function ff, would contradict the Exponential Time Hypothesis

    On Computing Centroids According to the p-Norms of Hamming Distance Vectors

    Get PDF
    In this paper we consider the p-Norm Hamming Centroid problem which asks to determine whether some given strings have a centroid with a bound on the p-norm of its Hamming distances to the strings. Specifically, given a set S of strings and a real k, we consider the problem of determining whether there exists a string s^* with (sum_{s in S} d^{p}(s^*,s))^(1/p) <=k, where d(,) denotes the Hamming distance metric. This problem has important applications in data clustering and multi-winner committee elections, and is a generalization of the well-known polynomial-time solvable Consensus String (p=1) problem, as well as the NP-hard Closest String (p=infty) problem. Our main result shows that the problem is NP-hard for all fixed rational p > 1, closing the gap for all rational values of p between 1 and infty. Under standard complexity assumptions the reduction also implies that the problem has no 2^o(n+m)-time or 2^o(k^(p/(p+1)))-time algorithm, where m denotes the number of input strings and n denotes the length of each string, for any fixed p > 1. The first bound matches a straightforward brute-force algorithm. The second bound is tight in the sense that for each fixed epsilon > 0, we provide a 2^(k^(p/((p+1))+epsilon))-time algorithm. In the last part of the paper, we complement our hardness result by presenting a fixed-parameter algorithm and a factor-2 approximation algorithm for the problem

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before

    On the String Consensus Problem and the Manhattan Sequence Consensus Problem

    Full text link
    In the Manhattan Sequence Consensus problem (MSC problem) we are given kk integer sequences, each of length ll, and we are to find an integer sequence xx of length ll (called a consensus sequence), such that the maximum Manhattan distance of xx from each of the input sequences is minimized. For binary sequences Manhattan distance coincides with Hamming distance, hence in this case the string consensus problem (also called string center problem or closest string problem) is a special case of MSC. Our main result is a practically efficient O(l)O(l)-time algorithm solving MSC for k5k\le 5 sequences. Practicality of our algorithms has been verified experimentally. It improves upon the quadratic algorithm by Amir et al.\ (SPIRE 2012) for string consensus problem for k=5k=5 binary strings. Similarly as in Amir's algorithm we use a column-based framework. We replace the implied general integer linear programming by its easy special cases, due to combinatorial properties of the MSC for k5k\le 5. We also show that for a general parameter kk any instance can be reduced in linear time to a kernel of size k!k!, so the problem is fixed-parameter tractable. Nevertheless, for k4k\ge 4 this is still too large for any naive solution to be feasible in practice.Comment: accepted to SPIRE 201

    Approximation and Parameterized Complexity of Minimax Approval Voting

    Full text link
    We present three results on the complexity of Minimax Approval Voting. First, we study Minimax Approval Voting parameterized by the Hamming distance dd from the solution to the votes. We show Minimax Approval Voting admits no algorithm running in time O(2o(dlogd))\mathcal{O}^\star(2^{o(d\log d)}), unless the Exponential Time Hypothesis (ETH) fails. This means that the O(d2d)\mathcal{O}^\star(d^{2d}) algorithm of Misra et al. [AAMAS 2015] is essentially optimal. Motivated by this, we then show a parameterized approximation scheme, running in time O((3/ϵ)2d)\mathcal{O}^\star(\left({3}/{\epsilon}\right)^{2d}), which is essentially tight assuming ETH. Finally, we get a new polynomial-time randomized approximation scheme for Minimax Approval Voting, which runs in time nO(1/ϵ2log(1/ϵ))poly(m)n^{\mathcal{O}(1/\epsilon^2 \cdot \log(1/\epsilon))} \cdot \mathrm{poly}(m), almost matching the running time of the fastest known PTAS for Closest String due to Ma and Sun [SIAM J. Comp. 2009].Comment: 14 pages, 3 figures, 2 pseudocode
    corecore