4,992 research outputs found

    Rapid prototyping flight test environment for autonomous unmanned aerial vehicles

    Get PDF
    Test facility is essential for most engineering research activities, from modelling and identification to verification of algorithms/methods and final demonstration. It is well known that flight tests for aerospace vehicles are expensive and quite risky. To overcome this, this paper describes a rapid prototyping platform for autonomous unmanned aerial vehicles (UAV) developed at Loughborough University, where a number of unmanned aerial and ground vehicles can perform various flight and other missions under computer control. Flexibility, maintainability and low expenses are assured by a proper choice of vehicles, sensors and system architecture. Among many other technical challenges, precision navigation of the unmanned vehicles and system integrations of commercial-off-the-shelf components from different vendors with different operational environments are discussed in detail. Matlab/Simulink based software development environment provides a seamless rapid prototyping platform from concept and theoretic developments to numerical simulation and finally flight tests. Finally, two scenarios performed by this test facility are presented to illustrate its capability

    Reducing the power consumption in LTE-advanced wireless access networks by a capacity based deployment tool

    Get PDF
    As both the bit rate required by applications on mobile devices and the number of those mobile devices are steadily growing, wireless access networks need to be expanded. As wireless networks also consume a lot of energy, it is important to develop energy-efficient wireless access networks in the near future. In this study, a capacity-based deployment tool for the design of energy-efficient wireless access networks is proposed. Capacity-based means that the network responds to the instantaneous bit rate requirements of the users active in the selected area. To the best of our knowledge, such a deployment tool for energy-efficient wireless access networks has never been presented before. This deployment tool is applied to a realistic case in Ghent, Belgium, to investigate three main functionalities incorporated in LTE-Advanced: carrier aggregation, heterogeneous deployments, and Multiple-Input Multiple-Output (MIMO). The results show that it is recommended to introduce femtocell base stations, supporting both MIMO and carrier aggregation, into the network (heterogeneous deployment) to reduce the network's power consumption. For the selected area and the assumptions made, this results in a power consumption reduction up to 70%. Introducing femtocell base stations without MIMO and carrier aggregation can already result in a significant power consumption reduction of 38%

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Untangling the physical components of galaxies using infrared spectra

    Get PDF
    The two main physical processes that underpin galaxy evolution are star formation and accretion of mass in active galactic nuclei (AGN). Understanding how contributions from these processes vary across cosmic time requires untangling their relative contributions. The infrared part of the electromagnetic spectrum contains a number of AGN and star formation diagnostics e.g. emission lines from ionised gas or polyaromatic hydrocarbons (PAHs), and the shape of the continuum. Despite the higher resolution of data from Spitzer’s IRS spectrograph, separating out emission from star formation and AGN is carried out using limited spectral features or simplistic templates. In the first part of this thesis, I show how sophisticated data analysis techniques can make full use of the wealth of spectral data. I demonstrate how the popular multivariate technique, Principal Component Analysis (PCA), can classify different types of ultra luminous infrared galaxies (ULIRGs), whilst providing a simple set of spectral components that provide better fits than state-of-the art radiative transfer models. I show how an alternative multivariate technique, Non-Negative Matrix Factorisation (NMF) is more appropriate by applying it to over 700 extragalactic spectra from the CASSIS database and demonstrating its capability in producing spectral components that are physically intuitive, allowing the processes of star formation and AGN activity to be clearly untangled. Finally, I show how rotational transition lines from carbon monoxide and water, observed by the Herschel Space Observatory, provides constraints on the physical conditions within galaxies. By coupling the radiative transfer code, RADEX, with the nested sampling routine, Multinest, I carry out Bayesian inference on the CO spectral line energy distribution ladder of the nearby starburst galaxy, IC342. I also show that water emission lines provide important constraints the conditions of the ISM of on one of the most distant starburst galaxies ever detected, HFLS3

    Review of Environmental Monitoring by Means of Radio Waves in the Polar Regions: From Atmosphere to Geospace

    Get PDF
    The Antarctic and Arctic regions are Earth's open windows to outer space. They provide unique opportunities for investigating the troposphere–thermosphere–ionosphere–plasmasphere system at high latitudes, which is not as well understood as the mid- and low-latitude regions mainly due to the paucity of experimental observations. In addition, different neutral and ionised atmospheric layers at high latitudes are much more variable compared to lower latitudes, and their variability is due to mechanisms not yet fully understood. Fortunately, in this new millennium the observing infrastructure in Antarctica and the Arctic has been growing, thus providing scientists with new opportunities to advance our knowledge on the polar atmosphere and geospace. This review shows that it is of paramount importance to perform integrated, multi-disciplinary research, making use of long-term multi-instrument observations combined with ad hoc measurement campaigns to improve our capability of investigating atmospheric dynamics in the polar regions from the troposphere up to the plasmasphere, as well as the coupling between atmospheric layers. Starting from the state of the art of understanding the polar atmosphere, our survey outlines the roadmap for enhancing scientific investigation of its physical mechanisms and dynamics through the full exploitation of the available infrastructures for radio-based environmental monitoring

    Fall Detection Using Channel State Information from WiFi Devices

    Get PDF
    Falls among the independently living elderly population are a major public health worry, leading to injuries, loss of confidence to live independently and even to death. Each year, one in three people aged 65 and older falls and one in five of them suffers fatal or non fatal injuries. Therefore, detecting a fall early and alerting caregivers can potentially save lives and increase the standard of living. Existing solutions, e.g. push-button, wearables, cameras, radar, pressure and vibration sensors, have limited public adoption either due to the requirement for wearing the device at all times or installing specialized and expensive infrastructure. In this thesis, a device-free, low cost indoor fall detection system using commodity WiFi devices is presented. The system uses physical layer Channel State Information (CSI) to detect falls. Commercial WiFi hardware is cheap and ubiquitous and CSI provides a wealth of information which helps in maintaining good fall detection accuracy even in challenging environments. The goals of the research in this thesis are the design, implementation and experimentation of a device-free fall detection system using CSI extracted from commercial WiFi devices. To achieve these objectives, the following contributions are made herein. A novel time domain human presence detection scheme is developed as a precursor to detecting falls. As the next contribution, a novel fall detection system is designed and developed. Finally, two main enhancements to the fall detection system are proposed to improve the resilience to changes in operating environment. Experiments were performed to validate system performance in diverse environments. It can be argued that through collection of real world CSI traces, understanding the behavior of CSI during human motion, the development of a signal processing tool-set to facilitate the recognition of falls and validation of the system using real world experiments significantly advances the state of the art by providing a more robust fall detection scheme

    Performance Enhancing of Heterogeneous Network through Optimisation and Machine Learning Techniques

    Get PDF
    In the last two decades, by the benefit of advanced wireless technology, growing data service cause the explosive traffic demand, and it brings many new challenges to the network operators. In order to match the growing traffic demand, operators shall deploy new base stations to increase the total cellular network capacity. Meanwhile, a new type of low-power base stations are frequently deployed within the network, providing extra access points to subscribers. However, even the new base station can be operated in low power, the total network energy consumption is still increased proportional to the total number of base station, and considerable network energy consumption will become one of the main issues to the network operators. The way of reducing network energy consumption become crucial, especially in 5G when multiple antennas are deployed within one site. However, the base station cannot be always operated in low power because it will damage the network performance, and power can be only reduced in light-traffic period. Therefore, the way of balancing traffic demand and energy consumption will be come the main investigation direction in this thesis, and how to link the operated power of base station to the current traffic demand is investigated. In this thesis, algorithms and optimisations are utilised to reduce the network energy consumption and improve the network performance. To reduce the energy consumption in light-traffic period, base stations switch-off strategy is proposed in the first chapter. However, the network performance should be carefully estimated before the switch-off strategy is applied. The NP-hard energy efficiency optimisation problem is summarised, and it proposes the method that some of the base stations can be grouped together due to the limited interference from other Pico cells, reducing the complexity of the optimisation problem. Meanwhile, simulated annealing is proposed to obtain the optimal base stations combination to achieve optimal energy efficiency. By the optimisation algorithm, it can obtain the optimal PCs combination without scarifying the overall network throughput. The simulation results show that not only the energy consumption can be reduced but also the significant energy efficiency improvement can achieve by the switched-off strategy. The average energy efficiency improvement over thirty simulation is 17.06%. The second chapter will tackle the issue of how to raise the power of base stations after they are switched off. These base stations shall back to regular power level to prepare the incoming traffic. However, not all base stations shall be back to normal power due to the uneven traffic distribution. By analysing the information within the collected subscriber data, such as moving speed, direction, downlink and time, Naive Bayesian classifier will be utilised to obtain the user movement pattern and predict the future traffic distribution, and the system can know which base station will become the user's destination. The load adaptive power control is utilised to inform the corresponding base stations to increased the transmission power, base stations can prepare for the incoming traffic, avoiding the performance degradation. The simulation results show that the machine learning can accurately predict the destination of the subscriber, achieving average 90.8% accuracy among thirty simulation. The network energy can be saved without damage the network performance after the load adaptive function is applied, the average energy efficiency improvement among three scenarios is 4.3%, the improvement is significant. The significant improvement prove that the proposed machine learning and load adaptive power modification method can help the network reduce the energy consumption. In the last chapter, it will utilise cell range expansion to tackle the resources issue in cooperative base station in joint transmission, improving downlink performance and tackle the cell-edge problem. Due to the uneven traffic distribution, it will cause the insufficient resources problem in cooperative base station in joint transmission, and the system throughput will be influenced if cooperative base station executes joint transmission in high load. Therefore, the cell range expansion is utilised to solve the problem of unbalanced traffic between base station tier, and flow water algorithm is utilised to tackle the resources distribution issue during the traffic offloading. The simulation shows the NP-hard problem can be sufficiently solved by the flow water algorithm, and the downlink throughput gain can be obtained, it can obtain 26% gain in the M-P scenario, and the gain in P-M scenario is 24%. The result prove that the proposed method can provide significant gain to the subscriber without losing any total network throughput
    • …
    corecore