2,263 research outputs found

    Infrared LEDs-based pose estimation with underground camera model for Boom-type roadheader in coal mining

    Get PDF
    Accurate and reliable pose estimation of boom-type roadheader is of great importance in order to maintain the efficiency of automatic coal mining. The stability and accuracy of conventional measurement methods are difficult to be guaranteed on account of vibration noise, magnetic disturbance, electrostatic interference and other factors in underground environment. In this paper a vision-based non-contact measurement method for cutting-head pose estimation is presented, which deploy a 16-point infrared LED target on the boom-type roadheader to tackle the low illumination, high dust and complicated background. By establishing monocular vision measurement system, the cutting-head pose is estimated through processing the LED target images obtained from an explosion-proof industrial camera mounted on the roadheader. After analyzing the measurement mechanism, an underground camera model based on the equivalent focal length is built to eliminate refraction errors caused by the two layer glasses for explosion-proof and dust removal glasses. Then the pose estimation processes, including infrared LEDs feature points extraction, spot center location, improved P4P method based on dual quaternions, are carried out. The influence factors of cutting-head pose estimation accuracy is further studied by modeling, and the error distribution of the main parameters is investigated and evaluated. Numerical simulation and experimental evaluation are designed to verify the performance of the proposed method. The results show that the pose estimation error is in line with the numerical prediction, achieving the requirements of cutting-head pose estimation in underground roadway construction in coal mine

    Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots

    Full text link
    In the last decade, many medical companies and research groups have tried to convert passive capsule endoscopes as an emerging and minimally invasive diagnostic technology into actively steerable endoscopic capsule robots which will provide more intuitive disease detection, targeted drug delivery and biopsy-like operations in the gastrointestinal(GI) tract. In this study, we introduce a fully unsupervised, real-time odometry and depth learner for monocular endoscopic capsule robots. We establish the supervision by warping view sequences and assigning the re-projection minimization to the loss function, which we adopt in multi-view pose estimation and single-view depth estimation network. Detailed quantitative and qualitative analyses of the proposed framework performed on non-rigidly deformable ex-vivo porcine stomach datasets proves the effectiveness of the method in terms of motion estimation and depth recovery.Comment: submitted to IROS 201

    Mixed marker-based/marker-less visual odometry system for mobile robots

    Get PDF
    When moving in generic indoor environments, robotic platforms generally rely solely on information provided by onboard sensors to determine their position and orientation. However, the lack of absolute references often leads to the introduction of severe drifts in estimates computed, making autonomous operations really hard to accomplish. This paper proposes a solution to alleviate the impact of the above issues by combining two vision‐based pose estimation techniques working on relative and absolute coordinate systems, respectively. In particular, the unknown ground features in the images that are captured by the vertical camera of a mobile platform are processed by a vision‐based odometry algorithm, which is capable of estimating the relative frame‐to‐frame movements. Then, errors accumulated in the above step are corrected using artificial markers displaced at known positions in the environment. The markers are framed from time to time, which allows the robot to maintain the drifts bounded by additionally providing it with the navigation commands needed for autonomous flight. Accuracy and robustness of the designed technique are demonstrated using an off‐the‐shelf quadrotor via extensive experimental test

    A framework for evaluating stereo-based pedestrian detection techniques

    Get PDF
    Automated pedestrian detection, counting, and tracking have received significant attention in the computer vision community of late. As such, a variety of techniques have been investigated using both traditional 2-D computer vision techniques and, more recently, 3-D stereo information. However, to date, a quantitative assessment of the performance of stereo-based pedestrian detection has been problematic, mainly due to the lack of standard stereo-based test data and an agreed methodology for carrying out the evaluation. This has forced researchers into making subjective comparisons between competing approaches. In this paper, we propose a framework for the quantitative evaluation of a short-baseline stereo-based pedestrian detection system. We provide freely available synthetic and real-world test data and recommend a set of evaluation metrics. This allows researchers to benchmark systems, not only with respect to other stereo-based approaches, but also with more traditional 2-D approaches. In order to illustrate its usefulness, we demonstrate the application of this framework to evaluate our own recently proposed technique for pedestrian detection and tracking

    Infrared based monocular relative navigation for active debris removal

    No full text
    In space, visual based relative navigation systems suffer from the harsh illumination conditions of the target (e.g. eclipse conditions, solar glare, etc.). In current Rendezvous and Docking (RvD) missions, most of these issues are addressed by advanced mission planning techniques (e.g strict manoeuvre timings). However, such planning would not always be feasible for Active Debris Removal (ADR) missions which have more unknowns. Fortunately, thermal infrared technology can operate under any lighting conditions and therefore has the potential to be exploited in the ADR scenario. In this context, this study investigates the benefits and the challenges of infrared based relative navigation. The infrared environment of ADR is very much different to that of terrestrial applications. This study proposes a methodology of modelling this environment in a computationally cost effective way to create a simulation environment in which the navigation solution can be tested. Through an intelligent classification of possible target surface coatings, the study is generalised to simulate the thermal environment of space debris in different orbit profiles. Through modelling various scenarios, the study also discusses the possible challenges of the infrared technology. In laboratory conditions, providing the thermal-vacuum environment of ADR, these theoretical findings were replicated. By use of this novel space debris set-up, the study investigates the behaviour of infrared cues extracted by different techniques and identifies the issue of short-lifespan features in the ADR scenarios. Based on these findings, the study suggests two different relative navigation methods based on the degree of target cooperativeness: partially cooperative targets, and uncooperative targets. Both algorithms provide the navigation solution with respect to an online reconstruction of the target. The method for partially cooperative targets provides a solution for smooth trajectories by exploiting the subsequent image tracks of features extracted from the first frame. The second algorithm is for uncooperative targets and exploits the target motion (e.g. tumbling) by formulating the problem in terms of a static target and a moving map (i.e. target structure) within a filtering framework. The optical flow information is related to the target motion derivatives and the target structure. A novel technique that uses the quality of the infrared cues to improve the algorithm performance is introduced. The problem of short measurement duration due to target tumbling motion is addressed by an innovative smart initialisation procedure. Both navigation solutions were tested in a number of different scenarios by using computer simulations and a specific laboratory set-up with real infrared camera. It is shown that these methods can perform well as the infrared-based navigation solutions using monocular cameras where knowledge relating to the infrared appearance of the target is limited
    • 

    corecore