14 research outputs found

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Cutting Edge Nanotechnology

    Get PDF
    The main purpose of this book is to describe important issues in various types of devices ranging from conventional transistors (opening chapters of the book) to molecular electronic devices whose fabrication and operation is discussed in the last few chapters of the book. As such, this book can serve as a guide for identifications of important areas of research in micro, nano and molecular electronics. We deeply acknowledge valuable contributions that each of the authors made in writing these excellent chapters

    LARGE-AREA, WAFER-SCALE EPITAXIAL GROWTH OF GERMANIUM ON SILICON AND INTEGRATION OF HIGH-PERFORMANCE TRANSISTORS

    Get PDF
    Building on a unique two-step, simple MBE growth technique, we have investigated possible dislocation locking mechanisms by dopant impurities, coupled with artificially introduced oxygen. In the case of n-type Ge grown on Si, our materials characterization indicates that the dislocation density (DD) can reach the \uf07e105 cm-2 level, compared to p-type and undoped Ge on Si (GoS). We note that our Ge film covers the entire underlying Si substrate at the wafer scale without mesas or limited-area growth. In this presentation, we will focus on the use of n-type impurity (phosphorus) diffusing from the Si substrate and the introduction of O at the Ge-Si interface. The O is introduced by growing a thin chemical SiO2 layer on top of the Si substrate before Ge epitaxy begins. Z-contrast cross-sectional TEM images suggest the presence of oxygen precipitates in n-type Ge, whereas these precipitates appear absent in p-type Ge. These oxygen precipitates are known to lock the dislocations. Supporting the argument of precipitate formation, the TEM shows fringes due to various phase boundaries that exist at the precipitate/Ge-crystal interface. We speculate that the formation of phosphorus (P) segregation resulting from slow diffusion of P through precipitates at the precipitate/Ge-crystal interface facilitates dislocation locking. Impurity segregations in turn suppress O concentration in n-type Ge indicating reduced magnitude of DD that appears on the top surface of n-Ge compared to p-Ge film. The O concentrations (1017 to 1018 cm-3) in the n- and p-type GoS films are measured using secondary ionization mass spectroscopy. We also demonstrate the technique to improve the Ge epitaxial quality by inserting air-gapped, SiO2-based nanoscale templates within epitaxially grown Ge on Si. We have shown that the template simultaneously filters threading dislocations propagating from Ge-Si interface and relieves the film stress caused by the TEC mismatch. The finite element modeling stress simulation shows that the oval air gaps around the SiO2 template can reduce the thermal stress by 50% and help reduce the DD. We have then compared the structural and electrical characteristics of n-type Ge films with its p-type counter parts. In n-type Ge, the DD decreases from \uf07e109cm-2 near the Ge-Si interface to \uf07e105 cm-2 at the film surface. In contrast, we observe 5\uf0b4107 cm-2 TDD at the film surface in p-type Ge. The full width at half-maximum for our n-type Ge(004) XRD peak is ~70% narrower than that of p-type Ge. As a stringent test of the dislocation reduction, we have also fabricated and characterized high-carrier-mobility MOSFETs on GoS substrates. We also report p- and n-MOSFETs with μeff of 401 and 940 cm2/V-s and a subthreshold slope of 100 and 200 mV/decade, respectively. These effective mobilities show an exceptional 82 and 30% improvement over that of conventional Si channel MOSFETs. We also investigate the optical quality of ultra-low DD GoS film by measuring photoluminescence (PL). The n-type Ge PL main peak shows pronounced tensile-strain (x0.8%) than that of p-type which is an indicator of direct BG shrinking at the \u0413 band-edge. Going beyond epitaxial engineering and device fabrication, we have also recently demonstrated a scalable path to create a 2D array of Ge quantum dots (QDs) on responsive SiGe substrates based on elastic mechanical deformation and subsequent SiGe compositional redistribution, coupled with MBE growth. For large-scale manufacturing of single-electron transistors, we have also demonstrated that a spatially structured elastic compressive stress to the SiGe substrate with thermally annealing leads to a compositional redistribution of Si and Ge in the near-surface region of SiGe substrates, forming a 2D array of Ge-depleted nanoscale regions. Based on these latest findings, we have also begun to chart a future direction for my research group, where one can explore new advanced device architectures, such as Si-compatible, optically actuated, Ge-quantum dot-based field effect transistors

    Journal of Telecommunications and Information Technology, 2004, nr 1

    Get PDF
    kwartalni

    Modeling of pattern dependencies in the fabrication of multilevel copper metallization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.Includes bibliographical references (p. 295-303).Multilevel copper metallization for Ultra-Large-Scale-Integrated (ULSI) circuits is a critical technology needed to meet performance requirements for advanced interconnect technologies with sub-micron dimensions. It is well known that multilevel topography resulting from pattern dependencies in various processes, especially copper Electrochemical Deposition (ECD) and Chemical-Mechanical Planarization (CMP), is a major problem in interconnects. An integrated pattern dependent chip-scale model for multilevel copper metallization is contributed to help understand and meet dishing and erosion requirements, to optimize the combined plating and polishing process to achieve minimal environmental impact, higher yield and performance, and to enable optimization of layout and dummy fill designs. First, a physics-based chip-scale copper ECD model is developed. By considering copper ion depletion effects, and surface additive adsorption and desorption, the plating model is able to predict the initial topography for subsequent CMP modeling with sufficient accuracy and computational efficiency. Second, a compatible chip-scale CMP modeling is developed.(cont.) The CMP model integrates contact wear and density-step-height approaches, so that a consistent and coherent chip-scale model framework can be used for copper bulk polishing, copper over-polishing, and barrier layer polishing stages. A variant of this CMP model is developed which explicitly considers the pad topography properties. Finally, ECD and CMP parts are combined into an integrated model applicable to single level and multilevel metallization cases. The integrated multilevel copper metallization model is applied to the co-optimization of the plating and CMP processes. An alternative in-pattern (rather than between-pattern) dummy fill strategy is proposed. The integrated ECD/CMP model is applied to the optimization of the in-pattern fill, to achieve improved ECD uniformity and final post-CMP topography.by Hong Cai.Ph.D

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Self-Heating Aware Design of ICs in Deep Sub-Micron FDSOI and Bulk Technologies

    Get PDF
    Bulk CMOS technologies left the semiconductor market to the novel device geometries such as FDSOI and FinFET below 30 nm, mainly due to their insufficient electrical characteristics arising from different physical limitations. These innovative solutions enabled the ongoing device scaling to continue. However, the threshold voltage and the power supply values did not shrink with the device sizes, which caused an excessive amount of heat generation in very small dimensions. With the high thermal resistivity materials used in FDSOI and FinFET, the generated heat cannot leave the device easily, which is not the case in bulk. With all of these, modern geometries brought a major problem, which is the self-heating. Due to self-heating effects (SHE), the temperature of a device rises significantly compared to its surroundings. Having very large local temperature brings important reliability issues. Moreover, the electrical behaviour of a device also changes dramatically when its temperature is very large. These facts bring the need of considering SHE and the temperature of each device separately. Nevertheless, in many of today's CAD tools, a single global temperature is applied to all of the devices. Even if some advanced simulation options are used, estimating the temperature of a device is not a simple task as it depends on many parameters. The focus of this thesis is to show the significance of SHE in the design of ICs and provide self-heating aware design guidelines. In order to achieve this, different circuit implementations are studied by considering the SHE. The study consists of two main parts, which are the reliability of the high-speed digital circuits and the performance of analog blocks where noise is critical. Moreover, detailed device-level electro-thermal simulations are performed to explain the self-heating phenomena more in detail and to perform a comparison between bulk and FDSOI. The digital part of the self-heating study is performed on two very high-speed full-custom 64-bit Kogge-Stone adders in 40 nm and 28 nm technologies. Thermal simulations are performed on these blocks to compare SHE in bulk and FDSOI geometries. The comparison of two implementations also provides the increasing significance of SHE with scaling. Extensive heating analyses are performed to find the most critical devices that are the primary heat generators. Design guidelines and solutions are proposed to flatten the temperature profiles in precharged and static logic implementations and to decrease the probability of electromigration. The analog study of the work focuses on the thermal noise performance of LNAs and SHE on the flicker noise. Since thermal noise of a device linearly depends on the temperature, it is directly affected by SHE. To show the amount of SHE on the noise figure, three common gate cascode LNAs operating at 2 GHz with different device lengths are implemented in 28 nm FDSOI. The measurements show that the self-heating effects are clearly observed on the noise figure and the performance of the blocks deviate importantly from the simulations. Moreover, the self-heating effects are significantly more in short channel devices due to their large heat density. Similar experiments are also performed on different test structures in FDSOI at lower frequencies to observe SHE on flicker noise. The experiments show that flicker noise degrades at larger temperatures and more in short channel implementations

    Scaling and intrinsic parameter fluctuations in nanoCMOS devices

    Get PDF
    The core of this thesis is a thorough investigation of the scaling properties of conventional nano-CMOS MOSFETs, their physical and operational limitations and intrinsic parameter fluctuations. To support this investigation a well calibrated 35 nm physical gate length real MOSFET fabricated by Toshiba was used as a reference transistor. Prior to the start of scaling to shorter channel lengths, the simulators were calibrated against the experimentally measured characteristics of the reference device. Comprehensive numerical simulators were then used for designing the next five generations of transistors that correspond to the technology nodes of the latest International Technology Roadmap for Semiconductors (lTRS). The scaling of field effect transistors is one of the most widely studied concepts in semiconductor technology. The emphases of such studies have varied over the years, being dictated by the dominant issues faced by the microelectronics industry. The research presented in this thesis is focused on the present state of the scaling of conventional MOSFETs and its projections during the next 15 years. The electrical properties of conventional MOSFETs; threshold voltage (VT), subthreshold slope (S) and on-off currents (lon, Ioffi ), which are scaled to channel lengths of 35, 25, 18, 13, and 9 nm have been investigated. In addition, the channel doping profile and the corresponding carrier mobility in each generation of transistors have also been studied and compared. The concern of limited solid solubility of dopants in silicon is also addressed along with the problem of high channel doping concentrations in scaled devices. The other important issue associated with the scaling of conventional MOSFETs are the intrinsic parameter fluctuations (IPF) due to discrete random dopants in the inversion layer and the effects of gate Line Edge Roughness (LER). The variations of the three important MOSFET parameters (loff, VT and Ion), induced by random discrete dopants and LER have been comprehensively studied in the thesis. Finally, one of the promising emerging CMOS transistor architectures, the Ultra Thin Body (UTB) SOl MOSFET, which is expected to replace the conventional MOSFET, has been investigated from the scaling point of view

    Exploitation dynamique des données de production pour améliorer les méthodes DFM dans l'industrie Microélectronique

    Get PDF
    La conception pour la fabrication ou DFM (Design for Manufacturing) est une méthode maintenant classique pour assurer lors de la conception des produits simultanément la faisabilité, la qualité et le rendement de la production. Dans l'industrie microélectronique, le Design Rule Manual (DRM) a bien fonctionné jusqu'à la technologie 250nm avec la prise en compte des variations systématiques dans les règles et/ou des modèles basés sur l'analyse des causes profondes, mais au-delà de cette technologie, des limites ont été atteintes en raison de l'incapacité à sasir les corrélations entre variations spatiales. D'autre part, l'évolution rapide des produits et des technologies contraint à une mise à jour dynamique des DRM en fonction des améliorations trouvées dans les fabs. Dans ce contexte les contributions de thèse sont (i) une définition interdisciplinaire des AMDEC et analyse de risques pour contribuer aux défis du DFM dynamique, (ii) un modèle MAM (mapping and alignment model) de localisation spatiale pour les données de tests, (iii) un référentiel de données basé sur une ontologie ROMMII (referential ontology Meta model for information integration) pour effectuer le mapping entre des données hétérogènes issues de sources variées et (iv) un modèle SPM (spatial positioning model) qui vise à intégrer les facteurs spatiaux dans les méthodes DFM de la microélectronique, pour effectuer une analyse précise et la modélisation des variations spatiales basées sur l'exploitation dynamique des données de fabrication avec des volumétries importantes.The DFM (design for manufacturing) methods are used during technology alignment and adoption processes in the semiconductor industry (SI) for manufacturability and yield assessments. These methods have worked well till 250nm technology for the transformation of systematic variations into rules and/or models based on the single-source data analyses, but beyond this technology they have turned into ineffective R&D efforts. The reason for this is our inability to capture newly emerging spatial variations. It has led an exponential increase in technology lead times and costs that must be addressed; hence, objectively in this thesis we are focused on identifying and removing causes associated with the DFM ineffectiveness. The fabless, foundry and traditional integrated device manufacturer (IDM) business models are first analyzed to see coherence against a recent shift in business objectives from time-to-market (T2M) and time-to-volume towards (T2V) towards ramp-up rate. The increasing technology lead times and costs are identified as a big challenge in achieving quick ramp-up rates; hence, an extended IDM (e-IDM) business model is proposed to support quick ramp-up rates which is based on improving the DFM ineffectiveness followed by its smooth integration. We have found (i) single-source analyses and (ii) inability to exploit huge manufacturing data volumes as core limiting factors (failure modes) towards DFM ineffectiveness during technology alignment and adoption efforts within an IDM. The causes for single-source root cause analysis are identified as the (i) varying metrology reference frames and (ii) test structures orientations that require wafer rotation prior to the measurements, resulting in varying metrology coordinates (die/site level mismatches). A generic coordinates mapping and alignment model (MAM) is proposed to remove these die/site level mismatches, however to accurately capture the emerging spatial variations, we have proposed a spatial positioning model (SPM) to perform multi-source parametric correlation based on the shortest distance between respective test structures used to measure the parameters. The (i) unstructured model evolution, (ii) ontology issues and (iii) missing links among production databases are found as causes towards our inability to exploit huge manufacturing data volumes. The ROMMII (referential ontology Meta model for information integration) framework is then proposed to remove these issues and enable the dynamic and efficient multi-source root cause analyses. An interdisciplinary failure mode effect analysis (i-FMEA) methodology is also proposed to find cyclic failure modes and causes across the business functions which require generic solutions rather than operational fixes for improvement. The proposed e-IDM, MAM, SPM, and ROMMII framework results in accurate analysis and modeling of emerging spatial variations based on dynamic exploitation of the huge manufacturing data volumes.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore