177 research outputs found

    Étude de mécanismes assurant la continuité de service de protocoles IKEv2 et IPsec

    Get PDF
    En 2012, le trafic mobile mondial représentait 70% de plus qu'en 2011. L'arrivée de la technologie 4G a multiplié par 19 le volume de trafic non 4G, et en 2013 le nombre de mobiles connectés à l'Internet a dépassé le nombre d'êtres humains sur la planète. Les fournisseurs d'accès Internet (FAI) subissent une forte pression, car ils ont pour obligations d'assurer à leurs clients l'accès au réseau et le maintien de la qualité de service. À court/moyen terme, les opérateurs doivent délester une partie de leur trafic sur des réseaux d'accès alternatifs afin de maintenir les mêmes caractéristiques de performances. Ainsi, pour désengorger les réseaux d'accès radio (RAN), le trafic des clients peut être préférentiellement pris en charge par d'autres réseaux d'accès disponibles. Notons cependant que les réseaux d'accès sans fil offrent des niveaux de sécurité très différents. Pour les femtocells, WiFi ou WiMAX (parmi d'autres technologies sans fil), il doit être prévu des mécanismes permettant de sécuriser les communications. Les opérateurs peuvent s'appuyer sur des protocoles (tels que IPsec) afin d'étendre un domaine de sécurité sur des réseaux non sécurisés. Cela introduit de nouveaux défis en termes de performances et de connectivité pour IPsec. Cette thèse se concentre sur l'étude des mécanismes permettant de garantir et améliorer les performances du protocole IPsec en termes de continuité de service. La continuité de service, aussi connu comme résilience, devient cruciale lorsque le trafic mobile est dévié depuis un réseau d'accès RAN vers d'autres réseaux d'accès alternatifs. C'est pourquoi nous nous concentrons d'abord dans l'ensemble de protocoles assurant une communication IP: IKEv2 et IPsec. Ensuite, nous présentons une étude détaillée des paramètres nécessaires pour maintenir une session VPN, et nous démontrons qu'il est possible de gérer dynamiquement une session VPN entre différentes passerelles de sécurité. L'une des raisons qui justifient la gestion des sessions VPN est d'offrir de la haute disponibilité, le partage de charge ou l'équilibrage de charge pour les connexions IPsec. Ces mécanismes ont pour finalité d'augmenter la continuité de service de sessions IPsec. Certains nouveaux mécanismes ont été récemment mis en oeuvre pour assurer la haute disponibilité sur IPsec. Le projet open source VPN, StrongSwan, a mis en place un mécanisme appelé ClusterIP afin de créer un cluster de passerelles IPsec. Nous avons fusionné cette solution basée sur ClusterIP avec nos propres développements afin de définir deux architectures : une architecture permettant la Haute Disponibilité et une deuxième architecture présentant la gestion dynamique d'un contexte IPsec. Nous avons défini deux environnements : le Mono-LAN où un cluster de noeuds est configuré sous une même adresse IP unique, et le Multi-LAN où chaque passerelle de sécurité dispose d'une adresse IP différente. Les mesures de performance tout au long de la thèse montrent que le transfert d'une session VPN entre différentes passerelles évite les délais supplémentaires liés à la ré-authentification et réduit la consommation CPU, ainsi que les calculs par le matériel cryptographique. D'un point de vue FAI, le transfert de contexte IPsec/IKEv2 pourrait être utilisé pour éviter la surcharge des passerelles, et permettre la redistribution de la charge, de meilleures performances du réseau ainsi que l'amélioration de la qualité de service. L'idée est de permettre à un utilisateur de profiter de la continuité d'un service tout en conservant le même niveau de sécurité que celui initialement proposéDuring 2012, the global mobile traffic represented 70\% more than 2011. The arrival of the 4G technology introduced 19 times more traffic than non-4G sessions, and in 2013 the number of mobile-connected to the Internet exceeded the number of human beings on earth. This scenario introduces great pressure towards the Internet service providers (ISPs), which are called to ensure access to the network and maintain its QoS. At short/middle term, operators will relay on alternative access networks in order to maintain the same performance characteristics. Thus, the traffic of the clients might be offloaded from RANs to some other available access networks. However, the same security level is not ensured by those wireless access networks. Femtocells, WiFi or WiMAX (among other wireless technologies), must rely on some mechanism to secure the communications and avoid untrusted environments. Operators are mainly using IPsec to extend a security domain over untrusted networks. This introduces new challenges in terms of performance and connectivity for IPsec. This thesis concentrates on the study of the mechanism considering improving the IPsec protocol in terms of continuity of service. The continuity of service, also known as resilience, becomes crucial when offloading the traffic from RANs to other access networks. This is why we first concentrate our effort in defining the protocols ensuring an IP communication: IKEv2 and IPsec. Then, we present a detailed study of the parameters needed to keep a VPN session alive, and we demonstrate that it is possible to dynamically manage a VPN session between different gateways. Some of the reasons that justify the management of VPN sessions is to provide high availability, load sharing or load balancing features for IPsec connections. These mechanisms increase the continuity of service of IPsec-based communication. For example, if for some reason a failure occurs to a security gateway, the ISP should be able to overcome this situation and to provide mechanisms to ensure continuity of service to its clients. Some new mechanisms have recently been implemented to provide High Availability over IPsec. The open source VPN project, StrongSwan, implemented a mechanism called ClusterIP in order to create a cluster of IPsec gateways. We merged ClusterIP with our own developments in order to define two architectures: High Availability and Context Management over Mono-LAN and Multi-LAN environments. We called Mono-LAN those architectures where the cluster of security gateways is configured under a single IP address, whereas Multi-LAN concerns those architectures where different security gateways are configured with different IP addresses. Performance measurements throughout the thesis show that transferring a VPN session between different gateways avoids re-authentication delays and reduce the amount of CPU consumption and calculation of cryptographic material. From an ISP point of view, this could be used to avoid overloaded gateways, redistribution of the load, better network performances, improvements of the QoS, etc. The idea is to allow a peer to enjoy the continuity of a service while maintaining the same security level that it was initially proposedEVRY-INT (912282302) / SudocSudocFranceF

    Efficient signature verification and key revocation using identity based cryptography

    Get PDF
    Cryptography deals with the development and evaluation of procedures for securing digital information. It is essential whenever multiple entities want to communicate safely. One task of cryptography concerns digital signatures and the verification of a signer’s legitimacy requires trustworthy authentication and authorization. This is achieved by deploying cryptographic keys. When dynamic membership behavior and identity theft come into play, revocation of keys has to be addressed. Additionally, in use cases with limited networking, computational, or storage resources, efficiency is a key requirement for any solution. In this work we present a solution for signature verification and key revocation in constraned environments, e.g., in the Internet of Things (IoT). Where other mechanisms generate expensive overheads, we achieve revocation through a single multicast message without significant computational or storage overhead. Exploiting Identity Based Cryptography (IBC) complements the approach with efficient creation and verification of signatures. Our solution offers a framework for transforming a suitable signature scheme to a so-called Key Updatable Signature Scheme (KUSS) in three steps. Each step defines mathematical conditions for transformation and precise security notions. Thereby, the framework allows a novel combination of efficient Identity Based Signature (IBS) schemes with revocation mechanisms originally designed for confidentiality in group communications. Practical applicability of our framework is demonstrated by transforming four well-established IBS schemes based on Elliptic Curve Cryptography (ECC). The security of the resulting group Identity Based Signature (gIBS) schemes is carefully analyzed with techniques of Provable Security. We design and implement a testbed for evaluating these kind of cryptographic schemes on different computing- and networking hardware, typical for constrained environments. Measurements on this testbed provide evidence that the transformations are practicable and efficient. The revocation complexity in turn is significantly reduced compared to existing solutions. Some of our new schemes even outperform the signing process of the widely used Elliptic Curve Digital Signature Algorithm (ECDSA). The presented transformations allow future application on schemes beyond IBS or ECC. This includes use cases dealing with Post-Quantum Cryptography, where the revocation efficiency is similarly relevant. Our work provides the basis for such solutions currently under investigation.Die Kryptographie ist ein Instrument der Informationssicherheit und beschäftigt sich mit der Entwicklung und Evaluierung von Algorithmen zur Sicherung digitaler Werte. Sie ist für die sichere Kommunikation zwischen mehreren Entitäten unerlässlich. Ein Bestandteil sind digitale Signaturen, für deren Erstellung man kryptographische Schlüssel benötigt. Bei der Verifikation muss zusätzlich die Authentizität und die Autorisierung des Unterzeichners gewährleistet werden. Dafür müssen Schlüssel vertrauensvoll verteilt und verwaltet werden. Wenn sie in Kommunikationssystemen mit häufig wechselnden Teilnehmern zum Einsatz kommen, müssen die Schlüssel auch widerruflich sein. In Anwendungsfällen mit eingeschränkter Netz-, Rechen- und Speicherkapazität ist die Effizienz ein wichtiges Kriterium. Diese Arbeit liefert ein Rahmenwerk, mit dem Schlüssel effizient widerrufen und Signaturen effizient verifiziert werden können. Dabei fokussieren wir uns auf Szenarien aus dem Bereich des Internets der Dinge (IoT, Internet of Things). Im Gegensatz zu anderen Lösungen ermöglicht unser Ansatz den Widerruf von Schlüsseln mit einer einzelnen Nachricht innerhalb einer Kommunikationsgruppe. Dabei fällt nur geringer zusätzlicher Rechen- oder Speicheraufwand an. Ferner vervollständigt die Verwendung von Identitätsbasierter Kryptographie (IBC, Identity Based Cryptography) unsere Lösung mit effizienter Erstellung und Verifikation der Signaturen. Hierfür liefert die Arbeit eine dreistufige mathematische Transformation von geeigneten Signaturverfahren zu sogenannten Key Updatable Signature Schemes (KUSS). Neben einer präzisen Definition der Sicherheitsziele werden für jeden Schritt mathematische Vorbedingungen zur Transformation festgelegt. Dies ermöglicht die innovative Kombination von Identitätsbasierten Signaturen (IBS, Identity Based Signature) mit effizienten und sicheren Mechanismen zum Schlüsselaustausch, die ursprünglich für vertrauliche Gruppenkommunikation entwickelt wurden. Wir zeigen die erfolgreiche Anwendung der Transformationen auf vier etablierten IBSVerfahren. Die ausschließliche Verwendung von Verfahren auf Basis der Elliptic Curve Cryptography (ECC) erlaubt es, den geringen Kapazitäten der Zielgeräte gerecht zu werden. Eine Analyse aller vier sogenannten group Identity Based Signature (gIBS) Verfahren mit Techniken aus dem Forschungsgebiet der Beweisbaren Sicherheit zeigt, dass die zuvor definierten Sicherheitsziele erreicht werden. Zur praktischen Evaluierung unserer und ähnlicher kryptographischer Verfahren wird in dieser Arbeit eine Testumgebung entwickelt und mit IoT-typischen Rechen- und Netzmodulen bestückt. Hierdurch zeigt sich sowohl die praktische Anwendbarkeit der Transformationen als auch eine deutliche Reduktion der Komplexität gegenüber anderen Lösungsansätzen. Einige der von uns vorgeschlagenen Verfahren unterbieten gar die Laufzeiten des meistgenutzten Elliptic Curve Digital Signature Algorithm (ECDSA) bei der Erstellung der Signaturen. Die Systematik der Lösung erlaubt prinzipiell auch die Transformation von Verfahren jenseits von IBS und ECC. Dadurch können auch Anwendungsfälle aus dem Bereich der Post-Quanten-Kryptographie von unseren Ergebnissen profitieren. Die vorliegende Arbeit liefert die nötigen Grundlagen für solche Erweiterungen, die aktuell diskutiert und entwickelt werden

    Internet Key Exchange Protocol Version 2 (IKEv2)

    Full text link

    Security Analysis of Multicast/Unicast Router Key Management Protocols

    Get PDF
    Key Management Protocols (KMPs) are intended to manage cryptographic keys in a cryptosystem. KMPs have been standardized for Internet Protocol Security (IPsec), and these KMPs have been formally validated for their security properties. In the Internet, routing protocols have different requirements on their KMPs, which are not met by the existing IPsec KMPs, such as IKE, IKEv2, and GDOI. Protocol modeling has been used to analyze the security of the IPsec KMPs. For routing protocols, there are new KMPs proposed by the Keying and Authentication for Routing Protocols (KARP) working group of the Internet Engineering Task Force: RKMP, MRKM, and MaRK. These KMPs are designed to have better applicability for general routing protocols. However, the security of these protocols has not been validated. In this thesis, we have summarized the necessary conditions for security of routing protocols. We have analyzed the security aspects of RKMP, MRKM, and MaRK, by formally validating those protocols using the AVISPA modeling tool. This has shown that these KMPs meet the necessary security requirements

    Efficient, DoS-Resistant, Secure Key Exchange for Internet Protocols

    Get PDF
    We describe JFK, a new key exchange protocol, primarily designed for use in the IP Security Architecture. It is simple, efficient, and secure; we sketch a proof of the latter property. JFK also has a number of novel engineering parameters that permit a variety of trade-offs, most notably the ability to balance the need for perfect forward secrecy against susceptibility to denial-of-service attacks

    Guidelines for Specifying the Use of IPsec Version 2

    Get PDF
    The Security Considerations sections of many Internet Drafts say, in effect, "just use IPsec". While this is sometimes correct, more often it will leave users without real, interoperable security mechanisms. This memo offers some guidance on when IPsec Version 2 should and should not be specified

    Internet Authentication for Remote Access

    Get PDF
    It is expected that future IP devices will employ a variety of different network access technologies to gain ubiquitous connectivity. Currently there are no authentication protocols available that are lightweight, can be carried over arbitrary access networks, and are flexible enough to be re-used in the many different contexts that are likely to arise in future Internet remote access. Furthermore, existing access procedures need to be enhanced to offer protection against Denial-of-Service (DoS) attacks, and do not provide non-repudiation. In addition to being limited to specific access media, some of these protocols are limited to specific network topologies and are not scalable. This thesis reviews the authentication infrastructure challenges for future Internet remote access supporting ubiquitous client mobility, and proposes a series of solutions obtained by adapting and reinforcing security techniques arising from a variety of different sources. The focus is on entity authentication protocols that can be carried both by the IETF PANA authentication carrier and by the EAP mechanisms, and possibly making use of an AAA infrastructure. The core idea is to adapt authentication protocols arising from the mobile telecommunications sphere to Internet remote access. A proposal is also given for Internet access using a public key based authentication protocol. The subsequent security analysis of the proposed authentication protocols covers a variety of aspects, including: key freshness, DoS-resistance, and "false-entity-in-the-middle" attacks, in addition to identity privacy of users accessing the Internet via mobile devices. This work aims primarily at contributing to ongoing research on the authentication infrastructure for the Internet remote access environment, and at reviewing and adapting authentication solutions implemented in other spheres, for instance in mobile telecommunications systems, for use in Internet remote access networks supporting ubiquitous mobilit

    Firewall Traversal in Mobile IPv6 Networks

    Get PDF
    Middleboxes, wie zum Beispiel Firewalls, sind ein wichtiger Aspekt für eine Großzahl moderner IP-Netzwerke. Heute IP-Netzwerke basieren überwiegend auf IPv4 Technologien, daher sind viele Firewalls und Network Address Translators (NATs) ursprünglich für diese Netzwerke entwickelt worden. Die Entwicklung von IPv6 Netzwerken findet zur Zeit statt. Da Mobile IPv6 ein relativ neuer Standard ist, unterstützen die meisten Firewalls die für IPv6 Netzwerke verfügbar sind, noch kein Mobile IPv6. Sofern Firewalls sich nicht der Details des Mobile IPv6 Protokolls bewusst sind, werden sie entweder Mobile IPv6 Kommunikation blockieren oder diesen sorgfältig handhaben. Dieses stellt einen der Haupthinderunggründe zum erfolgreichen Einsatz von Mobile IPv6 da.Diese Arbeit beschreibt die Probleme und Auswirkungen des Vorhandenseins von Middleboxes in Mobile IPv6 Umgebungen. Dazu wird zuerst erklärt welche Arten von Middleboxes es gibt, was genau eine Middlebox ist und wie eine solche Middlebox arbeiten und zweitens die Probleme identifiziert und die Auswirkungen des Vorhandenseins von Firewalls in Mobile IPv6 Umgebungen erklärt. Anschließend werden einige State-of-the-Art Middlebox Traversal Ansätze untersucht, die als mögliche Lösungen um die Mobile IPv6 Firewall Traversal Probleme zu bewältigen betrachtet werden können. Es wird detailiert erklärt wie diese Lösungen arbeiten und ihre Anwendbarkeit für Mobile IPv6 Firewall Traversal evaluiert.Als Hauptbeitrag bringt diese Arbeit zwei detailierte Lösungsansätze ein, welche das Mobile IPv6 Firewall Traversal Problem bewältigen können. Der erste Lösungsansatz, der NSIS basierte Mobile IPv6 Firewall Traversal, basiert auf dem Next Steps in Signaling (NSIS) Rahmenwerk und dem NAT/Firewall NSIS Signaling Layer Protocol (NAT/FW NSLP). Anschließend wird der zweite Lösungsansatz vorgestellt, der Mobile IPv6 Application Layer Gateway. Diese Arbeit erklärt detailiert, wie diese Lösungsansätze die Probleme und Auswirkungen des Vorhandenseins von Middleboxes in Mobile IPv6 Umgebungen bewältigen. Desweitern stellt diese Arbeit vor, wie die NSIS basierte Mobile IPv6 Firewall Traversal und die Mobile IPv6 Application Layer Gateway Proof-of-Concept Implementierungen, die im Rahmen dieser Arbeit entwicklet wurden, implementiert wurden. Abschließend werden die Proof-of-Concept Implementierungen sowie die beiden Lösungsansätze allgemein evaluiert und analysiert

    Efficient security management for active networks.

    Get PDF
    Due to the dynamic nature and dynamic routing capability of active packets, security in active networks should be hop-by-hop based. This thesis discusses the identified drawbacks of existing approaches. These drawbacks are: the high performance overhead generated by per-hop Security Association (SA) negotiation prior to secured active packet transmission the high complexity in SA negotiation handshake process active packet can only be securely transmitted after SA negotiations the shared key set generated for protecting active packets may not have Perfect Forward Secrecy (PFS) lack of confidentiality protection on exchanged symmetric keys and active packets lack of SA negotiation power and scalability issues. This thesis presents a novel hop-by-hop active network security management approach known as Security Protocol for Active Networks (SPAN). SPAN is designed to enable secure active packet transmission during a series of hop-by-hop SPAN SA negotiation along a new execution path, instead of after. The design of SPAN has taken into consideration the factors of security, efficiency, flexibility, scalability, and applicability. SPAN is resistant to replay, man-in-the-middle, impersonate attacks. SPAN is designed to detect DoS attacks much more efficiently. Furthermore, SPAN is uniquely designed to enhance the robustness and efficiency of underlying active networking systems
    corecore