7 research outputs found

    How to increase efficiency with the certification of process compliance

    Get PDF
    Certification as well as self-assessment of safety-critical systems is an expensive and time-consuming activity due to the necessity of providing numerous deliverables. These deliverables can be process-related or product-related. Process-related deliverables are aimed at showing compliance with normative documents (e.g., safety standards), which impose specific requirements on the development process (e.g., reference models for the safety life-cycles). In this lecture, we limit our attention to process-related deliverables and we propose a solution aimed at reducing time and cost related to their provision. Our solution consists of the combination of three approaches: the safety-oriented process line engineering approach, the process-based argumentation line approach, and the model driven certification-oriented approach. More specifically, we define how these three approaches are combined and which techniques, tools and guidelines should be used to implement the resulting approach. Then, via small-sized but realistic process-fragments, we illustrate it. Finally, we present a roadmap for future research directions.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The Last Decade in Review: Tracing the Evolution of Safety Assurance Cases through a Comprehensive Bibliometric Analysis

    Full text link
    Safety assurance is of paramount importance across various domains, including automotive, aerospace, and nuclear energy, where the reliability and acceptability of mission-critical systems are imperative. This assurance is effectively realized through the utilization of Safety Assurance Cases. The use of safety assurance cases allows for verifying the correctness of the created systems capabilities, preventing system failure. The latter may result in loss of life, severe injuries, large-scale environmental damage, property destruction, and major economic loss. Still, the emergence of complex technologies such as cyber-physical systems (CPSs), characterized by their heterogeneity, autonomy, machine learning capabilities, and the uncertainty of their operational environments poses significant challenges for safety assurance activities. Several papers have tried to propose solutions to tackle these challenges, but to the best of our knowledge, no secondary study investigates the trends, patterns, and relationships characterizing the safety case scientific literature. This makes it difficult to have a holistic view of the safety case landscape and to identify the most promising future research directions. In this paper, we, therefore, rely on state-of-the-art bibliometric tools(e.g., VosViewer) to conduct a bibliometric analysis that allows us to generate valuable insights, identify key authors and venues, and gain a birds eye view of the current state of research in the safety assurance area. By revealing knowledge gaps and highlighting potential avenues for future research, our analysis provides an essential foundation for researchers, corporate safety analysts, and regulators seeking to embrace or enhance safety practices that align with their specific needs and objectives

    Reuse of safety certification artefacts across standards and domains: A systematic approach

    Get PDF
    Reuse of systems and subsystem is a common practice in safety-critical systems engineering. Reuse can improve system development and assurance, and there are recommendations on reuse for some domains. Cross-domain reuse, in which a previously certified product typically needs to be assessed against different safety standards, has however received little attention. No guidance exists for this reuse scenario despite its relevance in industry, thus practitioners need new means to tackle it. This paper aims to fill this gap by presenting a systematic approach for reuse of safety certification artefacts across standards and domains. The approach is based on the analysis of the similarities and on the specification of maps between standards. These maps are used to determine the safety certification artefacts that can be reused from one domain to another and reuse consequences. The approach has been validated with practitioners in a case study on the reuse of an execution platform from railway to avionics. The results show that the approach can be effectively applied and that it can reduce the cost of safety certification across standards and domains. Therefore, the approach is a promising way of making cross-domain reuse more cost-effective in industry.European Commission's FP7 programm

    Generation of model-based safety arguments from automatically allocated safety integrity levels

    Get PDF
    To certify safety-critical systems, assurance arguments linking evidence of safety to appropriate requirements must be constructed. However, modern safety-critical systems feature increasing complexity and integration, which render manual approaches impractical to apply. This thesis addresses this problem by introducing a model-based method, with an exemplary application based on the aerospace domain.Previous work has partially addressed this problem for slightly different applications, including verification-based, COTS, product-line and process-based assurance. Each of the approaches is applicable to a specialised case and does not deliver a solution applicable to a generic system in a top-down process. This thesis argues that such a solution is feasible and can be achieved based on the automatic allocation of safety requirements onto a system’s architecture. This automatic allocation is a recent development which combines model-based safety analysis and optimisation techniques. The proposed approach emphasises the use of model-based safety analysis, such as HiP-HOPS, to maximise the benefits towards the system development lifecycle.The thesis investigates the background and earlier work regarding construction of safety arguments, safety requirements allocation and optimisation. A method for addressing the problem of optimal safety requirements allocation is first introduced, using the Tabu Search optimisation metaheuristic. The method delivers satisfactory results that are further exploited for construction of safety arguments. Using the produced requirements allocation, an instantiation algorithm is applied onto a generic safety argument pattern, which is compliant with standards, to automatically construct an argument establishing a claim that a system’s safety requirements have been met. This argument is hierarchically decomposed and shows how system and subsystem safety requirements are satisfied by architectures and analyses at low levels of decomposition. Evaluation on two abstract case studies demonstrates the feasibility and scalability of the method and indicates good performance of the algorithms proposed. Limitations and potential areas of further investigation are identified

    Tool Support for Assurance Case Development

    Get PDF
    Argument-based assurance cases, often represented and organized using graphical argument structures, are increasingly being used in practice to provide assurance to stakeholders, e.g., regulatory authorities, that a system is acceptable for its intended use with respect to dependability and safety concerns. In general, comprehensive system-wide assurance arguments aggregate a substantial amount of diverse information, such as the results of safety analysis, requirements analysis, design, verification and other engineering activities. Although a variety of assurance case tools exist, many desirable argument structure operations such as hierarchical and modular abstraction, argument pattern instantiation, and inclusion extraction of richly structured information have limited to no automation support. Consequently, a considerable amount of time and effort can be spent in creating, understanding, evaluating, and managing argument structures. Over the past three years, we have been developing a toolset for assurance case automation, AdvoCATE, at the NASA Ames Research Center, to close this automation gap. This paper describes how AdvoCATE is being engineered atop formal foundations for assurance case argument structures, to provide unique capabilities for: (a) automated creation and assembly of assurance arguments, (b) integration of formal methods into wider assurance arguments, (c) automated pattern instantiation, (d) hierarchical abstraction, (e) queries and views, and (f) verification of arguments. We (and our colleagues) have used AdvoCATE in real projects for safety and airworthiness assurance, in the context of both manned and unmanned aircraft systems

    Software development in the post-PC era : towards software development as a service

    Get PDF
    PhD ThesisEngineering software systems is a complex task which involves various stakeholders and requires planning and management to succeed. As the role of software in our daily life is increasing, the complexity of software systems is increasing. Throughout the short history of software engineering as a discipline, the development practises and methods have rapidly evolved to seize opportunities enabled by new technologies (e.g., the Internet) and to overcome economical challenges (e.g., the need for cheaper and faster development). Today, we are witnessing the Post-PC era. An era which is characterised by mobility and services. An era which removes organisational and geographical boundaries. An era which changes the functionality of software systems and requires alternative methods for conceiving them. In this thesis, we envision to execute software development processes in the cloud. Software processes have a software production aspect and a management aspect. To the best of our knowledge, there are no academic nor industrial solutions supporting the entire software development process life-cycle(from both production and management aspects and its tool-chain execution in the cloud. Our vision is to use the cloud economies of scale and leverage Model-Driven Engineering (MDE) to integrate production and management aspects into the development process. Since software processes are seen as workflows, we investigate using existing Workflow Management Systems to execute software processes and we find that these systems are not suitable. Therefore, we propose a reference architecture for Software Development as a Service (SDaaS). The SDaaS reference architecture is the first proposal which fully supports development of complex software systems in the cloud. In addition to the reference architecture, we investigate three specific related challenges and propose novel solutions addressing them. These challenges are: Modelling & enacting cloud-based executable software processes. Executing software processes in the cloud can bring several benefits to software develop ment. In this thesis, we discuss the benefits and considerations of cloud-based software processes and introduce a modelling language for modelling such processes. We refer to this language as EXE-SPEM. It extends the Software and Systems Process Engineering (SPEM2.0) OMG standard to support creating cloudbased executable software process models. Since EXE-SPEM is a visual modelling language, we introduce an XML notation to represent EXE-SPEM models in a machine-readable format and provide mapping rules from EXE-SPEM to this notation. We demonstrate this approach by modelling an example software process using EXE-SPEM and mapping it to the XML notation. Software process models expressed in this XML format can then be enacted in the proposed SDaaS architecture. Cost-e cient scheduling of software processes execution in the cloud. Software process models are enacted in the SDaaS architecture as workflows. We refer to them sometimes as Software Workflows. Once we have executable software process models, we need to schedule them for execution. In a setting where multiple software workflows (and their activities) compete for shared computational resources (workflow engines), scheduling workflow execution becomes important. Workflow scheduling is an NP-hard problem which refers to the allocation of su cient resources (human or computational) to workflow activities. The schedule impacts the workflow makespan (execution time) and cost as well as the computational resources utilisation. The target of the scheduling is to reduce the process execution cost in the cloud without significantly a ecting the process makespan while satisfying the special requirements of each process activity (e.g., executing on a private cloud). We adapt three workflow scheduling algorithms to fit for SDaaS and propose a fourth one; the Proportional Adaptive Task Schedule. The algorithms are then evaluated through simulation. The simulation results show that the our proposed algorithm saves between 19.74% and 45.78% of the execution cost, provides best resource (VM) utilisation and provides the second best makespan compared to the other presented algorithms. Evaluating the SDaaS architecture using a case study from the safety-critical systems domain. To evaluate the proposed SDaaS reference architecture, we instantiate a proof-of-concept implementation of the architecture. This imple mentation is then used to enact safety-critical processes as a case study. Engineering safety-critical systems is a complex task which involves multiple stakeholders. It requires shared and scalable computation to systematically involve geographically distributed teams. In this case study, we use EXE-SPEM to model a portion of a process (namely; the Preliminary System Safety Assessment - PSSA) adapted from the ARP4761 [2] aerospace standard. Then, we enact this process model in the proof-of-concept SDaaS implementation. By using the SDaaS architecture, we demonstrate the feasibility of our approach and its applicability to di erent domains and to customised processes. We also demonstrate the capability of EXE-SPEM to model cloud-based executable processes. Furthermore, we demonstrate the added value of the process models and the process execution provenance data recorded by the SDaaS architecture. This data is used to automate the generation of safety cases argument fragments. Thus, reducing the development cost and time. Finally, the case study shows that we can integrate some existing tools and create new ones as activities used in process models. The proposed SDaaS reference architecture (combined with its modelling, scheduling and enactment capabilities) brings the benefits of the cloud to software development. It can potentially save software production cost and provide an accessible platform that supports collaborating teams (potentially across di erent locations). The executable process models support unified interpretation and execution of processes across team(s) members. In addition, the use of models provide managers with global awareness and can be utilised for quality assurance and process metrics analysis and improvement. We see the contributions provided in this thesis as a first step towards an alternative development method that uses the benefits of cloud and Model-Driven Engineering to overcome existing challenges and open new opportunities. However, there are several challenges that are outside the scope of this study which need to be addressed to allow full support of the SDaaS vision (e.g., supporting interactive workflows). The solutions provided in this thesis address only part of a bigger vision. There is also a need for empirical and usability studies to study the impact of the SDaaS architecture on both the produced products (in terms of quality, cost, time, etc.) and the participating stakeholders
    corecore