7 research outputs found

    Numerical Analysis of Microwave Scattering from Layered Sea Ice Based on the Finite Element Method

    Get PDF
    Source at https://doi.org/10.3390/rs10091332.A two-dimensional scattering model based on the Finite Element Method (FEM) is built for simulating the microwave scattering of sea ice, which is a layered medium. The scattering problem solved by the FEM is formulated following a total- and scattered-field decomposition strategy. The model set-up is first validated with good agreements by comparing the results of the FEM with those of the small perturbation method and the method of moment. Subsequently, the model is applied to two cases of layered sea ice to study the effect of subsurface scattering. The first case is newly formed sea ice which has scattering from both air–ice and ice–water interfaces. It is found that the backscattering has a strong oscillation with the variation of sea ice thickness. The found oscillation effects can increase the difficulty of retrieving the thickness of newly formed sea ice from the backscattering data. The second case is first-year sea ice with C-shaped salinity profiles. The scattering model accounts for the variations in the salinity profile by approximating the profile as consisting of a number of homogeneous layers. It is found that the salinity profile variations have very little influence on the backscattering for both C- and L-bands. The results show that the sea ice can be considered to be homogeneous with a constant salinity value in modelling the backscattering and it is difficult to sense the salinity profile of sea ice from the backscattering data, because the backscattering is insensitive to the salinity profile

    The sea-ice detection capability of synthetic aperture radar

    Get PDF
    Climate change, increasing activities in areas like offshore oil and gas exploration, marine transport, eco-tourism, in additional to the usual activities of northerners resident are leading to reductions in sea ice. Therefore, there is an urgent need for improvement in the sea ice detection in polar areas. Starting from the mechanism of electromagnetic scattering, based on an empirical dielectric constant model, we apply EM multi-reflection and transmission formulas for coefficients between the air-ice interface and sea water-ice interface to develop a model for estimating the capability of detection of sea ice and ice thickness based on a pulse radar system, synthetic aperture radar (SAR). Although the dielectric constant of sea ice is less than that of sea water, this model can provide a rational methodology as the normalized radar cross section (NRCS) of sea ice is larger than that of sea water due to multiple reflections. The numerical simulations of this model showed that the convergence rate is rapid. With 3 or 4 reflections and transmissions (depending on temperature, salinity, and dielectric constants of sea ice and water), truncation errors can be satisfied using theoretical considerations and practical applications. The model is applied to estimate the capability of SAR to discriminate ice from water. The numerical results suggested that the model ability to measure ice thickness decreases with increasing radar incident angles and increases with increasing radar pulse width. Reflection and transmission coefficients decrease monotonically with ice thickness and are saturated for ice thicknesses above a certain critical value which depends on SAR incidence angle, frequency and dielectric constants of sea ice. The capability to detect ice thickness for given different bands of pulse radar widths can be estimated with this model

    NAS technical summaries. Numerical aerodynamic simulation program, March 1992 - February 1993

    Get PDF
    NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1992-93 operational year concluded with 399 high-speed processor projects and 91 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    A Monte Carlo Method for Simulating Scattering From Sea Ice Using FVTD

    No full text
    corecore