
School of Computing Science

Software Development in the Post-PC
Era: Towards Software Development as

a Service

Sami Alajrami

Submitted for the degree of Doctor of
Philosophy in the School of Computing

Science, Newcastle University

May 2017

c© 2017, Sami Alajrami

In memory of my loving parents

- iii -

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this thesis

has previously been submitted for a degree or any other qualification at Newcastle

University or any other institution.

Sami Alajrami

May 2017

- v -

Acknowledgements

This thesis would not have been possible without the help and support of several

people. I owe the successful completion of this thesis to those individuals. First

and foremost, I would like to express my sincere gratitude to my supervisor Prof.

Alexander Romanovsky who believed in this work when I had moments of doubt

and whose patience, commitment, advice and continuous encouragement have helped

me to become an independent researcher. I am also very grateful to the school of

computing science at Newcastle University and the head of school Prof. Aad van

Moorsel for giving me the opportunity to undertake this work. I would like also to

thank my co-supervisor Dr. Barbara Gallina whose expertise and generous guidance

have helped shaping this work.

It is a pleasure to thank all those who contributed to this thesis through fruitful discus-

sions, suggestions and kind advice. Especially, Prof. Paul Watson, Dr. Jacek Cala, Dr.

Simon Woodman, Prof. Andreas Roth, Dr. Victor Khomenko, Dr. Leo Freitas, Dr. Juan

Perna and Dr. Rajiv Ranjan. I would also like to thank Irfan Slijvo and Petter Isberg for

the fruitful collaboration.

This acknowledgement cannot be complete without expressing my deepest gratitude

to all friends and family. Specially; my best friend and true sister, Maryam, your selfless

time and care were sometimes all that kept me going. I am forever grateful.

Ehsan, thanks for being a true brother and for the good times and the nice cakes.

Maher and Mohammad, you made me feel welcomed. Your advice and experience

have always been a great resource. Thank you.

David, Razgar, Diego, Rani, Ayman, Khalid and Adham, I am grateful to have such

good friends.

My siblings, you have always been a source of motivation. Thank you.

Last, but not least, special thanks to my loving parents. Mom, your selfless encourage-

ment is what made me take this journey in the first place. You left this world but never

left my thoughts. Dad, your memory has always been with me. You are both missed.

- vii -

Abstract

Engineering software systems is a complex task which involves various stakeholders

and requires planning and management to succeed. As the role of software in our daily

life is increasing, the complexity of software systems is increasing. Throughout the

short history of software engineering as a discipline, the development practises and

methods have rapidly evolved to seize opportunities enabled by new technologies

(e.g., the Internet) and to overcome economical challenges (e.g., the need for cheaper

and faster development).

Today, we are witnessing the Post-PC era. An era which is characterised by mobility and

services. An era which removes organisational and geographical boundaries. An era

which changes the functionality of software systems and requires alternative methods

for conceiving them.

In this thesis, we envision to execute software development processes in the cloud.

Software processes have a software production aspect and a management aspect. To

the best of our knowledge, there are no academic nor industrial solutions supporting the

entire software development process life-cycle(from both production and management

aspects and its tool-chain execution in the cloud.

Our vision is to use the cloud economies of scale and leverage Model-Driven Engi-

neering (MDE) to integrate production and management aspects into the development

process. Since software processes are seen as workflows, we investigate using existing

Workflow Management Systems to execute software processes and we find that these

systems are not suitable. Therefore, we propose a reference architecture for Software

Development as a Service (SDaaS). The SDaaS reference architecture is the first proposal

which fully supports development of complex software systems in the cloud.

In addition to the reference architecture, we investigate three specific related challenges

and propose novel solutions addressing them. These challenges are:

• Modelling & enacting cloud-based executable software processes. Executing

software processes in the cloud can bring several benefits to software develop-

- ix -

ment. In this thesis, we discuss the benefits and considerations of cloud-based

software processes and introduce a modelling language for modelling such pro-

cesses. We refer to this language as EXE-SPEM. It extends the Software and Sys-

tems Process Engineering (SPEM2.0) OMG standard to support creating cloud-

based executable software process models. Since EXE-SPEM is a visual mod-

elling language, we introduce an XML notation to represent EXE-SPEM models

in a machine-readable format and provide mapping rules from EXE-SPEM to

this notation. We demonstrate this approach by modelling an example software

process using EXE-SPEM and mapping it to the XML notation. Software process

models expressed in this XML format can then be enacted in the proposed SDaaS

architecture.

• Cost-efficient scheduling of software processes execution in the cloud. Soft-

ware process models are enacted in the SDaaS architecture as workflows. We

refer to them sometimes as Software Workflows. Once we have executable soft-

ware process models, we need to schedule them for execution. In a setting where

multiple software workflows (and their activities) compete for shared compu-

tational resources (workflow engines), scheduling workflow execution becomes

important. Workflow scheduling is an NP-hard problem which refers to the al-

location of sufficient resources (human or computational) to workflow activities.

The schedule impacts the workflow makespan (execution time) and cost as well as

the computational resources utilisation. The target of the scheduling is to reduce

the process execution cost in the cloud without significantly affecting the process

makespan while satisfying the special requirements of each process activity (e.g.,

executing on a private cloud). We adapt three workflow scheduling algorithms

to fit for SDaaS and propose a fourth one; the Proportional Adaptive Task Schedule.

The algorithms are then evaluated through simulation. The simulation results

show that the our proposed algorithm saves between 19.74% and 45.78% of the

execution cost, provides best resource (VM) utilisation and provides the second

best makespan compared to the other presented algorithms.

• Evaluating the SDaaS architecture using a case study from the safety-critical

systems domain. To evaluate the proposed SDaaS reference architecture, we

instantiate a proof-of-concept implementation of the architecture. This imple-

- x -

mentation is then used to enact safety-critical processes as a case study.

Engineering safety-critical systems is a complex task which involves multiple

stakeholders. It requires shared and scalable computation to systematically in-

volve geographically distributed teams. In this case study, we use EXE-SPEM to

model a portion of a process (namely; the Preliminary System Safety Assessment

- PSSA) adapted from the ARP4761 [2] aerospace standard. Then, we enact this

process model in the proof-of-concept SDaaS implementation.

By using the SDaaS architecture, we demonstrate the feasibility of our approach

and its applicability to different domains and to customised processes. We also

demonstrate the capability of EXE-SPEM to model cloud-based executable pro-

cesses. Furthermore, we demonstrate the added value of the process models and

the process execution provenance data recorded by the SDaaS architecture. This

data is used to automate the generation of safety cases argument fragments. Thus,

reducing the development cost and time. Finally, the case study shows that we

can integrate some existing tools and create new ones as activities used in process

models.

The proposed SDaaS reference architecture (combined with its modelling, scheduling

and enactment capabilities) brings the benefits of the cloud to software development. It

can potentially save software production cost and provide an accessible platform that

supports collaborating teams (potentially across different locations). The executable

process models support unified interpretation and execution of processes across team(s)

members. In addition, the use of models provide managers with global awareness and

can be utilised for quality assurance and process metrics analysis and improvement.

We see the contributions provided in this thesis as a first step towards an alternative

development method that uses the benefits of cloud and Model-Driven Engineering to

overcome existing challenges and open new opportunities. However, there are several

challenges that are outside the scope of this study which need to be addressed to allow

full support of the SDaaS vision (e.g., supporting interactive workflows). The solutions

provided in this thesis address only part of a bigger vision. There is also a need for

empirical and usability studies to study the impact of the SDaaS architecture on both

the produced products (in terms of quality, cost, time, etc.) and the participating

stakeholders.

- xi -

Publications

Portions of the work presented within this thesis have been documented in the follow-

ing publications:

CONFERENCE PAPERS

1. S Alajrami, B Gallina, A Romanovsky, EXE-SPEM: Towards Cloud-based Executable

Software Process Models. In: Proceedings of the 4th International Conference

on Model-Driven Engineering and Software Development (MODELWARD’16),

Rome, Italy, February 19-21, pages 517-526. Scitepress, 2016.

2. S Alajrami, B Gallina, I Sljivo, A Romanovsky, P Isberg: Towards Cloud-based

Enactment of Safety-related Processes. In A Skavhaug, J Guiochet, and F Bitsch,

editors, Computer Safety, Reliability, and Security: 35th International Conference,

(SAFECOMP’16), Trondheim, Norway, September 21-23, Proceedings, pages 309-

321. Springer, 2016.

3. S Alajrami, A Romanovsky, B Gallina: Software Development in the Post-PC Era:

Towards Software Development as a Service. In P Abrahamsson and A Jedlitschka,

editors, the 17th International Conference on Product-Focused Software Process

Improvement, (PROFES’16), Trondheim, Norway, November 22-24, Proceedings.

Springer, 2016.

4. S Alajrami, B Gallina, A Romanovsky: Cost-Aware Scheduling of Software Processes

Execution in the Cloud. In: the 43rd Euromicro Conference on Software Engineering

and Advanced Applications. (Submitted).

WORKSHOP PAPERS

1. S Alajrami, A Romanovsky, P Watson, and A Roth. Towards Cloud-based Software

Process Modelling and Enactment. In: Proceedings of the 2nd International Work-

shop on Model-Driven Engineering on and for the Cloud co-located with the 17th

- xiii -

International Conference on Model Driven Engineering Languages and Systems

(MODELS ’14). Valencia, Spain. September, 2014.

STUDENT PAPERS

1. S Alajrami On Cloud-Based Engineering of Dependable Systems. In: Student Forum

of the 10th European Dependable Computing Conference (EDCC ’14). Newcastle

upon Tyne, UK. May, 2014.

TECHNICAL REPORTS

1. S Alajrami, B Gallina, and A Romanovsky. Enabling Global Software Development

via Cloud-Based Software Process Enactment. Technical Report TR-1494, School of

Computing Science, Newcastle University, UK. March, 2016.

- xiv -

Contents

1 Introduction 1

1.1 Preface . 2

1.2 Software Engineering Evolution . 3

1.3 Software Development as a Service . 4

1.3.1 Motivation . 4

1.3.2 Software process workflows . 7

1.3.3 Initial experiments . 10

1.3.4 Software development tools in the cloud 11

1.4 Thesis Storyline and Contributions . 12

2 Reference Architecture for Software Development as a Service (SDaaS) 15

2.1 Introduction . 16

2.2 Terminology & Definitions . 16

2.3 Requirements for SDaaS . 17

2.3.1 Non-cloud-related requirements 18

2.3.1.1 R1: Awareness and synchronisation support 18

2.3.1.2 R2: Availability of tools in real time 18

2.3.1.3 R3: Organisational policy convergence 19

2.3.1.4 R4: Capturing process and provenance data 19

2.3.1.5 R5: Accessible artefacts 20

2.3.1.6 R6: Governance and inter-organisation collaboration . . 20

2.3.2 Cloud-related requirements . 20

2.3.2.1 R7: Privacy and legal compliance 20

2.3.2.2 R8: Multi-tenancy . 21

2.3.2.3 R9: Scalability . 21

2.4 Reference Architecture for SDaaS . 21

2.4.1 WfMC compliance . 21

2.4.2 Process modelling (Design Time) 24

2.4.3 The enactment service (Run-time) 24

2.4.3.1 Artefacts manager . 24

2.4.3.2 External tools . 25

- xv -

2.4.3.3 The execution manager 25

2.4.3.4 Workflow engines registry 26

2.4.3.5 Scheduler . 26

2.4.3.6 Consistency checker . 26

2.4.3.7 SLA monitor . 27

2.4.3.8 External workflow collaboration 27

2.4.4 Workflow engines . 27

2.5 Specifications of the SDaaS Workflows . 28

2.5.1 Activities types . 28

2.5.2 Interaction patterns . 29

2.5.3 Software workflows life-cycle . 29

2.5.4 Activities life-cycle . 30

2.5.5 Artefacts life-cycle . 31

2.6 Proof of Concept . 31

2.6.1 Implementation & deployment . 32

2.6.2 Migrated tools . 33

2.6.2.1 Spin . 34

2.6.2.2 DiVinE . 34

2.6.2.3 Concerto-FLA . 35

2.7 Discussion . 35

2.8 Summary . 37

3 Modelling Software Processes for Cloud-Based Execution Using EXE-SPEM 38

3.1 Introduction . 39

3.2 Background . 40

3.2.1 Software process modelling . 40

3.2.2 Software process modelling standards 42

3.2.2.1 SPEM2.0 . 42

3.2.2.2 ESSENCE . 43

3.2.2.3 ISO 24744 . 44

3.2.2.4 Choosing SPEM2.0 for software process modelling . . . 44

3.3 Requirements for Cloud-Based Executable Software Process Models . . 45

3.4 EXE-SPEM . 48

3.5 Model to Text Transformation . 51

3.6 Sample Process . 53

3.7 Discussion . 54

3.8 Summary . 55

- xvi -

4 Cost-efficient Scheduling of Software Processes Execution in the Cloud 56

4.1 Introduction . 57

4.2 Background . 57

4.2.1 Workflow scheduling . 58

4.2.2 Workflow scheduling algorithms 61

4.3 Scheduling SDaaS Software Workflows in the Cloud 65

4.3.1 Assumptions . 65

4.3.2 Objectives . 66

4.3.3 Motivation . 66

4.3.4 Problem definition & assumptions 67

4.3.5 Scheduling requirements . 70

4.3.6 Cost factors . 71

4.3.7 Scheduling algorithms . 72

4.3.7.1 Unlimited First Come First Serve (UFCFS) 74

4.3.7.2 Limited First Come First Serve (LFCFS) 74

4.3.7.3 Pool-based Adaptive Task Schedule 75

4.3.7.4 Proportional Adaptive Task Schedule 76

4.4 Evaluation . 78

4.4.1 The request generator . 78

4.4.2 The simulation scheduler . 80

4.4.3 Workflow engines . 80

4.4.4 Performing the simulation . 81

4.4.5 Simulation results . 81

4.4.5.1 UFCFS . 82

4.4.5.2 LFCFS . 83

4.4.5.3 Pool-based Adaptive Task Scheduling 84

4.4.5.4 Proportional Adaptive Task Schedule 85

4.5 Summary . 86

5 Evaluation: A Case Study on Cloud-Based Engineering of Safety-Critical
Systems Processes 89

5.1 Introduction . 90

5.1.1 The evaluation method . 90

5.1.2 The safety-critical systems case study 91

5.2 EXE-SPEM for Modelling Safety-related Processes 94

5.3 The PSSA Case Study . 94

- xvii -

5.3.1 Argument generation . 97

5.3.1.1 Product-based argument 97

5.3.1.2 Process-based argument 98

5.3.2 Implementation . 101

5.3.3 Execution . 103

5.4 Discussion . 105

5.5 Summary . 107

6 Conclusions 109

6.1 This Thesis in a Nutshell . 110

6.2 Future Work . 113

6.2.1 Motivating Scenarios . 115

6.2.1.1 Continuous delivery . 115

6.2.1.2 Compliance and continuous certification 116

6.3 Concluding Remarks . 116

Bibliography 118

Appendices 128

A The XML Schema for EXE-SPEM 129

B The XML Process Model for Facebook’s Continuous Delivery Process 130

C ARP4761 135

D ARP4761 Wheel Brake System 140

E Safety Case Representation 143

E.1 Visual representation . 143

E.2 Machine-readable representation . 144

E.3 Textual representation . 144

F The BSCU Flamm Architectural Model 147

G The BSCU Flamm Architectural Model With FPTC Results 150

H The Undesired Hazardous Events 154

I The SACM/XMI Representation of the Product-Based Argument 155

- xviii -

J The Argument Outline Textual Representation of the Product-Based Argu-
ment 156

K The SACM/XMI Representation of the Process-Based Argument 159

L The Argument Outline Textual Representation of the Process-Based Argu-
ment 162

M The XML PSSA Process Model 165

- xix -

List of Figures

1.1 eSC workflow using the DiVinE activity 11

2.1 The WfMC workflow reference model components [67] 22

2.2 High level overview of the SDaaS reference architecture 23

2.3 The SDaaS reference architecture . 25

2.4 Workflow life-cycle . 30

2.5 Workflow instance life-cycle states . 30

2.6 Activities life-cycle . 31

2.7 Artefacts life-cycle . 31

2.8 Message oriented communication . 33

3.1 The process modelling components in the SDaaS reference architecture . 40

3.2 The meta-model of the extended SPEM 2.0 process structure 50

3.3 The meta-model of the XML format . 52

3.4 Facebook’s continuous delivery process model in EXE-SPEM 54

4.1 Highlighting the scheduler in the SDaaS reference architecture 58

4.2 The workflow scheduling categories [116] 59

4.3 Allocating activities to workflow engines (a) 74

4.4 Allocating activities to workflow engines (b) 74

4.5 Unlimited First Come First Serve algorithm 75

4.6 Limited First Come First Serve algorithm 76

4.7 Pool-based Adaptive task scheduling algorithm adapted from [109] . . . 77

4.8 The first workflow input model . 79

4.9 The second workflow input model . 79

4.10 The third workflow input model . 79

4.11 Execution cost benchmark in all algorithms 82

4.12 Execution time benchmark for all algorithms for workflow 1 83

4.13 Execution time benchmark for all algorithms for workflow 2 84

4.14 Execution time benchmark for all algorithms for workflow 3 84

4.15 Execution times in UFCFS . 85

4.16 Execution times in LFCFS for workflow 1 85

- xx -

4.17 Execution times in LFCFS for workflow 2 86

4.18 Execution times in LFCFS for workflow 3 86

4.19 Execution time and cost benchmark in LFCFS 86

4.20 Execution times and cost in Pool-based Adaptive Task Schedule 87

4.21 Execution times in Proportional Adaptive Task Schedule 87

5.1 PSSA augmented with the argument generation process 95

5.2 The architectural model of BSCU components, ports and failures [2] . . . 96

5.3 The pseudo code for analysing the FPTC results 98

5.4 Rules for product-based argument construction 99

5.5 GSN representation of the generated product-based argument 104

5.6 The product-based argument represented in text 104

5.7 GSN representation of partial process-based argument 105

5.8 A portion of the process-based argument represented in text 105

C.1 An overview of the airworthiness safety assessment process [2] 136

C.2 Example of the relationship between FHA and FTA [2] 138

D.1 The wheel brake system [2] . 141

D.2 The wheel brake system sub-components [2] 142

D.3 FPTC syntax [54] . 142

D.4 The architectural model of BSCU components, ports and failures [2] . . . 142

E.1 GSN Elements . 143

E.2 An example of a GSN argument . 144

E.3 The GSN argument encoded in SACM/ARM XMI format 145

E.4 Example of the normal prose [68] . 145

E.5 Example of the structured prose [68] . 146

E.6 Example of the argument outline [68] . 146

E.7 Example of the LISP style [68] . 146

- xxi -

List of Tables

1.1 A sample of WfMSs . 9

1.2 A sample of cloud-based software development tools 12

3.1 Comparing the three software process modelling standards 46

3.2 Graphical icons of EXE-SPEM elements 51

3.3 Mapping rules between EXE-SPEM and our XML notation 53

4.1 Workflow engine VM types and prices . 80

4.2 Simulation results summary . 82

4.3 Simulation results with confidence intervals 83

5.1 Claims to be validated using the case study 91

5.2 Concept mapping as proposed by MDSafeCer [56] 100

- xxii -

1
Introduction

Contents
1.1 Preface . 2

1.2 Software Engineering Evolution . 3

1.3 Software Development as a Service . 4

1.3.1 Motivation . 4

1.3.2 Software process workflows . 7

1.3.3 Initial experiments . 10

1.3.4 Software development tools in the cloud 11

1.4 Thesis Storyline and Contributions . 12

An earlier version of some parts of this chapter is published in: S Alajrami, A Romanovsky, B
Gallina: Software Development in the Post-PC Era:Towards Software Development as a Service. In:
Proceedings of the 17th International Conference on Product-Focused Software Process Improvement
(PROFES’16). Trondheim, Norway. November, 2016.

- 1 -

Chapter 1: Introduction

1.1 Preface

Software systems are playing a critical role in modern society. Many aspects of our

lives such as transport, health care and communication are dependent on software.

In a way, software is smartifying our lives through: smart phones, watches, glasses,

grids and cities. The list goes on leading to a smart society where every aspect of the

society is connected to, influenced by and dependent on software. Although, this helps

addressing several societal challenges, it comes with the cost of increased software

complexity. This complexity is then reflected on the way software is conceived where

the expectations of reliability, security and fast delivery are higher than ever.

As Maximilien and Campos point out [86], we have entered the Post-PC era. This era

is characterised by the increasing mobility and connectivity of people and devices, and

the use of cloud computing as a software delivery platform. The role of the traditional

personal computers (high-specification desktops) is gradually declining. Personal com-

puters are becoming mobile and low-specification devices.

The software engineering community has long been evolving to address new rising

challenges and to embrace new disruptive technologies. Market needs and economical

factors create a challenge for software vendors to rapidly produce high quality software

while maintaining low production costs. As a result, paradigms such as Agile methods,

Continuous Delivery [70] and DevOps [78] were introduced.

Accordingly, the way software is conceived needs to adapt to the rising Post-PC era.

Software development processes have two aspects: the software production aspect,

which focuses on conceiving the software, and the management aspect, which focuses

on planning and manging the development process [12]. Modern software is conceived

by using a wide range of tools/platforms which support the software production aspect

of software processes (development, testing, deployment and operation of software) as

well as tools supporting the management aspect of software processes (project planning,

resource planning, etc.). Some of these tools (e.g., IDEs like Eclipse Orion1) are already

being offered in the cloud. Chauhan and Ali Babar have proposed the Tools as a Service

(TaaS) reference architecture [34]. TaaS focuses on provisioning tools supporting the

software production aspect of software processes as services in the cloud, however, it

1https://orionhub.org/

- 2 -

Chapter 1: Introduction

overlooks the management aspect of the development process. Such aspect is crucial for

successful software projects. Therefore, there is a need for a solution which integrates

the software production aspect (supported by tools) and the management aspect within

the same environment.

In this thesis, we propose the Software Development as a Service (SDaaS) reference archi-

tecture which uses the cloud to support modelling, managing and enacting software

processes in a model-driven paradigm. SDaaS utilises the cloud as an execution and

distribution platform where tools are offered as services and orchestrated in workflows.

Development environments are created on the fly and scaled as needed. Engineers can

do their work on-the-go from anywhere. Furthermore, modelling and monitoring the

process itself integrate the management aspect of the software development process

into the development environment.

Throughout this thesis, we will be addressing some aspects of the SDaaS architecture in

more detail. But first, lets go back in time and see how software engineering has evolved

and how the challenges faced today have existed from the early days of software.

1.2 Software Engineering Evolution

From the early days of computing, production of software products has been challenged

by various problems [96] some of which continued to persist as software manufacturing

processes evolved.

The motivation behind establishing the foundations of the software engineering disci-

pline was led by the continuous development of hardware technology such asprocess-

ing, memory, storage, networking, which enabled producing larger and more complex

software systems. The continuous growth of complexity meant higher risks of fail-

ures,where projects may run over budget and/or schedule. Both industry and academia

needed to define a systematic way of engineering software systems which would min-

imise the risk of project failures. The challenge at the time was how to develop large and

complex software in a systematic way within the available resources, such asmoney,

time, and manpower, and it was known as the “software crisis” [41]. This led, for

instance, to the NATO conference on software engineering in 1968 [89] which aimed to

provide theoretical foundations and practical disciplines for software production just

- 3 -

Chapter 1: Introduction

like any other engineering discipline.

However, many would argue that the software crisis has never ended. Brooks has

argued in [30] that there is no sliver bullet in software engineering that can provide one

order of magnitude of improvement. In his book [72], Jensen discusses why the issues

that faced software in the 1960s are still plaguing software projects today.

The term Software Processes emerged in the 80s as the software industry realised the im-

portance of software processes and their correlation with software quality [52]. Paulk

et al. [92] describe a software process as “a set of activities, methods, practises, and

transformations that people use to develop and maintain software and the associated

products (e.g., project plans, design documents, code, test cases and user manuals)”.

Research has focused on modelling, automation and improvement of software pro-

cesses. Researchers have proposed various software process modelling languages (see

Chapter 3) and software life-cycle models (e.g., Waterfall [95] and Spiral [28]) defining

guidelines according to which software processes have to be carried out [52]. Further-

more, assessment and improvement of software processes were investigated.

Given that the challenges facing software development continue to exist, there is a

continuous need to evolve the software development practises to cope with new tech-

nologies and economical challenges. In the next section, we describe our proposed

approach for supporting software development in the Post-PC era.

1.3 Software Development as a Service

1.3.1 Motivation

In 1999, David Clark used the term Post-PC for the first time in a talk called “The

Post-PC Internet”. He predicted that the future will be “inevitably heterogeneous” and

“a network full of services” 2. Today, we are witnessing that era, where software and

infrastructure are being delivered as services on the cloud. The cloud is becoming the

development and the operation environment for software. This trend raises the need

for alternative methods and technologies to design, implement, test, deploy and evolve

software [53].

2http://www.nytimes.com/1999/04/18/business/economic-view-is-mr-gates-pouring-fuel-on-his-
rivals-fire.html

- 4 -

Chapter 1: Introduction

Alternative methods need to consider the needs of modern software development. For

example, modern software development does not recognise geographical/organisa-

tional boundaries. Global Software Development (GSD) [36] has crossed the geograph-

ical borders allowing teams around the globe to collaborate in distributed development

projects. Furthermore, DevOps [78] is a trendy software development practice which

aims at bridging the gaps between development and operations teams leading to an au-

tomated build-test-deploy-release cycle. Thus crossing the organisational boundaries.

Additionally, in many cases, software development has to abide with certain standards

or practises to ensure certain qualities in the produced software (e.g., safety).

The success of such projects (distributed, using trendy development practises and

having high quality expectations) require the support for both aspects of the soft-

ware development process; management and software production. Fuggetta and Di

Nitto [53] point out that the software community is challenged with the need to move

from rigid compliance to smart convergence. This means that the management aspect

of the development process will be supported by monitoring and consistency checking

tools. Such tools require information about the process, stakeholders involved and the

process execution details (provenance data). In addition, with modern software devel-

opment practises such as DevOps [78] and Continuous Delivery [70], the recommended

practice is to increase automation of process steps whenever possible as it increases the

productivity, supports repeatability and reduces errors. Therefore, the product devel-

opment aspect of software processes should be supported with tool-chains which their

execution can be (partially) automated.

In this thesis, we propose a reference architecture for Software Development as a Ser-

vice (SDaaS). SDaaS adopts the Model-Driven Engineering (MDE) [99] principles and

leverages the cloud as an enabling platform for software process enactment (execu-

tion). It provides the core components to enable modelling and executing a software

process in the cloud. Additional services and components can be built on top of the

core SDaaS architecture to meet the needs of modern software development. The use

of MDE principles aims at providing the basis for supporting the management aspect

of software processes, while the use of the cloud aims at supporting provisioning of

development tools for the software production aspect. In this thesis, we achieve sup-

port for the production aspect of the software development processes and the pave the

- 5 -

Chapter 1: Introduction

way for supporting the management aspect as well. SDaaS combines the following

benefits of cloud computing and software process modelling:

Cloud benefits

• Cloud can be used to save resources (time, money, manpower) that are wasted in

acquiring and configuring software development environments/tools. On-the-fly

availability of development environments eliminates some manual configura-

tions errors. Humble and Farley [70] point out that a simple error such as using

different versions of the same tool by different teams can lead to expensive prob-

lems. Cloud-based development environments help software engineers to focus

their efforts on the actual business problem rather than environments set up and

configuration,

• The accessibility of the cloud facilitates collaboration between geographically dis-

tributed teams involved in software projects. In addition, it allows management

to have a global view on the project progress. Artefacts can be globally managed

and accessed. Group-oriented tools are identified by Boehm [29] among the needs

that software engineering is required to achieve until 2025,

• Software development tools can be offered on demand in the cloud. This allows

updating the tools without user involvement and also allows users to easily switch

between different versions of a tool,

• By utilising the cloud economies of scale, computationally intensive tools (e.g.,

model checkers or provers) can be provided with sufficient computational re-

sources as needed.

Software process modelling benefits

• Software process models (like all models) provide abstraction of process complex-

ity [77]. Such abstraction is useful to hide unnecessary complexity from certain

stakeholders and provide further details for others,

• Models hide plumbing details and can be used for communication and mutual

understanding of processes between teams [17]. When process models are ex-

ecutable, it ensures that the processes will be executed similarly by different

stakeholders or at different times,

- 6 -

Chapter 1: Introduction

• Executable process models can be monitored and tracked. This gives better global

awareness and view for project managers especially in distributed projects,

• In certain domains (e.g., safety-critical systems), processes have to be strictly

followed. Executable process models not only document and communicate the

processes to be followed, but can also ensure that teams follow the organisation’s

policies and processes. Furthermore, they can be used as a form of evidence

showing that a certain process has been followed.

The proposed SDaaS architecture is distinguished from the TaaS architecture [34] by

two main features. First,while TaaS uses the cloud for provisioning tool-chains as a ser-

vice supporting the software production aspect of the software development process,

it completely overlooks the management aspect of the process. The SDaaS architecture

uses software process models and capture process and execution data as well as arte-

facts which supports the management aspect of the software development processes,

while it also uses the cloud to provision tools as services. Second, the SDaaS archi-

tecture provides granular control over the use of the cloud. For example, it allows to

specify certain computational power or private hosting option for certain parts of the

development process.

While the SDaaS architecture is generic and is aimed to be applied for any type of

software development projects, the features it provides are particularly useful for GSD

projects. Hashmi et al. [62] have already discussed the potential of using the cloud

to facilitate GSD projects. The SDaaS architecture does not only utilise the cloud

economies of scale, but also aims at supporting the management aspect of software

development. In GSD projects, the challenges created by distances [32] require efficient

management to overcome them.

1.3.2 Software process workflows

Software development process can be described as a sequence of operations (activi-

ties) performed by development team members including customers and managers

(actors) where activities produce artefacts which are used as inputs for other activities.

This complies with the Workflow Management Coalition (WfMC) definition of work-

flow [110] as “the automation of a business process, in whole or part, during which

- 7 -

Chapter 1: Introduction

documents, information or tasks are passed from one participant to another for action,

according to a set of procedural rules”. Therefore, software process can naturally be

seen as a workflow. The idea of using workflow technology for software processes is

not new, several researchers have investigated it [24, 33, 90]. Fuggetta [52] emphasises

on the fact that software processes are processes too. Together with Di Nitto, they point

out that reusing achievements from other domains (e.g., workflow management) for

software processes has been overlooked by the software processes community [53].

Workflows are beneficial since they increase the visibility and automation of processes.

Workflows also define the steps to be taken and the order of these steps. In addition,

activities/tasks in a workflow can be assigned to certain actors (stakeholders) which

allows for autonomous flow in the process while meeting all the necessary checkpoints.

This allows management to focus on more strategic issues rather than focusing on daily

tasks. Therefore, we follow the workflow approach for software process modelling and

execution.

Software workflows are a special type of workflows and they differ from business and

scientific workflows. First, they are often more complex [52] and interactive [53]. While

some business workflows may include collaborative teamwork, once the workflow is

designed and finalised, it will not be changed frequently and the involved stakeholders

will be doing what the process prescribes most of the time. Software workflows are

more dynamic and subject to frequent change. Additionally, software workflows might

change from one project to another. Scientific workflows, on the other hand, are less

interactive and contain less control flow.

Existing Workflow Management Systems (WfMSs) are designed for either business or

scientific applications. Table 1.1 describes a sample of WfMSs and their strengths and

weaknesses from the perspective of supporting software workflows in the cloud.

These WfMSs are either commercial or open source tools. While some of them use

the cloud as an infrastructure, many do not. Those using the cloud (e.g., eScience

Central) lack fine-grained cloud-based execution configurations. A common limitation

across all of them is the lack of support for modelling software processes using any

standardised software processes modelling language (e.g., SPEM2.0 [5]). In the next

3http://www.bonitasoft.com/
4http://www.runmyprocess.com/

- 8 -

Chapter 1: Introduction

Table 1.1: A sample of WfMSs

WfMS Strengths & Weaknesses

Bonita 3

Strengths:
- supports creating BPMN [7] processes,
- provides a shared repository of processes,
- can connect with external systems.
Weaknesses:
- not cloud-based,
- does not support software process modelling languages,
- does not support software development tools on the fly.

eScience
Central [66]

Strengths:
- cloud-based (SaaS application),
- supports customised executable blocks building
in different languages,
- collects provenance data,
- facilitates collaboration between scientists.
Weaknesses:
- supports scientific (data-driven) workflows but not
software process (process-driven) workflows,
- does not support software process modelling languages,
- does not support configuring individual workflow
activities’ execution.

Taverna [112]

Strengths:
- has a desktop workbench and command line tool,
- has a web-based version of the workbench,
- supports external services through WSDL/SOAP.
Weaknesses:
- supports scientific (data-driven) workflows but not
software process (process-driven) workflows,
- does not support software process modelling languages.

Yawl [105]

Strengths:
- supports business process models using BPMN,
- uses Petri-Nets to capture control-flow processes,
- has a formal foundation and supports exception handling,
- has a service oriented environment for workflow
execution.
Weaknesses:
- does not support software process modelling languages.

RunMy
Process 4

Strengths:
- cloud-based (uses AWS for infrastructure),
- supports creating custom business processes and deploys
them in the cloud,
- provides connectors to connect with SaaS and on-premise
applications.
Weaknesses:
- does not support software process modelling languages.

- 9 -

Chapter 1: Introduction

subsection, we demonstrate the initial experiments which we ran on eScience Central

to examine its suitability for executing software processes.

1.3.3 Initial experiments

We wanted to check if the existing WfMSs can be used to support modelling and exe-

cuting software development processes. We conducted initial experiments on eScience

Central (eSC) [66] to model and execute simple model checking processes. eSC is a

science as a service platform which supports cloud-based execution, drag, drop and

connect supported workflow activities (called boxes in eSC), building workflow ac-

tivities in different languages (e.g., R 5 and Java 6), storing artefacts in the cloud and

collecting provenance data about workflow execution. Because of these features, eSC

was the closest match (out of the WfMSs that we have reviewed in Table 1.1) for

cloud-based execution of software processes.

The objective of this initial experiment is to assess if eSC can be used to: (a) model

software process models and (b) execute these models in the cloud. We integrated two

model checking tools into the eSC platform and created workflow activities wrapping

them. The model checkers are: Spin [59] and the distributed model checker DiVinE [23].

The Spin-based model checking activity was configured to accept an input model

and perform the model checking then generate the results. The DiVinE-based model

checking activity was developed to accept input model and configurations of how the

distributed model checking task should be executed. These configurations include: the

number of virtual machines (VMs) to be used and a timeout after which the activity

automatically scales the number of VMs either exponentially or linearly. Figure 1.1

shows the workflow created in eSC using the DiVinE-based model checking activity.

We were able to execute this workflow in the cloud and produce the model checking

results. However, when we want to guide the workflow execution while it is executing

(e.g., to decide if the workflow should scale resources up and continue execution in the

case of reaching timeout), it is not possible because eSC does not support interactive

activities. Additionally, eSC does not support modelling control flow elements such

as loops. We embedded the utilisation of the cloud for the distributed execution in the

5https://www.r-project.org/
6https://www.java.com/en/

- 10 -

Chapter 1: Introduction

Figure 1.1: eSC workflow using the DiVinE activity

DiVinE-based model checking activity since the eSC platform did not allow configuring

the computational power required for each workflow activity. Finally, we are not able

to use any standard software process modelling language. Therefore, we conclude that

we need a new platform to support our SDaaS vision.

1.3.4 Software development tools in the cloud

Using the cloud as a platform for development is not new. Several development

tools are already offered in the cloud. Table 1.2 provides a list of some academic and

industrial cloud-based tools. The list provides a sample of tools and is not meant to be

comprehensive. As we can notice, despite that some of these tools provide a rich set

of features, none of them supports the entire Software Development Life-cycle (SLDC)

and none of them supports capturing and executing customised software processes.

7https://codenvy.com/
8https://orionhub.org/
9https://cloud-playground.appspot.com/playground/

10https://github.com/
11http://cloudforge.com
12http://www.ibm.com/cloud-computing/bluemix/

- 11 -

Chapter 1: Introduction

Table 1.2: A sample of cloud-based software development tools

Tool Description

Codenvy 7

Provides cloud workspaces for development projects.
It allows creating docker containers, supports team
collaboration and can be deployed on a private cloud.
However, no support for process capturing or
monitoring nor for provenance data collection.

Eclipse Orion hub 8

A cloud-based editor that allows to code, deploy
and run source code in the cloud. Does not have any
support for external tools nor for process capturing
and monitoring. Only covers the development phase.

Google cloud
playground

9

An experimental development platform which
aims to give developers a hands-on experience
in developing software in Google Appengine.
Only serves as an educational tool with basic
editing features.

Github 10

A source code management tool which allows
developers to collaborate on source code projects.
Limited to source code management and does
not support capturing or monitoring software
development processes.

CloudForge 11

A development platform which supports project
and team management and project deployment
to public/private clouds. It does not capture or
monitor the development processes nor support
all phases of the SDLC.

Cloud9 [31]
Provides a parallel symbolic-execution-based
testing platform as a service on the cloud.
Only supports testing and not the whole SDLC.

Yeti [91]
An academic automated random testing tool
deployed in the cloud. Only supports testing
and not the whole SDLC.

IBM Bluemix 12

A platform for building and deploying software
projects by utilising existing open source
tools. However, it does not support capturing or
monitoring the software development processes.

1.4 Thesis Storyline and Contributions

Cloud computing has evolved to become the enabling platform for the Post-PC era ap-

plications. Not only cloud became the deployment environment due to its economies

of scale but also it became the development environment [53]. By observing research

publications related to software engineering for/in the cloud (e.g., the journal of soft-

ware and systems special issue [19] and the IEEE Services Track [18]), we conclude that

- 12 -

Chapter 1: Introduction

research (e.g., [11, 100]) has been focusing on adapting software engineering practises

to fit for the types of applications built in the Post-PC era. This thesis , however, focuses

on utilising the cloud for software development. More specifically, utilising the cloud

for software process enactment.

We envision to leverage the benefits of MDE and cloud computing -as discussed in

Section 1.3- for supporting both the software production and the management aspects

of software processes. As we explained in Section 1.3.2, software processes models are

naturally workflows. Consequently, we use workflow systems to manage the execution

of software process models. Our initial experiment -as demonstrated in Section 1.3.3-

has shown that existing WfMSs are not suitable for modelling and executing software

processes in the cloud. To the best of our knowledge, this thesis is the first study on cloud-based

software processes execution.

This thesis makes the following contributions:

• We propose a reference architecture for Software Development as a Service (SDaa-

S) [15]. The SDaaS architecture enables modelling cloud-based executable soft-

ware processes and enacting them in a hybrid cloud. Combining the model-

driven approach with the cloud allows for fine-grained configurable execution

which uses the cloud’s elasticity, availability and accessibility. In addition, SDaaS

facilitates distributed development through shared and accessible process models

and artefacts. The SDaaS architecture is described in detail in Chapter 2,

• We extend the OMG Software and Systems Process Engineering Meta-model

(SPEM2.0) to allow modelling cloud-based executable processes. The extended

version is called EXE-SPEM [13]. It allows modelling cloud-specific require-

ments such as computing power and privacy levels. We also introduced an XML

schema to map the graphical EXE-SPEM models into a machine consumable XML

representation. EXE-SPEM is described in detail in Chapter 3,

• We propose the Proportional Adaptive Task Schedule algorithm to schedule soft-

ware workflows execution. The algorithm aims at reducing the execution cost

without significantly increasing the execution time (makespan). It uses the work-

flow models to predict upcoming load on hourly bases and compares it with

historical load for the past hour then dynamically scale computational resources

- 13 -

Chapter 1: Introduction

up or down as needed. We show through simulation that this algorithm saves

between 19.74% and 45.78% of the execution cost when compared to three other

adapted algorithms while providing the best resource utilisation amongst them

and the second best execution time,

• As an initial evaluation, we instantiate the SDaaS reference architecture and im-

plement a proof-of-concept which supports a subset of the SDaaS features. Ad-

ditionally, we integrate three different tools in this proof-of-concept implementa-

tion. This implementation proves the feasibility of the SDaaS architecture and is

discussed in detail in Chapter 2,

• We evaluate our vision by using the implemented proof-of-concept to support ex-

ecuting safety-critical systems processes [14]. We modell a safety-related process

adopted from the aerospace domain standard; ARP4761 and use the proof-of-

concept SDaaS implementation to execute it. The evaluation aims to show: the

applicability of our vision for development processes, how using the cloud and

process models can open new opportunities and how it can save cost and time.

We show that by using the process model and the provenance data collected

by the SDaaS proof-of-concept we are able to automatically generate safety case

argument fragments. We describe this case study in Chapter 5.

In the next chapter, we describe the SDaaS reference architecture.

- 14 -

2
Reference Architecture for Software

Development as a Service (SDaaS)

Contents
2.1 Introduction . 16

2.2 Terminology & Definitions . 16

2.3 Requirements for SDaaS . 17

2.3.1 Non-cloud-related requirements . 18

2.3.2 Cloud-related requirements . 20

2.4 Reference Architecture for SDaaS . 21

2.4.1 WfMC compliance . 21

2.4.2 Process modelling (Design Time) . 24

2.4.3 The enactment service (Run-time) 24

2.4.4 Workflow engines . 27

2.5 Specifications of the SDaaS Workflows . 28

2.5.1 Activities types . 28

2.5.2 Interaction patterns . 29

2.5.3 Software workflows life-cycle . 29

2.5.4 Activities life-cycle . 30

2.5.5 Artefacts life-cycle . 31

2.6 Proof of Concept . 31

2.6.1 Implementation & deployment . 32

2.6.2 Migrated tools . 33

2.7 Discussion . 35

2.8 Summary . 37

An earlier version of some parts of this chapter is published in: S Alajrami, A Romanovsky, B
Gallina: Software Development in the Post-PC Era:Towards Software Development as a Service. In:
Proceedings of the 17th International Conference on Product-Focused Software Process Improvement
(PROFES’16). Trondheim, Norway. November, 2016.

- 15 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

2.1 Introduction

Software development approaches and tools evolve to meet the continuously rising

demand for quality (e.g., reliability, safety and security) of software systems. A typical

modern software development would require the use of multiple tools and platforms

to support the different phases of the development life-cycle. Such tools are provided

by different vendors and are often not interoperable. Furthermore, the management of

the development process is not inherently integrated in these tools and is performed

as a separate process. As explained in Chapter 1, we need alternative development

methods which integrate the process management perspective and support using tools

on the fly. An approach which utilises the benefits of the cloud (e.g., accessibility

and elasticity) and model-driven engineering (e.g., different levels of abstraction) for

software development processes.

In this chapter, we propose the Software Development as a Service (SDaaS) reference

architecture. SDaaS supports modelling, enacting and managing software processes.

Rather than focusing on a particular process model (e.g., waterfall or spiral), SDaaS

supports any software process model. In the next section, we define some terms and

assumptions which are used throughout this thesis.

2.2 Terminology & Definitions

Before we dive into designing the reference architecture for SDaaS, we need to define

the terms that will be used/mentioned throughout this thesis. These terms are defined

below in the context of the SDaaS architecture and incorporate some assumptions that

we have made.

Definition 1 Software Process is defined as “a set of activities, methods, practises, and

transformations that people use to develop and maintain software and the associ-

ated products (e.g., project plans, design documents, code, test cases, and user man-

uals)” [92]. Such process would involve the use of various tools and covers both the

management and the technical aspects of software development.

Definition 2 Process Author is defined as “the actor who models a software process”.

The process may have one or more authors and can be enacted by users other than

- 16 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

those who authored it. Synonyms include: process engineer.

Definition 3 Software Workflow is defined (by adapting the Workflow Management

Coalition (WfMC) definition of Workflow [110]) as “the automation of a software pro-

cess, in whole or part, during which artefacts, information or activities are passed from

one participant to another for action, according to a set of procedural rules”.

Definition 4 Activity is defined as “the smallest unit for breaking down workflow

tasks”. Activities can be assigned to one or more actors. Synonyms include: task.

Definition 5 Artefact is defined as “any object which is used as an input for a software

process or produced during the enactment of its activities”.

Definition 6 Tool is defined as “any computerised program that is used to assist carry-

ing out the activities of a software process”.

Definition 7 Actor is defined as “any person who is involved in creating, modelling, in-

fluencing and enacting a software process. Examples include: developers, customers,

mangers, etc.”. Synonyms include: user, stakeholder.

Definition 8 Software Process Enactment is defined as “the act of executing all the indi-

vidual activities of a software workflow instance by actors and with the help of tools”.

It is worth noting here that we do not define enactment as just monitoring and tracking

a process (e.g., [45, 93]) but as the actual execution act of the process and its activities.

2.3 Requirements for SDaaS

In this thesis, we focus only on the technical aspects of the SDaaS architecture. The

business and economical perspectives of the service are, although important, beyond

the scope of this thesis. In this section, we elicit the list of requirements that the

SDaaS architecture should meet. Theses requirements are identified by observations

that we made during our initial experiments which we discussed in Section 1.3.3. In

these experiments, we attempted to execute software processes in the cloud using

an existing workflow management system (eSC [66]) and identified the following list

of requirements as being missing from existing workflow management systems and

essential to enable cloud-based execution of software processes. Since this list of

requirements is drawn from our experiments, we do not consider it complete.

- 17 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

2.3.1 Non-cloud-related requirements

2.3.1.1 R1: Awareness and synchronisation support

Globalisation of markets increases the distribution of software development. In such

cases, coordination is needed to manage dependencies between development tasks.

Geographical and temporal distances in distributed development impair the coordina-

tion between distributed teams. Herbsleb [65] argues that such impairment is the result

of less communication, lack of awareness and incompatibilities. He argues that distributed

teams often have little shared context which leads to lack of awareness and misunder-

standings about what other teams are doing. Dourish and Bellotti [43] describe group

awareness as “an understanding of the activities of others, which provides a context for

your own activity”. Lack of awareness hinders the project management as it makes it

difficult to track changes as they propagate between distributed locations [65]. Further-

more, Gutwin et al. [60] argue that lack of awareness is also responsible for problems

such as duplicate work, overwritten changes and incorrect assumptions between team

members. In order to avoid misunderstandings and misalignment between teams, it is

required to keep the distributed teams and their management aligned and aware of the

overall project progress. A unified and accessible development platform where every-

one can be aware of the process being followed, the tools being used and the overall

progress of the project would be helpful to enhance awareness and synchronisation

between teams. Better awareness of what is going on in a project can help managers to

detect and mitigate challenges in distributed development [80].

2.3.1.2 R2: Availability of tools in real time

As mentioned in the previous subsection, Herbsleb [65] listed incompatibilities as one of

the causes of coordination impairment. He refers to incompatible tools and processes

across distributed locations. Chauhan and Babar [34] list several advantages of offering

tools as a service (TaaS) in the cloud. The main benefits include: support for awareness

and alignment of tools with processes. Acquiring software development on the fly

saves time and cost for setting up, configuring and maintaining your own environment.

Similarly, to keep the focus on the business problem, tools should be available as services

which can be accessed on demand with flexible pricing models. This also makes it

- 18 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

easier to guarantee that all teams are aligned in the tools (and versions) they are using.

Incompatibilities in development tools can lead to costly problems (e.g., see [70]).

Additionally, expensive commercial tools can be made available on a pay-as-you-go

model.

2.3.1.3 R3: Organisational policy convergence

In certain cases, certain policies/standards have to be followed for quality assurance or

certifications purposes. An example is the safety-critical systems development. Such

development need to follow stringent processes defined in standards to ensure the

safety of the produced (software) system. Another example, is enforcing certain prac-

tises and cultures within development teams to ensure quality. Such practises include,

for instance, frequent code commits and using continuous integration in an agile de-

velopment project. However, Fuggetta and Di Nitto [53] call for smart convergence

rather than rigid processes. Therefore, it should be possible to allow stakeholders to

flexibly define their process models and monitor their compliance with the standard-

/recommended process.

2.3.1.4 R4: Capturing process and provenance data

Today, there is no need to emphasise the importance of data. Both research and

industry are pushing the limits to collect more data, reason about it and process it

faster. Software development data is no exception. Capturing data about the software

process execution (provenance data) such as artefacts, versions, time, people involved,

etc. can be useful for different purposes, particularly, to support accountability and

traceability. For example, in safety critical systems, safety cases include evidence to

describe the process being followed in order to show that it has met the certification

standards [14]. Such evidence can be supported by provenance data collected during

the process execution. Process improvement is another example where provenance

data can be analysed to find weakness areas (e.g., [38]). Therefore, provenance data

need to be collected, stored in tractable form and ready to be exploited [65].

- 19 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

2.3.1.5 R5: Accessible artefacts

Artefacts are an important part of software processes. Artefacts include: source code,

requirements, documentation, tests, configurations, etc. As these artefacts evolve

throughout the development process, they accumulate valuable information about the

process. However, inconsistencies also accumulate [16]. Therefore, artefacts should be

stored and maintained in an accessible and traceable way by all authorised stakehold-

ers regardless of their locations. Changes should be captured in different versions of

artefacts and each version should be associated with meta-data that can be used for

traceability.

2.3.1.6 R6: Governance and inter-organisation collaboration

Facilitating outsourcing of parts of the software development processes to sub-contractors

while ensuring privacy and confidentiality of data and processes is essential in the mod-

ern software industry. Companies should be able to host the software development

process of their sub-contractors on their private cloud infrastructure while giving them

access to the artefacts they need. This eliminates the risks associated with sending

private confidential artefacts outside of the company’s network. The Software outsourc-

ing scenario in Chapter 1 demonstrates such situation which is inspired from a real

industrial context.

2.3.2 Cloud-related requirements

2.3.2.1 R7: Privacy and legal compliance

Using the cloud raises concerns about privacy and security [114]. As the software

development will take place on the cloud provider’s infrastructure, companies may

not be willing to put confidential artefacts on public clouds. Similarly, regulations

may impose restrictions as to where processes can take place. For example, the EU

regulations [48] impose that all EU data should be processed and stored within the

EU unless companies can demonstrate that they take sufficient measures to protect the

EU users privacy and data. Therefore, there is a need for the process execution to be

configurable and take place on a hybrid cloud (private and public) when needed.

- 20 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

2.3.2.2 R8: Multi-tenancy

Multi-tenancy is a key characteristic of cloud applications [50]. It refers to having

multiple tenants sharing the cloud service (software, platform and/or infrastructure).

The SDaaS architecture is meant to support multiple stakeholders involved in different

software projects. Therefore, it should provide a multi-tenant platform.

2.3.2.3 R9: Scalability

Cloud offers flexible scalability of computational resources. In the context of the SDaaS

architecture, scalability can be interpreted in two dimensions: a) scalability of compu-

tational resources, and b) scalability of the number of supported stakeholders (tenants)

and software projects. The SDaaS architecture should be able to scale both the compu-

tational resources and the number of stakeholders on demand.

2.4 Reference Architecture for SDaaS

In this section, we propose a reference architecture to support Software Development

as a Service (SDaaS). This architecture is designed to be general and to be applied to

any type of process models (e.g., agile, waterfall, etc.). Consequently, we present some

high level description of some of the architecture components here without exploring

in depth all the possibilities it offers. Since we model software processes as workflows,

the SDaaS architecture is a Workflow Management System (WfMS). The next subsection

explains how the SDaaS architecture complies with the WfMC reference model.

2.4.1 WfMC compliance

Historically, WfMSs had taken different typologies [67, 87]. For instance, some relied

on circulating documents between participants (Document-centric) while others used an

email-system to pass messages around (Email-based). The variety of modelling formats

and types of WfMSs has raised the need for standardisation and that is where the

Workflow Management Coalition (WfMC) fits in. WfMC aims to standardise workflow

management systems to allow interoperability between them. For this purpose, WfMC

has proposed the workflow reference model [67]. Compliance with this model means

that a WfMS can interact with other WfMSs.

- 21 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

TC00-1003 Issue 1.1 Workflow Reference Model Printed 19/11/98

Copyright 1993, 1994, 1995 Workflow Management Coalition Page 20 of 20

3. Workflow Reference Model

3.1. Overview

The Workflow Reference model has been developed from the generic workflow application structure by
identifying the interfaces within this structure which enable products to interoperate at a variety of levels. All
workflow systems contain a number of generic components which interact in a defined set of ways; different
products will typically exhibit different levels of capability within each of these generic components. To
achieve interoperability between workflow products a standardised set of interfaces and data interchange
formats between such components is necessary. A number of distinct interoperability scenarios can then be
constructed by reference to such interfaces, identifying different levels of functional conformance as
appropriate to the range of products in the market.

3.2. The Workflow Model

Figure 6 illustrates the major components and interfaces within the workflow architecture.

Process
Definition Tools

Administration
& Monitoring

Tools

Interface 1

Interface 4
Interface 5

Workflow Enactment Service

Workflow API and Interchange formats

Other Workflow
Enactment Service(s)

Workflow
Client

Applications

Interface 3Interface 2

Workflow
Engine(s)

Workflow
Engine(s)

Invoked
Applications

Fig 6 Workflow Reference Model - Components & Interfaces

The architecture identifies the major components and interfaces. These are considered in turn in the following
sections. As far as possible, the detail of the individual interfaces (APIs and interchange formats) will be
developed as a common core set using additional parameters as necessary to cope with individual requirements
of particular interfaces.

Figure 2.1: The WfMC workflow reference model components [67]

In this subsection we describe the WfMC reference model and show how our proposed

SDaaS architecture complies with it. The reference model defines at the high level the

architecture of a WfMS as illustrated in Figure 2.1.

In the model, the Process Definition Tools (Interface 1) refer to the tools supporting

creation and definition of processes. The Workflow Client Applications (Interface 2)

allow users to interact with the WfMS and receive work items (activities). As actors

perform their assigned activities, they may need to invoke external applications which

is facilitated by the Invoked Applications (Interface 3). To support interoperability

with other WfMSs, the Other Workflow Enactment Services (Interface 4) enable inte-

gration between different WfMSs. The Administration & Monitoring Tools (Interface

5) provide workflow management and monitoring control features. The five inter-

faces are connected with the Workflow Enactment Service through the Workflow API

(WAPI). The workflow enactment service contains one or more Workflow Engines

which provide the run-time execution environment for a workflow instance.

We design the SDaaS reference architecture to comply with WfMC reference model (i.e.,

to provide the same type of interfaces). The WfMC reference model was proposed in the

1990s with centralised workflow systems in mind (i.e., where workflows are executed

on a single machine). In the SDaaS reference architecture, we adapt the enactment

- 22 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

Invoked
apps

Process
Models Modelling &

Management
(Process

definition &
administration)

Enactment
Service

Workflow Engines

Client Applications

Other Enactment
Services

REST API REST API

Actors

Figure 2.2: High level overview of the SDaaS reference architecture

service to support distributed cloud-based software process execution.

Compliance with the WfMC reference model ensures that the implementations of the

SDaaS reference architecture can interoperate with other workflow systems. Figure 2.2

shows the high level overview of the SDaaS reference architecture which consists of

four main components. The Client Applications can be any desktop, web or mobile

applications through which users interact with the SDaaS architecture. This represents

interface 2 from the WfMC model. The client applications interact with both the

Modelling & Management and the Enactment Service components through their individual

REST APIs. The Modelling & Management component combines interfaces 1 and 5 from

the WfMC model. The Enactment Service executes workflows on distributed workflow

engines and manages the invoked applications and interactions with other workflow

enactment services (Interfaces 3 and 4).

Figure 2.3 provides a detailed view of the SDaaS reference architecture while the next

subsections provide details about its components.

- 23 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

2.4.2 Process modelling (Design Time)

The software process design time is the phase where the software process model is

created. In programming terms, it is similar to writing code before (compiling and)

executing it. Software process modelling and the modelling language that we use

(EXE-SPEM) will be covered in Chapter 3.

As shown in Figure 2.3, the software process design time components include: a) the

Process Model Authoring module which allows constructing process models using

EXE-SPEM constructs, b) the Process Access & Sync. Service which applies access

management policies and ensures the consistency of models that are being authored

by distributed teams simultaneously. This is done by applying appropriate read/write

locks. This module also notifies collaborators when a model is changed/updated, c) the

Process Model Storage Service which allows saving the model into the cloud-based

repository through the REST API. The model can be retrieved for editing/enactment

using the same module, and finally, d) the Process Model Transformations module

which transforms models into the executable XML notation from EXE-SPEM (or poten-

tially other modelling notations). This module contains an adapter for each possible

transformation .

2.4.3 The enactment service (Run-time)

The enactment service interacts with the process modelling service through the REST

APIs. Behind the API, the service is responsible for the run-time instantiation and

execution of process models. To do this, the service consists of several modules as

illustrated in Figure 2.3. These modules are:

2.4.3.1 Artefacts manager

Software processes involve producing large number of artefacts such as code, models,

test cases, requirement documents, documentation, etc. These artefacts capture invalu-

able information about both the software process and product evolution. The artefact

manager stores the artefacts themselves and meta-data about them into the artefacts

repository. The meta-data include: actors involved, version, tools used and the date

and time on which the artefact was created/modified. It is worth noting that process

- 24 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

Actors

Workflow Engines

Repositories
Process Model
Transformations

Process Model
Storage Service

Process Model
Authoring

Process Access
& Sync. Service

Ar
te

fa
ct

s M
an

ag
er

Ex
te

rn
al

 T
oo

ls

Workflow Engines Registry

External
Workflow

Collaboration

Consistency &
Compliance

Checker

Sc
he

du
le

r

SLA
Monitor

Execution
Manager

Tools

Design Time
(Process Modelling) Runtime (Enactment Service)

Client Applications

REST API REST API

Figure 2.3: The SDaaS reference architecture

activities (wrapping development tools) are also treated as artefacts and are stored in

the artefact repository. Although mining the artefact repository is out of the scope of

this thesis, several approaches to mining software artefacts exist in the literature. Some

of which have been surveyed by Kagdi et al. [73].

2.4.3.2 External tools

External tools are service blocks performing the software process activities. These

blocks are either: interactive, control points (providing control flow during the process

execution) or automated fire-and-forget activities. This module provides the necessary

information to trigger compatible external tools and handles the interaction with them.

Compatible tools are offered as a service and can be triggered through service calls.

2.4.3.3 The execution manager

The execution manager orchestrates the enactment of process models. First, an instance

of the model is created and the ready-to-execute activities are passed to the scheduler

- 25 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

to be scheduled. The scheduled activities are then executed on workflow engines.

During the execution of the process, the execution manager tracks the status of the

process instance being executed. The status goes from Inactive to Active and terminates

with a Completed state. This module also logs all the provenance data about each

process instance execution. Furthermore, the execution manager handles interactions

with stakeholders when executing an interactive activity (see Section 2.5.1 for different

types of activities).

2.4.3.4 Workflow engines registry

The Workflow Engines Registry is responsible for starting, stopping and monitoring

workflow engines based on the scheduling policies used by the scheduler (workflow

scheduling will be discussed in Chapter 4). Workflow engines are independent appli-

cations running on different cloud providers. Activities get executed in a workflow

engine that is deployed on a public or a private cloud. The workflow engine has to meet

the execution requirements expressed in the process model. The execution of activities

is a black-box execution which means that the workflow engine would not know any

information about the process being executed. This reduces the risks of privacy and

confidentiality breaches.

2.4.3.5 Scheduler

The Scheduler handles the scheduling of process activities’ execution. This involves

checking the required computational resources (from the process model) and allocating

activities to suitable workflow engines. The scheduler operate using a policy to meet

the the enactment requirements (e.g., enacting an activity on a private cloud) while

minimising the cost. The schedules generated by the scheduler determine the expected

load of execution and is used by the workflow engines registry to dynamically scale

the number of workflow engines. Scheduling will be covered in detail in Chapter 4.

2.4.3.6 Consistency checker

As explained in Section 2.3, the automated consistency checking for the process during

its execution can alleviate development problems (e.g., deviating from a standard

process) early and save time and cost. Some approaches check if process models

- 26 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

are consistent with the requirements [63] or if the implementation is consistent with

the architectural description [26]. Such checks rely on data and models. The SDaaS

architecture maintains the process models and other artefacts (e.g., code) in the artefact

repository. Additionally, it records provenance data about the process execution. This

data can be used for consistency analysis to provide similar results to the studies

mentioned earlier or even to pave the way for more comprehensive checks. However,

the formulation of consistency checking rules are beyond the scope of this thesis.

2.4.3.7 SLA monitor

As explained in the software outsourcing scenario (see Chapter 1), when two or more

organisations collaborate on a project, SLA monitoring becomes handy to transparently

ensuring that all parties are not breaching the SLA. While each organisation can have

its own SDaaS environment, these environments can exchange data about the process

state and execution using the external workflow collaboration module.

2.4.3.8 External workflow collaboration

The External Workflow Collaboration allows process execution to incorporate invoking

processes managed by another workflow system (e.g., from a different organisation).

The invocation is done through service calls. This enables business collaborators to

have a global view of the project without interfering or accessing the internal processes

of each other.

2.4.4 Workflow engines

Workflow engines are the execution containers for executing activities and they can be

deployed on any public or private cloud. Workflow engines register themselves with

the enactment service when they start, which allows adding more workflow engines

dynamically. Activities are allocated to a particular workflow engine by the scheduler

of the enactment service. Once a job has been received, the workflow engine requests

the resources (artefacts and executables) required to execute this activity from the

enactment service through the REST API. The workflow engine updates the enactment

service with the execution progress throughout. When the execution is finished, the

- 27 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

workflow engine uploads any produced artefacts to the enactment service and performs

a clean up which leaves no traces of this execution on the workflow engine.

2.5 Specifications of the SDaaS Workflows

Our approach to define SDaaS is based on treating software processes as workflows.

Such workflows consist of several types of elements. In this section, we describe the

main elements and their life-cycles from the time of creation until the workflow is

fully executed. Software workflows consist of a set of Activities, Artefacts and Actors.

Modelling of these elements will be discussed in Chapter 3.

2.5.1 Activities types

Software workflows are complex and contain various types of activities performed by

different actors. In general, these activities can be categorised into three categories:

• Automated Activities. Some activities in a software process can be supported by

automated tools. Such tools will need to receive an input (in the form of artefacts

and/or parameters). Examples of such activities include different types of testing,

model checking and data analysis. Depending on the size of the inputs (e.g.,

test cases, models to verify, etc.) such activities need to handle, they might be

computationally intensive and take long time to finish executing.

• Interactive Activities. Unlike the automated activities, interactive activities re-

quire the involvement of actors to make decisions, provide input or perform

manual tasks such as editing code and models.

• Control Points. At certain points in the software workflow, there will be a need for

making decisions about the next steps in the workflow enactment. The decision

could be to go back and change the process or the input artefacts or going into

one of multiple possible forward paths in the workflow. For example, based on

testing results, the actor can decide whether the code still need to be modified or

not.

- 28 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

2.5.2 Interaction patterns

There are two possible types of human-computer interactions which take place in soft-

ware workflows. The first is the interaction to create, edit, manage and enact software

workflows. This can be achieved using the user interfacing tools (aka workflow client

applications). Such tools can be desktop-based, web-based or mobile applications. The

other type of interaction is the interaction during the execution of the software work-

flow. As mentioned earlier, software workflows contain different types of activities.

Some of these activities are interactive where actors need to interact with the work-

flow to provide instructions, decisions, input parameters and to edit artefacts. These

activities need to have a way of sending messages and receiving responses from the

relevant actors. Long interactions such as editing code or other artefacts can be done

offline using the workflow client applications where the workflow enactment will be

paused till the editing is finished. It is worth noting that we do not investigate the

human-to-human interactions between actors in this thesis.

2.5.3 Software workflows life-cycle

In our vision, software workflows are executable and live throughout the development

process. Software workflow models represent software processes. As shown in Fig-

ure 2.4, they come to life after process author(s) construct(s) the workflow model using

a software process modelling language (which will be discussed in Chapter 3). After

being created, the workflow models can be instantiated as many times as necessary

and those instances can then be enacted. Enacting a workflow model will result in the

generation of new artefacts as prescribed in the model. If the workflow model needs to

be adapted (e.g., for another project or to improve the process or use a different tool),

the model is modified, then new instances can be created and enacted.

Software workflow instances move between three states as shown in Figure 2.5. Ini-

tially, the instance is Inactive and once it starts to be enacted, it becomes Active. After

completing the execution of an instance, the state becomes Completed. The completed

state indicates that the execution of an instance has terminated either successfully or

not.

- 29 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

Produces
Workflow
Authoring

Workflow
Instantiation

Workflow
Enactment

Model
Instance 1

Instance...
Instance N

Artefacts

Figure 2.4: Workflow life-cycle

Inactive Active Completed

Figure 2.5: Workflow instance life-cycle states

2.5.4 Activities life-cycle

Software workflows consist of a set of activities. These activities are executable and

they can be custom-made tools/applications or standard CASE tools. They are inte-

grated to the SDaaS architecture (stored in the artefact repository) and are executed

when a workflow instance containing them is enacted. During the workflow instance

enactment, the activities status change between five states. As we can see in Figure 2.6,

an activity is initially in the Inactive state which means that it has not become ready

to execute yet. The Ready state indicates that the activity is now ready to be executed

which means that all its preconditions (availability of input artefacts/parameters) have

been met. Once in the Ready state, the scheduler of the enactment service will allocate

the activity to a suitable workflow engine by placing the activity in the jobs queue of

that engine. The activity is now in the Queued state. Once the engine becomes free

and starts executing the activity, the state of the activity becomes Active. The Completed

state means that the activity has finished execution (either successfully or not). Failure

to execute an activity will result in termination of the process instance execution.

- 30 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

Inactive Ready Queued Active Completed

Figure 2.6: Activities life-cycle

2.5.5 Artefacts life-cycle

Artefacts are consumed/produced by activities while a workflow instance is being

executed. In addition, artefacts can be created offline by actors and provided as input

for activities. In some cases, artefacts will be edited by actors or activities during

workflow instance execution. The new modifications are stored as a new version of the

same artefact. Figure 2.7 illustrates this cycle.

Artefact Creation
(by actors or

activities)

Artefact Usage
(As an input)

Editing

(As an output)

Create new artefact version

Figure 2.7: Artefacts life-cycle

2.6 Proof of Concept

As an initial evaluation of the SDaaS reference architecture, we instantiate a proof-

of-concept prototype implementation which demonstrates the feasibility of the SDaaS

vision. In this section, we describe this prototype implementation.

The prototype demonstrates some of the core features of the SDaaS architecture but

does not implement all components. We list the supported features here and then in

the following subsections, we describe the technical implementation, deployment and

the tools we integrated into the prototype.

The instantiated prototype supports the following features:

- 31 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

• Interpreting software process models described in an XML format which will be

covered in Chapter 3.

• Schedule software process activities for execution in the cloud.

• Execute these activities on a set of distributed workflow engines in the cloud.

• Manage the execution and capture provenance data.

• Store and manage software artefacts and their meta-data.

The prototype scheduler is implemented to apply the Proportional Adaptive Task

Schedule algorithm (see Chapter 4) to dynamically allocate activities to workflow en-

gines matching their requirements. The workflow engines are separate applications

which interact with the enactment service through asynchronous communication chan-

nels and the REST API. The prototype handles simple control flows such as forks and

joins. However, it does not support loops, decision points and interactive activities.

Furthermore, the prototype does not provide features for building software process

models nor for providing SLA monitoring, consistency checking or external workflow

collaboration. These features are left for future studies.

2.6.1 Implementation & deployment

The prototype is implemented as two Java enterprise applications, a message-oriented

middleware and a document-based NoSql database. The NoSql database provides

scalability and supports storing artefacts as documents. The two applications are

the enactment service and the workflow engine which are both implemented as a

webservice using Spring 3.0 framework 1.

In order to decouple the enactment service from the workflow engines, asynchronous

communication between them is achieved through message oriented middleware. The

enactment service pushes jobs to workflow engines by placing the job into their des-

ignated jobs queue. The workflow engines place progress updates into the enactment

service responses queue. Figure 2.8 illustrates the communication model (using Ac-

tiveMQ 2 as a messaging middleware).

1https://projects.spring.io/spring-framework/
2http://activemq.apache.org/

- 32 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

Figure 2.8: Message oriented communication

The NoSql database used is MongoDB 3. Artefacts (including process models) and their

meta-data are stored as documents in MongoDB. This combination of technologies

allows the prototype to scale and provides decoupling between the different compo-

nents. The prototype is deployed on Amazon AWS public cloud as a representative

of commercial public clouds. However, the prototype can be deployed on any IaaS

provider(s).

2.6.2 Migrated tools

As part of this initial evaluation, we wanted to execute some small processes. In order

to model and execute such processes, we needed activities to be created and integrated

in the SDaaS prototype. We have taken three existing tools and wrapped them as

SDaaS activities and integrated them in the prototype. This relates to requirement R2

in Section 2.3; the availability of tools in real time. These tools represent examples of:

computationally intensive tools (Spin), distributed tools (DiVinE) and tools extracted

from other environments/tool-sets (Concerto-FLA). Although these tools do not repre-

sent all types of tools that can be supported, they represent tools that can benefit from

the computational power and scalability of the cloud.

3https://www.mongodb.com/

- 33 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

2.6.2.1 Spin

Model checking is a computationally intensive task where models describing systems

behaviours are checked to verify if certain properties hold or not. This task often

requires traversing large state spaces. This demands vast computational resources

and often faces the “state explosion” problem. Spin [59] is a model checker based

on reachability analysis. It focuses on concurrent asynchronous systems (software

rather than hardware). Spin accepts models written in Promela [58] which describe

the behaviour of the system. In addition, it accepts the correctness claims that need to

be proved and verified for the model. The correctness claims are expressed in Linear

Temporal Logic (LTL). They are used to formalise the system’s erroneous behaviours

and they are transformed into Buchi automaton [106]. The correctness properties are

categorised into two categories: safety properties and liveness. The former means that

nothing bad happens while the later means that something good eventually happens.

Spin works as follows: first, model a concurrent system in Promela and parse it. Then,

correctness claims are expressed. Interactive simulation is run to ensure that the model

describes the system’s behaviour correctly. Finally, an on-the-fly verifier program is

generated to verify the model.

Spin has been integrated into the eScience platform as described in Chapter 1. We also,

wrapped it as an activity and integrated it in the SDaaS prototype implementation. The

activity takes as an input the Promela model and performs the model checking then

generates a file which contains the Spin textual output.

2.6.2.2 DiVinE

Unlike Spin, DiVinE [23] is a distributed model checker which works on a network of

single/multi-core machines. Distributed model checkers require heavy synchronisation

between all participating machines. This synchronisation is needed to split the state

space between the machines and ensure that it has been fully explored. DiVinE accepts

input models in multiple formats such as LLVM and MurPHI.

Similar to what we did with Spin, we wrapped the DiVinE tool as an activity and

integrated it in the SDaaS prototype implementation. This activity takes as an input the

model to be checked as well as a list of parameters specifying the number and type of

- 34 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

machines to be used for the distributed model checking task. Those parameters define

how and when to scale the number of participating machines up.

2.6.2.3 Concerto-FLA

Failure Propagation and Transformation Calculus (FPTC) is a failure logic analysis

allowing for the calculation of the system level failure behaviour based on the failure

behaviour of the individual components. The propagation of failures from the inputs

to the outputs of a component is captured via FPTC rules. More details about FPTC is

provided in Chapter 5.

We extracted Concerto-FLA [55] (the FPTC analysis component from the CONCERTO

project tool-set 4) as a standalone application. This application is then integrated as an

activity within the SDaaS prototype implementation. The CONCERTO tool-set allows:

creating UML-based architectural models of the system and performing FPTC analysis

(using Concerto-FLA) including back-propagation of the results on the models. The

architectural model is transformed to the flamm format (an XML-like format) on which

the FPTC analysis takes place. This activity has been used in the case study presented

in Chapter 5.

2.7 Discussion

In this section, we discuss how the SDaaS reference architecture -proposed in Sec-

tion 2.4- can potentially address the requirements defined in Section 2.3. It is worth

noting, that complete fulfilment of the requirements is highly dependent on the do-

mains and scenarios were the SDaaS architecture is used.

R1: Awareness and synchronisation support and R3: Organisational policy convergence can

be met by using software process models. Process models are used for communication,

documentation and execution of processes. The process models are used as a base for

spreading awareness and monitoring the progress. Additionally, these process models

reflect the organisational policies and standards. For R2: Availability of tools in real time,

the Artefact Repository stores activities which are retrieved by the Execution Manager

when needed for process execution. Compatible external tools are called through the

4http://www.concerto-project.org/

- 35 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

External Tools module. R4: Capturing process and provenance data can be met by the

Execution Manager module which collects provenance data about the process model

execution and the generated artefacts. R5: Accessible artefacts can be met through both

the Artefact Repository and the REST API. The API provides endpoints to access and

manipulate artefacts from the artefact repository. R6: Governance and inter-organisation

collaboration can be met by the External workflow collaboration module which allows the

SDaaS architecture to interact with other platforms and pass certain artefacts to trigger

partner’s process execution. The SLA Monitor module monitors if all partners are

complying with the SLA while executing their parts of the project.

R7: Privacy and legal compliance can be met through the fine-grained configuration of

process models execution. EXE-SPEM (as we will explain in Chapter 3) allows process

activities to be configured differently for execution as part of the process modelling.

The configurations allow an activity to be executed only in a private cloud for instance.

Combined with the fact that the SDaaS architecture can be deployed in a public, private

or hybrid cloud, the fine-grained configurable models meet the privacy and legal

compliance needs.

Since the SDaaS architecture is designed to support multiple teams and multiple pro-

cesses belonging to multiple software projects, then R8: Multi-tenancy can be met. The

Model Authoring and Access & Sync. Service provide support for the tenants to create,

access, edit and execute process models and artefacts.

R9: Scalability can be met through the scalability of the workflow engines which host

the execution of individual process activities. The workflow engines are scaled up and

down on demand. As we will see in Chapter 4, the Scheduler decides to scale workflow

engines up and down on periodic bases to reduce the execution cost and improve

workflow engines utilisation. Additionally, the asynchronous communication between

the enactment service and the different workflow engines (using message queues) also

supports the scalability of the entire SDaaS architecture. This is because neither the

enactment service nor the workflow engines have to interact with the message queue

at the same time.

Since the SDaaS reference architecture is not designed to be domain specific, we cannot

consider the set of requirements we use to be complete. Meeting those requirements is

highly dependent on the chosen tools, deployment environments and domains where

- 36 -

Chapter 2: Reference Architecture for Software Development as a Service (SDaaS)

the SDaaS architecture will be used. Some of the requirements can trade-off against

each other. For example, the choice of tools which are not designed to utilise scalable

resource would trade-off against the scalability requirement. Therefore, the suitability

of the SDaaS reference architecture depend on the scenario and domain where it will

be used.

2.8 Summary

In this chapter, we have proposed the Software Development as a Service (SDaaS)

reference architecture and its components. We based the reference architecture on a

list of requirements and discussed how it meets them. Additionally, we provided an

initial evaluation through instantiating a prototype of the architecture. The prototype

and the tools we integrated into it demonstrate the feasibility of the SDaaS vision. The

next two chapters focus on specific aspects of the SDaaS architecture; Chapter 3 covers

the modelling of cloud-based executable software processes and Chapter 4 discusses

the execution scheduling of such processes in the cloud. Chapter 5 evaluates the SDaaS

architecture using a case study which uses its prototype for enacting safety-related

processes.

- 37 -

3
Modelling Software Processes for

Cloud-Based Execution Using
EXE-SPEM

Contents
3.1 Introduction . 39

3.2 Background . 40

3.2.1 Software process modelling . 40

3.2.2 Software process modelling standards 42

3.3 Requirements for Cloud-Based Executable Software Process Models . . 45

3.4 EXE-SPEM . 48

3.5 Model to Text Transformation . 51

3.6 Sample Process . 53

3.7 Discussion . 54

3.8 Summary . 55

An earlier version of this chapter is published in: S Alajrami, B Gallina, A Romanovsky, EXE-SPEM:
Towards Cloud-based Executable Software Process Models. In: Proceedings of the 4th International
Conference on Model-Driven Engineering and Software Development MODELWARD’16. Rome, Italy.
pp. 517-526, 2016.

- 38 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

3.1 Introduction

Modelling software processes has several benefits. Curtis et al. [39] list some of these

benefits; for example, facilitating understanding and communication and provision of

automated execution support. Modelling software processes either target automation

(focusing on models for machines) or process improvement (focusing on models for

humans which are used for process evaluation, improvement, management, etc.) [88].

Both types of models are useful during certain phases of the development life-cycle.

Generally, the longer the model is in use, the more value is gained from it. If software

process models are executable, they will be in use throughout the development process

phases. For instance, an executable software process model will be used to manage,

monitor and execute the process through all life-cycle phases rather than being only

used in the design phase for documentation/communication. Thus, the overhead cost of

modelling will be justified. It is worth noting that we use the term execution/enactment

in this thesis differently from other studies. While some studies (e.g., [45, 93]) refer to

process monitoring and tracking as enactment, we define process enactment as: the act

of controlled execution of the process activities -either automatically through software

tools or by actors using software tools- and producing the expected artefacts.

In this chapter, we focus on the Process Modelling part of the SDaaS reference architecture

(see Figure 3.1). We propose EXE-SPEM which is an extension of the OMG Software

and Systems Process Engineering Meta-model (SPEM2.0) standard. EXE-SPEM enables

modelling of cloud-based executable software process models.

We explore the state-of-the-art software process modelling languages and analyse their

suitability for enacting cloud-based software processes. As we explain in Section 3.2,

none of the existing software process modelling languages have enough support for

model execution and/or cloud-based execution. However, SPEM2.0 has the capability

of modelling most elements of software processes, therefore, we extend its meta-model

and propose EXE-SPEM in Section 3.4. We then provide an XML schema for a ma-

chine executable counterpart of EXE-SPEM models in Section 3.5. As an example, we

model the Facebook continuous delivery process from Chapter 1 using EXE-SPEM in

Section 3.6.

- 39 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

Actors

Workflow Engines

Repositories
Process Model

Transformations

Process Model
Storage Service

Process Model
Authoring

Process Access
& Sync. Service

Ar
te

fa
ct

s M
an

ag
er

Ex
te

rn
al

 T
oo

ls

Workflow Engines Registry

External
Workflow

Collaboration

Consistency &
Compliance

Checker

Sc
he

du
le

r
SLA

Monitor
Execution
Manager

Tools

Design Time
(Process Modelling) Runtime (Enactment Service)

Client Applications

REST API REST API

Figure 3.1: The process modelling components in the SDaaS reference architecture

3.2 Background

In this section, we present background information on different software process mod-

elling approaches and standards and examine their suitability for modelling cloud-

based executable software processes.

3.2.1 Software process modelling

The evolution of software development paradigms has focused on increasing the level

of abstraction and automation in software development to enable developers to focus

on the core business logic. Models (and Model-Driven Engineering (MDE)) have been

the main means of achieving such abstraction and automation.

Software process models have two aspects: the production aspect (focusing on con-

ceiving software products) and the management aspect (focusing on planning and

managing the resources needed for the production) [12]. Therefore, different models

can represent different points of view. Acuña et al. [12] list the different process el-

- 40 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

ements that can be contained in a process model such as agents, activities, artefacts,

roles and events.

Modelling software processes has been investigated since late 80s. There are many

motivations which led these investigations, including:

• Improving the understanding for different perspectives by visualising the relevant

components for each perspective.

• Facilitating communication among team members.

• Supporting project management through reasoning in order to improve the pro-

cess.

• Partially automating processes through Model-Driven Engineering (e.g., repeti-

tive and non-interactive tasks).

Several approaches to software process modelling have been introduced over time,

they are categorised into four categories [25]:

1. Rules based (e.g., MARVEL [74])

2. Petri net based (e.g., SPADE [22])

3. Programming languages based (e.g., SPELL [37])

4. UML based (e.g., SPEM2.0 [5])

The first three did not receive industrial take up due to their complexity and inflexi-

bility [64]. The UML approach is based on utilising the wide adoption and acceptance

of Unified Modelling Language (UML) for modelling software processes. Several im-

plementations of this approach have been proposed each with different strengths and

weaknesses. The authors of [25], compare six UML-based modelling approaches based

on a set of software process modelling requirements. They also admit that executability

and formality are major weaknesses of using UML for software process modelling.

Today, there are standards for modelling software processes which are endorsed by

standardisation bodies and academic communities. The next section discusses a sample

of these standards.

- 41 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

3.2.2 Software process modelling standards

In this subsection, we provide a brief overview of three software process modelling

standards (SPEM2.0, Essence and ISO 24744) and we evaluate them in order to decide

which one to use/extend.

3.2.2.1 SPEM2.0

SPEM2.0 [5] was developed by the Object Management Group (OMG) for defining

software and system development processes and their components. With the aim of

accommodating large range of development methods and processes, SPEM2.0 was

designed to be generic without adding domain-specific elements to its core structure.

SPEM2.0 is defined as an MOF-based meta-model and a UML 2 profile [5]. It is based

on the concept of interaction between Roles that perform Activities which consume (and

produce) Work Products [35]. SPEM2.0 is structured into seven meta-model packages

which contain its modelling elements.

One of the problems with SPEM2.0 is its lack of explicit enactment support. In Section

16 of the SPEM2.0 specification [5], it is stated that there are two common ways for

enacting SPEM2.0 process:

• Mapping the process model into project plans and enacting them using project

planning tools.

• Mapping the process model to a business flow or execution language then enact-

ing it in a workflow engine.

As a result of the lack of enactment support, several researchers have proposed dif-

ferent approaches and extensions to support process enactment. In [117], the authors

propose mapping rules to map SPEM2.0 models into XML Process Description Lan-

guage (XPDL) which then can be enacted in XPDL-based engines. In [93], authors

propose xSPIDER_ML (a software process enactment language based on SPEM 2.0

concepts). Although xSPIDER_ML is supported with a modelling tool and an en-

actment environment, the notion of enactment is limited to process monitoring since

developers are supposed to perform their tasks off-line and report their progress to

the enactment environment. The authors in [45] introduce eSPEM which is a SPEM

- 42 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

extension to allow describing fine-grained behaviour models that facilitate process en-

actment. They implement a distributed process execution environment [46] based on

the Foundational subset for Executable UML Models (FUML 1) standard with empha-

sis on supporting the ability to share process state on different nodes, suspend and

resume process execution, interact with humans, and adapt to different organisations.

However, the notion of process enactment in that execution environment also assumes

that developers carry out their tasks outside the execution environment and return

control back to it once they finish. Additionally, there are SPEM2.0 extensions which

address specific domains’ needs. For instance, S-TunExSPEM [57] allows modelling

and simulation of safety-oriented processes based on safety standards (e.g., DO-178B).

To support executability, the authors define mapping rules between S-TunExSPEM and

XPDL2.2 [111].

In general, we found that all these SPEM2.0 extensions have one or more of the following

weaknesses:

• These extensions do not have any available tool support.

• Their notion of enactment is limited to monitoring the process while the process

itself is performed completely outside the enactment environment.

• They do not have explicit support for cloud-based enactment.

3.2.2.2 ESSENCE

Essence - Kernel and Language for Software Engineering Methods [10] was initiated by

the Software Engineering Method and Theory (SEMAT) initiative as a response to the

Request For Proposal “A Foundation for the Agile Creation and Enactment of Software

Engineering Methods” from OMG. Essence provides process elements (some of which

are similar to SPEM2.0 elements). The main language concepts are: kernel, practises and

methods.

The Kernel is “a light-weight set of definitions that captures the essence of effective,

scalable software engineering in a practice independent way” [10]. It is organised into

three areas of concern; customer (the users), solution (the system) and endeavour (the

team and process). Each area contains a set of:
1http://www.omg.org/spec/FUML/

- 43 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

• Alphas: things to manage, use and produce by the team (e.g., Requirements).

• Activity Spaces: things to do when developing and maintaining the system (e.g.,

Understand Stakeholder Needs).

• Competencies: the capabilities required to carry out the work (e.g., Leadership).

A practice is “a repeatable approach to doing something with a specific objective in

mind” [10]. It describes how to handle certain aspects of the software development

endeavour (e.g., Scrum for agile project management). Method is “the composition of

a Kernel and a set of Practises to fulfil a specific purpose” [10]. Essence is useful for

instructing and guiding development teams. For that, Essence embeds guidance in all

elements and as a result, the process model contains large amount of natural language

description of such guidance. Elvesæter et al. [47] compared SPEM2.0 and Essence to

evaluate their applicability for agile processes and enactment support. They conclude

that although there are similarities in the process authoring capabilities, Essence has

better support for enactment compared to SPEM2.0 which does not have any enactment

support. However, they refer to support for monitoring and tracking the process which

is (as discussed in Section 3.1) not the type of enactment we are after.

3.2.2.3 ISO 24744

The Software Engineering Meta-model for Development Methodologies (SEMDM)[4]

is an industrial ISO standard which is based on concepts adopted from the OPEN

process framework [51] and from method engineering concepts. SEMDM aims to define

methodologies in information-based domains which rely on information management

and processing [4]. It uses a different conceptual approach to SPEM2.0 and Essence and

its process meta-model is based on power type pattern and on a set of so-called Clabject

constructs [104]. In its current state, SEMDM is a documentation of the standard with

no reference implementation available and very little academic attention [79].

3.2.2.4 Choosing SPEM2.0 for software process modelling

After reviewing the standards above, we can see that each standard had its strengths

and weaknesses. All the reviewed standards do not support modelling cloud-based

enactment requirements and do not have any native means of supporting enactment

- 44 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

which executes the process and not just monitors it. However, the standards come

with an out-of-the-box set of elements that can be used to model software processes.

Therefore, the first decision we make here is to adapt one of the standards and enrich

it with any missing elements rather than reinventing the wheel.

The second decision is which standard do we adapt? By looking at Table 3.1, we can see

that both SPEM2.0 and Essence have similarities in process authoring elements while

ISO 24744 uses a totally different approach. The key selling point of ISO 24744 is that it

focuses on the product rather than the process and promoting just-in-time enactment

of processes rather than sticking with rigid one-off processes. However, ISO 24744

has not received much academic attention nor industrial adoption. It did not even

have any reference implementation of the standard [104] and we are not aware of any

tool-support available for it. Therefore, we eliminate it as an option.

We choose SPEM2.0 over Essence to model software processes for the SDaaS architec-

ture since SPEM2.0 is more mature and has received more academic attention. While

Essence is perceived to be better for agile processes, we recommend using SPEM2.0 el-

ements to model smaller and more fine grained processes which allows for just-in-time

enactment. In addition, Essence enactment refers to process monitoring while SPEM2.0

recommends mapping SPEM2.0 models into workflow engines formats for enactment

(which is what we do in the SDaaS architecture).

3.3 Requirements for Cloud-Based Executable Software
Process Models

In this section, we define what information a cloud-based software process model

should contain to enable cloud-based model execution in the SDaaS reference archi-

tecture. These requirements are identified by inspecting the basic information needed

to allow a software process model to be executed in the cloud and benefit from its

scalability. These needs were discovered through the attempt to use an existing work-

flow management system (eSC [66]) as we described in Section 1.3.3. However, these

requirements are not complete and domain-specific processes may require more infor-

mation to be incorporated in software process models. The requirements are:

2https://eclipse.org/epf/downloads/tool/tooldownloads.php
3https://www.ivarjacobson.com/esswork-practice-workbench

- 45 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

Table 3.1: Comparing the three software process modelling standards

Criteria SPEM2.0 Essence ISO 24744

Maturity
Mature with
larger community
and attention.

Relatively new
with little
attention so far.

Very little
academic
attention
and case studies.

Authoring
Elements

Has some
elements which
Essence does not
have. e.g., Roles.
Guidance is a
specific element.
Uses less natural
language.

Has alternative
ways of
expressing
elements that
SPEM2.0 has.
e.g., Role.
Guidance
is embedded
in all elements.
Uses more
natural language.

Uses different
concepts from
the OPEN proc-
ess and method
engineering.

Application

Applicable for
software &
system processes
in general.
Supports
defining
breakdown
structures
which allows
modelling
different
processes.

Suitable for
agile processes.
Does not
support
breakdown
structures as
Agile methods
downplay them
and replaces
them with
sprints
(increments).

Suitable for
system
engineering
with focus on
software
engineering.

Enactment

No explicit
enactment
support.
Recommend
mapping to
project
management or
workflow tools.

Supports
enactment
in the form
of process
monitoring
and tracking.

Focuses on the
product and
advocates
just-in-time
enactment
rather than the
one-off variant.

Cloud-related &
modelling Not supported. Not supported. Not supported.

Tool Support EPF Composer 2.

EssWork
Practice
Workbench
(EWPW) 3.

N/A.

- 46 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

• R1- Allow defining the required cloud resources for an activity.

Software process activities are diverse and they use different tooling support.

While some activities in a process might be as simple as editing a textual file, other

activities could involve more complex computational tasks (e.g., the distributed

model checker DiVinE which we came across in Chapter 1). Such computationally

intensive tasks need to be allocated the appropriate computing resources. With

the elasticity of cloud computing, it is possible to allocate an initial set of resources

and scale it up and down as needed. A cloud-based software process model needs

to capture the initial set of resources needed for each activity to start execution.

It also needs to capture the resource scaling mechanism if needed. To cater for

different activities’ needs, the model should allow having different execution

configurations for each activity.

• R2- Allow defining security and privacy measures.

Security and privacy are critical concerns when using cloud computing [114].

Many enterprises and officials are sceptical about using public clouds based on

their fear of data loss or breaches. Although cloud computing relieves enterprises

from infrastructure management and maintenance, this comes with the disadvan-

tage of cloud’s opacity. Users do not know where their data is actually located

and which other users may have access to it. Private clouds came to address

those concerns by giving full control over the infrastructure to the user. In a soft-

ware process model, some activities may use confidential or sensitive artefacts.

Therefore, process authors should be able to define whether an activity (and its

artefacts) should be executed in a private cloud (for security and privacy reasons)

or in a public cloud.

• R3- Define basic human-machine run-time interactions.

Software processes are very complex and involve many stakeholders (e.g., design-

ers, developers, project managers, business analysts, customers, etc.). While in

some cases the process activities can be repetitive and automated (with no or little

human interactions), many activities would require human interactions during

the process execution. We envision to support two types of basic human-machine

interactions:

- 47 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

– Decision making: where a human would guide the executing process at run-

time by specifying a particular branch the execution should follow, or by

deciding to repeat a particular activity with different settings. This kind of

interaction should be defined in the process model in order to be supported

at run-time.

– Parameter passing: in some cases, it might be difficult to set some execution

parameters for an activity at the modelling stage. In such cases, a simple

interaction is needed to pass those parameters at run-time. This allows

activities to have a simple interaction with users in the form of questions

(asking for parameters) and answers (passing the parameters by users).

• R4- Allow defining control-flow semantics.

Software processes are control-flow processes. Software process models need the

flexibility of expressing control flow semantics such as: loops, forks and joins.

• R5- Allow defining the required tool support.

Activities in software processes are usually supported by some tools. In this

context, activities are used as wrappers for tools and the execution of software

process models means orchestrating these tools in a workflow style. Therefore,

the model need to incorporate the tool (activity) details such as: version and

compatible inputs and outputs.

3.4 EXE-SPEM

As described in Section 3.2, the chosen standard to use for modelling cloud-based exe-

cutable processes is SPEM2.0 and as detailed in Section 3.2.2.1, SPEM2.0 does not have

explicit support for process execution. In addition, the existing SPEM2.0 extensions do

not satisfy the requirements for cloud-based executable software processes as listed in

the previous section. In this section, we extend the SPEM2.0 meta-model to address

these requirements. We call the extended version EXE-SPEM (Executable SPEM).

Out of the seven SPEM2.0 meta-model packages, the Process Structure meta-model

contains the structural elements for process definition. EXE-SPEM extends the Pro-

cess Structure meta-model with two new meta-classes, one enumeration and adds at-

tributes to existing meta-classes. Figure 3.2 illustrates the extended meta-model where

- 48 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

meta-classes with dark grey background are new and meta-classes with light grey

background have new attributes.

The extension is summarised in the following points:

• The CloudPrivacyKind enumeration is added to define types of cloud deployment

where an activity will be executed. It is used as an attribute in the Activity

meta-class.

• The Activity meta-class is extended with attributes that will be used to guide

execution in the cloud. The added attributes specify the version of the activity

(the supporting tool) to be used, the type of cloud deployment (private or public)

and the type and number of machines and a timeout for executing the activity in

the cloud. Additionally, a priority flag specifies if an activity must be executed

immediately regardless of the cost or not. This meets the requirements R1 and

R5 from Section 3.3. The use of CloudPrivacyKind here satisfies requirement R2.

Additional optional attributes are added for safety-related processes like the one

used in the case study presented in Chapter 5. These are:

– Standard which denotes the particular standard recommending the use of

this activity.

– Guidance which is the guidance used for guiding the use of activity.

– Tool Qualification which refers to any qualification the tool used to support

the activity has got.

• Two subtypes of Activity are introduced to provide control flow semantics:

– The Control Point provides the semantics of control flow in the process model.

Control points in the process model give the user executing the process the

ability to decide which branch the execution should follow next. A branch

can be: a loop (referring to the same activity), a fork or a join. The control

point interaction is simply done by providing options (pre-defined in the

model) and asking the user to make a decision on which option to follow.

This meets requirement R4 and the decision making interaction partially

meet requirement R3.

- 49 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

«M
etaclass»

C
lassifier

«stereotype»
W
o
rkD

efin
itio
n

+
postcondition: S

tring
+

precondition: S
tring

«stereotype»
W
o
rkD

efin
itio
n
P
aram

eter
«stereotype»

W
o
rkD

efin
itio
n
P
erfo

rm
er

«stereotype»
E
xten

sib
leE

lem
en
t

«stereotype»
P
ro
cessE

lem
en
t

«stereotype»
B
reakD

o
w
n
E
lem

en
t

«stereotype»
W
o
rkB

reakD
o
w
n
E
lem

en
t

«stereotype»
M
ilesto

n
e

«stereotype»
A
ctivity

+
useK

ind: A
ctivityU

seK
ind

+
version: S

tring
+

cloudP
rivacyK

ind: C
loudP

rivacyK
ind

+
instanceT

ype: S
tring

+
noO

fInstances: Integer
+

tim
eout: Integer

+
standard: S

tring[0..1]
+

guidance: S
tring[0..1]

+
toolQ

ualification: S
tring[0..1]

+
priority: B

oolean

«enum
eration»

A
ctivityU

seK
in
d

extension
localC

ontribution
localR

eplacem
ent

P
ro
cessP

aram
eter

P
ro
cessP

erfo
rm
er

W
o
rkS

eq
u
en
ce

R
o
leU

se

+
roleC

ertification: S
tring[0..1]W

o
rkP

ro
d
u
ctU

se

+
version: S

tring
+

date: D
ate

+
editedB

y: R
oleU

se
+

description: S
tring

P
ro
cessR

esp
o
n
sib
ilityA

ssig
n
m
en
t

«stereotype»
In
teractiveA

ctivity

+
m

essage: S
tring

+
param

eterList: List

«stereotype»
C
o
n
tro
lP
o
in
t

+
m

essage: S
tring

+
optionsList: List

«enum
eration»

C
lo
u
d
P
rivacyK

in
d

publicC
loud

privateC
loud

W
o
rkP

ro
d
u
ctU

seR
elatio

n
sh
ip

Figure
3.2:The

m
eta-m

odelofthe
extended

SPEM
2.0

process
structure

- 50 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

Table 3.2: Graphical icons of EXE-SPEM elements

Element Icon Element Icon

Process Activity
Interactive

Activity
Control
Activity

Work
Product Use

– Interactive Activity which can be used to model an activity that involves

simple interactions with stakeholders. This meets the parameter passing

type of interactions in requirement R3.

• The RoleUse meta-class is extended with an attribute providing information about

the certification held by this role.

• The WorkProductUse meta-class is extended with attributes providing informa-

tion about the work-product (the artefact) including: the version, the date, the

description and the last role who edited it.

Icons for the EXE-SPEM elements are provided in Table 3.2. It is worth noting that EXE-

SPEM reuses some of the SPEM2.0 elements (Role Use, Guidance, Process Parameter

and Work Sequence) with the same icons.

3.5 Model to Text Transformation

In order to execute EXE-SPEM models, we map them to a machine-executable XML

format following the XML schema in Appendix A. The meta-model of this format is

described in Figure 3.3. The XML schema captures a process consisting of the following

elements:

• Process: this is the software development cycle. A process is usually created by

an actor but might be executed by multiple actors.

• Actor: a person who is involved in the process such as: process managers, soft-

ware engineers, testers, etc. A process will involve one or more actors. Although

a team of actors might collaborate off-line on performing an activity, the activity

will be assigned to a single actor who takes the responsibility for this activity.

- 51 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

Figure 3.3: The meta-model of the XML format

• Artefacts: items produced or needed by the activities of the software development

process (e.g., code, executables, models, documents, etc.).

• Activities: Activities represent the smallest unit of execution. They represent the

different steps in a software process. Those steps usually involve the use of tools

and/or actor interaction to be completed. Activities can be:

– Concrete activities: are executable blocks of code. This type of activities is the

tool support that is used for process execution. For instance, a verification

activity will be supported by a verification tool (e.g., a model checker) which

will be executed.

– Control points: a type of activities which allows actors to guide the execution

of the process in one of multiple pre-defined directions. This allows for

supporting loops, if conditions, and forks.

• Cloud configuration: represents cloud-related configurations such as: cloud

deployment type, machine type, machine image and number of machines to be

used.

• Ports: Each activity can have zero or more input ports and zero or more output

- 52 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

Table 3.3: Mapping rules between EXE-SPEM and our XML notation

EXE-SPEM
cloud-specific process XML Process

Process Process
Phase (Sub) Process
Activity Activity

Control Point Control Point
Interactive Activity Interactive Activity

Activity (execution
-related) attributes

Cloud Configuration
(of an activity)

Task Activity description
attribute

Work Product Use Artefact
Role Use* Activity actor attribute

Guidance*
Activity description
attribute

Process Parameter* Port
Work Sequence* Port attributes

ports. Ports provide the means to connect activities and direct the process execu-

tion flow. They define both the consumed and produced artefacts/parameters by

an activity. In addition, input ports act as preconditions that need to be satisfied

so that the activity can start executing.

Table 3.3 shows the rules to map an EXE-SPEM model into the XML format described

above. The mapping include some SPEM2.0 elements which are reused in EXE-SPEM.

These elements are denoted with *. Algorithms to automate this mapping are not

implemented yet and are considered future work.

3.6 Sample Process

After introducing EXE-SPEM and the rules for mapping EXE-SPEM models into a

machine-executable XML format, in this section, we model the Facebook continuous

delivery process taken from [49]. The process is used by Facebook to continuously

implement, test, deploy and release new features to users. It involves different stake-

holders and few control points where decisions are made about releasing the features

or not and to which users.

Figure 3.4 shows the process modelled in EXE-SPEM. For clarity, not all artefacts have

been labelled but all unlabelled ones refer to the source code of the new feature as it is

- 53 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

Deploy 1

Deploy 3

Deploy 2

Preflab

Testing

Internal

Release

Fix Requests

Bug fixes

Engineer 1 Engineer 2

Phabricator

Review

Code

Dev

Source

Code

Source

Code

Regression

Testing Gatekeeper (switch to users)

Deciding whether to switch

on to all or subset

Figure 3.4: Facebook’s continuous delivery process model in EXE-SPEM

being evolved through the process. In addition, all the activities will be carried out

by engineers from the team working on the feature, however, to simplify the figure,

we only included two actors. We can see that the Phabricator Review is an interactive

activity where Engineer 2 checks the code from Engineer 1 using the Phabricator tool and

requests fixes for any discovered bugs. The Regression Testing activity can take several

iterations as bugs are being discovered and fixed by the engineers. The Deploy 1,2,3

activities represent gradual deployment of the new feature. Finally, there is a control

activity deciding whether to switch the new feature to all users or to a subset of them

before this is actually performed by the Gatekeeper activity.

This process model is mapped to an XML model following the mapping rules in

Table 3.3. The full XML process model can be found in Appendix B.

In contrast to SPEM2.0, using EXE-SPEM in the above model has allowed to model

interaction and control flow semantics. In addition, the textual model (XML) contains

configurations that will be used for enactment by the enactment service as we already

explained in Chapter 2. Another process example modelled in EXE-SPEM can be found

in the case study presented in Chapter 5.

3.7 Discussion

In this section, we discuss how the proposed software process modelling language;

EXE-SPEM meets the requirements for modelling cloud-based executable software

- 54 -

Chapter 3: Modelling Software Processes for Cloud-Based Execution Using
EXE-SPEM

process models to be executed in the SDaaS architecture.

EXE-SPEM models are built using an extended set of SPEM2.0 elements. The extension

of SPEM2.0 is done by extending its meta-model and then mapping the process model

to an execution language which can be executed in a workflow engine. This approach

is suggested in the SPEM2.0 standard [5]. The visual EXE-SPEM models are mapped

to an XML format which can then be parsed and executed in the SDaaS architecture.

Similar approach has been used for other SPEM2.0 extensions (e.g., [57]).

The requirements we described in Section 3.3 are met by the extension made to the

SPEM2.0 meta-model as shown in Figure 3.2. R1 is met by the attributes added to the

Activity meta-class specifying the required computational resources. R2 is met using

the CloudPrivacyKind meta-class which specifies the privacy option for the workflow

engine that will execute a certain activity. Both Interactive Activity and Control Point

Activity meta-classes meet requirement R3. The Control Point Activity meta-class also

meets requirement R4. Finally, R5 is met by the attributes defined in the Activity

meta-class to specify the required tool support for an activity.

3.8 Summary

In this chapter, we focused on the process modelling part of the architecture presented

in Chapter 2. We introduced EXE-SPEM, the SPEM2.0 extension which supports mod-

elling cloud-based executable software process models. We analysed the suitability of

three modelling standards for cloud-based executable software process modelling. We

chose SPEM2.0 because of its maturity and extensibility.

We detailed the extension to the SPEM2.0 meta-model and how EXE-SPEM can be

mapped into an executable XML format. Now that we can model cloud-based exe-

cutable software processes, the next step is to start enacting the process in the cloud.

The next chapter focuses on how to schedule process activities on the right workflow

engines in a cost-efficient way.

- 55 -

4
Cost-efficient Scheduling of Software

Processes Execution in the Cloud

Contents
4.1 Introduction . 57

4.2 Background . 57

4.2.1 Workflow scheduling . 58

4.2.2 Workflow scheduling algorithms . 61

4.3 Scheduling SDaaS Software Workflows in the Cloud 65

4.3.1 Assumptions . 65

4.3.2 Objectives . 66

4.3.3 Motivation . 66

4.3.4 Problem definition & assumptions 67

4.3.5 Scheduling requirements . 70

4.3.6 Cost factors . 71

4.3.7 Scheduling algorithms . 72

4.4 Evaluation . 78

4.4.1 The request generator . 78

4.4.2 The simulation scheduler . 80

4.4.3 Workflow engines . 80

4.4.4 Performing the simulation . 81

4.4.5 Simulation results . 81

4.5 Summary . 86

- 56 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

4.1 Introduction

Executing workflows in the cloud harnesses the cloud economies of scale. However,

despite the illusion that the cloud offers an unlimited pool of computational resources,

these resources come at a cost. While computational resources might be plenty, mone-

tary resources are always limited. Therefore, in this chapter we investigate the software

workflows execution scheduling and how we can reduce the cost of execution without

causing significant execution delays.

In a setting where multiple software development workflows (and their activities)

compete for shared computational resources (workflow engines), scheduling workflow

execution becomes important. Workflow scheduling is an NP-hard problem [109,

116] which refers to the allocation of sufficient resources (human or computational) to

workflow activities. The schedule impacts the workflow makespan (execution time)

and cost as well as the computational resources utilisation.

In this chapter, we focus on the Scheduler component from the SDaaS architecture (see

Figure 4.1). The scheduler is part of the enactment service of the SDaaS architecture.

It is responsible for allocating activities to suitable workflow engines (which satisfy

the activities’ requirements) for execution. To reduce the software process execution

cost in the cloud, we define the software development workflow scheduling problem

and analyse the cost factors associated with cloud-based execution of such workflows.

Then, we adapt three algorithms for software workflows scheduling and propose a

fourth one. We evaluate these algorithms through simulation and we benchmark their

performance in terms of execution cost and time. The simulation results show that

our proposed algorithm saves between 19.74% and 45.78% of the execution cost and

provides the best resource (VM) utilisation compared to the other presented algorithms

while providing the second best makespan.

4.2 Background

Workflow scheduling in the cloud and grids has been investigated (e.g., [20, 101,

108]) where several algorithms have been proposed with different objectives (cost

reduction, meeting deadlines, makespan optimisation, etc.). These algorithms have

mostly focused on scientific or business process workflows and none have addressed

- 57 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Actors

Workflow Engines

Repositories
Process Model

Transformations

Process Model
Storage Service

Process Model
Authoring

Process Access
& Sync. Service

Ar
te

fa
ct

s M
an

ag
er

Ex
te

rn
al

 T
oo

ls

Workflow Engines Registry

External
Workflow

Collaboration

Consistency &
Compliance

Checker

Sc
he

du
le

r
SLA

Monitor
Execution
Manager

Tools

Design Time
(Process Modelling) Runtime (Enactment Service)

Client Applications

REST API REST API

Figure 4.1: Highlighting the scheduler in the SDaaS reference architecture

software process workflows. As we have discussed in Chapter 1, software processes are

a special type of business processes. They are characterised by their dynamicity, long

life, interactions and control flow. Software process workflows include a diverse set of

activities with different computational requirements. These activities can be interactive,

control flow points or intensive computational tasks. This chapter investigates how to

allocate the appropriate resources for each activity in a cost-efficient way. But first, in

this section we provide some background on workflow scheduling and we review a

sample of the existing scheduling algorithms.

4.2.1 Workflow scheduling

Workflow scheduling is an essential task towards the execution of workflows. Schedul-

ing is the process of mapping sufficient resources to workflow tasks to meet some per-

formance/QoS constraints and optimise resource utilisation. In addition, scheduling

is done based on the sequence of the workflow tasks and their data and control de-

- 58 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

2

2.1.2 Workflow Model/Specification

Workflow Model (also called workflow specification)

defines a workflow including its task definition and

structure definition. There are two types of workflow

models, namely abstract and concrete.

In the abstract model, a workflow is described in an

abstract form, in which the workflow is specified without

referring to specific Grid resources for task execution. In

contrast, the concrete model binds workflow tasks to

specific resources. Given the dynamic nature of the Grid

environment, it is more suitable for users to define

workflow applications in the abstract model. A full or

partial concrete model can be generated just before or

during workflow execution, according to the current status

of resources.

Figure 1. A taxonomy of scientific workflow systems for Grid computing.

2.1.3 Workflow Composition System

Workflow composition systems are designed for enabling

users to assemble components into workflows. They need

to provide a high level view for the construction of Grid

workflow applications and hide the complexity of

Workflow

Design

Workflow

Scheduling

Fault

Tolerance

Data

Movement

Grid

Workflow

 System

Workflow Structure

Workflow

Composition System

Workflow

Model/Specification

DAG

Non-DAG

Sequence

Choice

Iteration

Parallelism

Sequence

Choice

Parallelism

Concrete

Abstract

User-directed
Graph-based Modeling

Automatic

Language-based Modeling

Architecture

Scheduling Strategies

Decision Making

Planning Scheme

Decentralized

Hierarchical

Centralized

Global

Local

Static

Dynamic

User-directed

Simulation-based

 Prediction-based

Just in-time

Trust-driven

Market-driven

Performance-driven

Checkpoint /Restart

Replication

Alternate Task

Redundancy

Task-level

Workflow-level

Alternate Resource

Retry

User-directed

Automatic

Centralized

 Mediated

Peer-to-Peer

User-defined Exception Handling

Rescue workflow

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 45

Figure 4.2: The workflow scheduling categories [116]

pendencies. A good scheduling algorithm would meet user requirements (in the form

of performance/QoS constraints) and improve the resource utilisation which leads to

overall WfMS performance enhancement. The performance/QoS constraints could be:

cost, workflow makespan (execution time), meeting deadlines, trust and security, etc.

Workflow scheduling approaches can be categorised based on different criteria. Yu

et al [116] categorised workflow scheduling based on four criteria as described in

Figure 4.2. The categories are:

Architecture

Workflow scheduling is a key module in any WfMS. Therefore, the design and architec-

ture of the workflow scheduling impacts the overall WfMS performance and evolution.

As Figure 4.2 shows, there are three architectural categories for workflow scheduling:

• Centralised

In centralised scheduling, a single (central) scheduler is used to schedule all

workflow tasks. The benefit is that the central scheduler will have full information

about the workflow tasks and the available resources. This allows the scheduler

to make efficient schedules. On the other hand, a central scheduler does not scale

well and becomes a single point of failure,

• Hierarchical

- 59 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Hierarchical scheduling is a multi-level scheduling where a central scheduler

delegates sub-workflows to be scheduled by different lower-level schedulers.

This architecture allows the central scheduler to have a different scheduling policy

compared to the lower-level schedulers. In addition, this architecture scales

better than the centralised one. However, the main downside is that the central

scheduler still acts as a single point of failure,

• Decentralised

In contrast to centralised scheduling, decentralised scheduling relies on multiple

independent schedulers which can communicate with each other to distribute

the scheduling load between themselves. While the lack of centralised scheduler

avoids having a single point of failure, none of the schedulers have all the infor-

mation about the entire workflow and its tasks. The lack of the global view means

that the produced schedules are unlikely to be optimal.

Decision making

Another categorisation of workflow scheduling approaches is based on the information

used to make the scheduling decision. If the decision is made based on the information

of the single workflow task at hand (without considering the rest of the workflow), it

is called a local decision. Local decisions are cheap to produce but they are not usually

optimal due to ignoring the entire workflow. In contrast, a global decision is based

on the information of the entire workflow which produces more optimal schedules

comparing to the local decision approach. However, this optimality comes with the

cost of expensive computation and longer scheduling times.

Planning scheme

To execute a workflow, the workflow abstract model needs to be translated into a

concrete model (workflow instance). The scheme of this translation is another criteria to

categorise workflow scheduling approaches. The scheme can be either static or dynamic.

In the static scheme, the workflow instance should be fully created before execution.

The generated schedule is rigid and does not consider any real-time changes. The

scheduling can be based on user’s knowledge (user-directed) or based on simulating

the workflow execution on a set of resources and selecting the best schedule.

- 60 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

On the other hand, the dynamic scheme schedules the execution in real-time allowing

for considering real-time changes. Dynamic scheduling can be based on prediction re-

sults along with dynamic data (prediction-based) or can happen at the time of execution

(just-in-time).

Scheduling strategies

The last criteria is based on the type of QoS requirements (strategies) constraining the

execution scheduling. These strategies can be: Performance-driven (aiming to achieve

optimal performance metric such as workflow makespan), Market-driven (aiming to

acquire the most cost-effective services and resources to execute the workflow), and

Trust-driven (aiming to choose trusted resources to execute the workflow based on

their security policies for example).

4.2.2 Workflow scheduling algorithms

In this subsection, we review six state-of-the-art scheduling algorithms and their suit-

ability for scheduling software processes in the cloud. While several authors have

surveyed workflow scheduling algorithms (e.g., [20, 101, 108]), here, we review a

sample of algorithms which target workflow execution cost and/or time in the cloud or

grids.

A Compromised-Time-Cost Scheduling Algorithm in SwinDeW-C for Instance-

Intensive Cost-Constrained Workflows on a Cloud Computing Platform

Liu et al. [82] proposed an algorithm for scheduling workflows with large number of

instances (instance-intensive) and cost constraints on the cloud. It aims to minimise cost

under user designated deadlines or minimising execution time under user designated

budget. The algorithm dynamically calculates the relation between cost and execution

time and visualises it to the user so that he/she can make a choice to compromise time

or cost. The algorithm is compared against the Deadline-MDP algorithm [115] in terms

of cost and makespan and shows that it reduces execution cost by over 15% whilst

meeting the user-designated deadline and reduces the mean execution time by over

20% within the user-designated execution cost.

However, it is worth noting that the cost calculation in this algorithm does not consider

the execution time taken by a task and instead uses a hard-coded table for execution

- 61 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

prices based on the provided processing speed. In addition, this algorithm does not

support tasks to have special resource requirements such as private resources or specific

computational power which is needed in software processes as we explained in Chap-

ter 3. Additionally, the idea of applying deadlines to software processes workflows is

not practical due to the fact that it is hard to predict/control the execution time of many

activities in such processes. Especially, the ones which rely on human intervention.

Auto-Scaling to Minimise Cost and Meet Application Deadlines in Cloud Workflows

Mao et al. [85] proposed an algorithm for scheduling workflow tasks within a given

deadline and at the minimal cost by dynamically allocating/deallocating VMs. The

schedule is dynamically calculated to auto-scale VMs to handle dynamic loads from

multiple workflows.

While this approach would fit for data-intensive or business process workflows, as

mentioned earlier, allocating deadlines for software processes is not practical. Software

processes have a mixture of human-performed and tool-supported tasks. The human-

performed tasks are often unpredictable and can be long-running, therefore, it would

be challenging to allocate sub-deadlines for this type of tasks.

Scaling and Scheduling to Maximise Application Performance within Budget Con-

straints in Cloud Workflows

In another study [84], Mao et al. proposed two algorithms to maximise performance

(makespan) while meeting budget constraints. The first algorithm is: Schedule-first

which splits the total budget onto individual jobs and finds the fastest schedule be-

fore acquiring the resources. The second algorithm is: Scale-first which determines the

required amount and type of cloud resources and then allocate jobs to the acquired

resources. Their experiments show that the Scale-first algorithm performs better in low

budgets while the Schedule-first performs better in higher budgets.

While this study considers the variety of cloud resources requirements, it does not han-

dle multiple concurrent workflow instances which are possible to happen in a software

project which involves multiple stakeholders participating in multiple processes. Ad-

ditionally, this study provides static schedules which does not consider the dynamicity

of both cloud and software processes.

Multi-Objective Heterogeneous Earliest Finish Time (MOHEFT)

Instead of having different scheduling objectives aggregated in one function, Durillo

- 62 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

et al. [44] proposed a Pareto-based approach which produces a set of (nearly) optimal

trade-off solutions for users to choose from. The aim of the algorithm is to minimise

the execution cost and the makespan. They compare their approach with the SPEA2*

approach and show that it produces higher quality solutions.

Similar to the previous study, this approach, does not handle the dynamic load of

multiple software workflows executing concurrently.

A Market-oriented Hierarchical Scheduling Strategy in Cloud Workflow Systems

In [113], Wu et al. proposed a hierarchical two-step scheduling approach to meet

QoS constraints for workflow instances while minimising the execution cost. The first

step is the static Service-level Scheduling which maps workflow instance tasks to global

cloud providers based on the QoS requirements. The second step is the dynamic

Task-level Scheduling where tasks are mapped to VMs in the local data centre of the

selected cloud provider. They adapt three different algorithms (Genetic Algorithm,

Ant Colony Optimisation and Particle Swarm Optimisation) to perform the second

step and compare their performance. The experimental results show that the Ant

Colony Optimisation gives the best results compared to the other two in terms of CPU

time, makespan and cost.

Being a market-oriented approach, this approach does not target optimising the work-

flows makespan. As we explained earlier, market-oriented scheduling aims to choose

the most cost-efficient resources. However, the workflow makespan is an important

aspect of a software process. Especially, when a process is prioritised for execution as

other processes are dependent on it.

- 63 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Adaptive workflow scheduling for dynamic grid and cloud computing environment

Rahman et al. [94] proposed the dynamic critical path scheduling approach for grids

(DCP-G). This proposal aims to improve the scheduling performance in the dynamic

resource environment in grids. It does that by dynamically mapping workflow tasks

to grid resources based on calculating the critical path in the workflow task graph. In

addition, the authors propose an adaptive workflow management approach for data

analysis workflows in hybrid clouds.

This approach aims to meet users QoS constraints such as execution time and budget.

However, it does not consider software process workflows which are more complex

and include different types of tasks. Furthermore, although this approach aims to meet

budget constraints but it does not consider reducing the execution cost of multiple

concurrent workflow instances execution.

Adaptive Task Schedule

In [109], Wang et al. proposed a dynamic adaptive task schedule algorithm which

dynamically sets a maximum number of VMs that can be acquired at any given time.

This limit is calculated based on two variables: either historical (backward) or future

(forward) number of tasks and an arbitrary threshold. They compare this algorithm

with three other algorithms (one static and two dynamic) and their results show that

the adaptive task schedule algorithm based on future number of tasks gives the best

performance.

This algorithm, however, does not handle specific requirements of each workflow

task (which is needed for software processes as we discussed earlier) and relies on an

arbitrary value which does not have any rules to calculate. In Section 4.3.7.3, we will

adapt this algorithm to the SDaaS architecture needs and we show that our proposed

algorithm outperforms this one.

Summary. The existing scheduling approaches have been focusing on scientific (data

analysis) workflows which differ from software processes as we have seen in Chapter 1.

Some approaches use static scheduling mechanism that does not handle the dynamicity

and heterogeneity of cloud resources. Other approaches adopt dynamic scheduling

mechanisms and target to meet one or more optimisation criteria (makespan, cost,

budget, deadline). In addition, few approaches considered the diverse requirements

that different workflows tasks may require in terms of cloud resource types. To the

- 64 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

best of our knowledge, no existing research has addressed scheduling software process

workflows in the cloud and the catering for the special needs of such workflows. The

next section highlights those needs and introduces the proposed scheduling algorithms.

4.3 Scheduling SDaaS Software Workflows in the Cloud

Workflow scheduling is an NP-hard problem [109]. The SDaaS architecture needs

to schedule software workflows execution in the cloud. In this section, we set the

assumptions and objectives which motivate the scheduling process before we propose

a scheduling algorithm.

4.3.1 Assumptions

The following assumptions describe the scenarios in which the SDaaS architecture will

be used:

• The SDaaS architecture will be used by an organisation which have multiple

(geographically-distributed) teams which collaborate on several projects concur-

rently.

• Software processes contain a set of activities with different requirements for exe-

cution privacy and computational resources.

• Some activities may be required to be performed quickly while others may not.

In a delayed project, certain activities will be required to be performed quickly to

avoid further delays. In addition, critical activities that precede the execution of

many other activities are naturally expected to be performed faster so that they

do not block other activities longer. These activities are referred to as priority

activities.

• Interactive activities are not executed on the cloud since these activities may

involve stakeholders performing certain tasks offline. Likewise, scheduling the

human activities (the ones preformed solely by humans without any tool support)

is not considered since it does not have an impact on the cost of using the cloud.

- 65 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

• An activity becomes ready for execution once all of its input artefacts become

available.

• At any given time, there might be several ready-to-execute activities from different

processes.

• Activities execution times are presumed to be known. Execution time estimation

techniques are available (e.g., [71, 103]) but are out of the scope of this chapter.

• The cost of executing an activity is dependent on the time it takes to finish and the

cost of data transfer outside the cloud provider boundary. For simplicity, both the

public and the private cloud resources are assumed to be located within two data

centres (one public and one private) and data transfer between them is negligible.

Therefore, data transfer costs are assumed to be negligible.

4.3.2 Objectives

The objectives of the scheduling software workflows in the SDaaS architecture are:

1. To allocate activities to a workflow engines pool containing engines which match

the required resources by the activity.

2. To reduce the overall workflows cloud-based execution cost by switching work-

flow engines on/off when needed/unneeded.

3. Reducing the cost conflicts with the workflow makespan (execution time). The

scheduling should minimise the impact of reducing the cost on the workflow

makespan.

4. To utilise the available workflow engines as best as possible.

4.3.3 Motivation

Given the assumptions and objectives of the scheduling process, we notice that software

workflows in the SDaaS architecture have specific needs that are not addressed by the

existing scheduling algorithms (see Section 4.2).

- 66 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Unlike scientific workflows, software processes are control-flow workflows which in-

volve more human interactions. Furthermore, different types of software processes

tasks can require different types of resources in terms of computational power and/or

deployment choices (public vs private clouds). These requirements include the choice

of public or private cloud, cloud provider (in case of using public clouds), the virtual

machine image, machine type (specifying the amount of memory, CPU power and

network bandwidth) and number of machines (in case of a distributed activity).

The SDaaS architecture presented in Chapter 2 allows modelling and executing software

process workflows on a number of distributed workflow engines. The process models

describe the resources requirements for each activity in the process. As we mentioned

in Section 4.1, the feeling of having unlimited pool of resources in the cloud is illusional.

Therefore, unwise use of cloud can result in huge costs. In this section, we propose an

algorithm to schedule software process workflow execution in the cloud with the aim

of cost reduction without increasing the workflow makespan (execution time).

Before we dive into the proposed scheduling algorithms, in the next subsection, we

will define the scheduling problem and set some assumptions. Then, based on these

definitions and assumptions, we will elicit a set of requirements that the scheduling

algorithm should satisfy.

4.3.4 Problem definition & assumptions

As any other scheduling problem, the target is to map workflow activities to the right

resources in order to achieve some improvement (e.g., on performance or cost). Here,

we formally define the elements related to the scheduling problem. These elements fit

into two main categories: (a) the cloud resources model and (b) the workflow model.

The cloud resources model

Cloud resources include compute, storage and networking solutions. These solutions

are used to power workflow engines which execute workflow activities.

Definition (1) Workflow Engine (WE): is a software service deployed on a cloud VM

and it hosts the execution of workflow activities.

WE =
(
MachineType,HostType,State

)
(4.1)

- 67 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

where MachineType is the set of available VM machine types and HostType is defined

as:

HostType =
{
public, private

}
(4.2)

The workflow State is the set of operational states for the engine and is defined as:

State = {active, inactive} (4.3)

Each workflow engine can execute a single workflow activity at any given time.

Definition (2) Workflow Engines Pool (WEP): is the set of workflow engines that have

the same MachineType and HostType.

WEPi =
(
WESi,MachineType,HostType,Ri

)
(4.4)

where Ri is the pool size limit (maximum number of active workflow engines in the

pool) and WESi is the set of workflow engines in the pool. WESi is defined as:

WESi =

n⋃
j=1

{WE j |WE j.MachineType = WEPi.MachineType (4.5)

∧WE j.HostType = WEPi.HostType}

The workflow model

Software process workflows belong to software development projects.

Definition (3) A software development project (P) contains multiple workflows and is

defined as:

P =

n⋃
i=1

{Wi} (4.6)

- 68 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

where Wi is workflow number i. Multiple teams can be involved in a single project and

might execute multiple workflow instances concurrently.

Definition (4) An activity is the smallest unit of execution in the workflow and is

defined as:

Ai =
(
T,Req, priority,ET

)
(4.7)

where T is the executable task, Req is the resources requirements (machine and host

types) and since some activities may be required to be performed quickly while others

may not, priority denotes whether the activity is urgent or not (an urgent activity is

referred to as priority activity). ET is the execution time for the activity. This is assumed

to be known beforehand. Although execution time estimation techniques are available

(e.g., [71, 103]), they are out of the scope of this chapter.

Definition (5) A workflow is a set of activities (A) and their control and data depen-

dencies. It is defined as:

Wi = (A,D) (4.8)

where A is the set of activities and is defined as:

A =

n⋃
i=1

{Ai} (4.9)

and D is the set of dependencies which is defined as:

D =
{(

Ai,A j

)
|

(
Ai,A j ∈ A × A

)}
(4.10)

Activities in the workflow can be executed only when their predecessors if any have

finished executing. Predecessors Pred(Ai) are defined as:

- 69 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Pred(Ai) = {Ak | (Ak,Ai) ∈ D} (4.11)

The set of successors Succ(Ai) is defined as:

Succ(Ai) = {Ak | (Ai,Ak) ∈ D} (4.12)

The workflow execution can follow one or more of the available successors.

4.3.5 Scheduling requirements

Based on the definitions and assumptions discussed above, the scheduling must meet

the following requirements:

• Since activities in the process have varying resource requirements (as discussed

in Section 4.3), the scheduler should allocate activities to workflow engines which

satisfy these requirements.

• Since multiple processes can be executing at the same time and multiple activities

can be ready to execute at a given time, the scheduling should be dynamic see

Section 4.2.

• The generated schedule should allocate activities to workflow engines for execu-

tion in a cost-efficient way. This means reducing the cost of using cloud resources

by making the best possible use of each running workflow engine before switch-

ing it off and by having a policy for scaling the number of workflow engines

up and down based on the expected load. Producing such schedules requires

global knowledge of workflows being scheduled in the system. Therefore, the

scheduling should be centralised [116]. The down side is that the scheduler scal-

ability will be limited. Additionally, the decision making should be Globalsee

Section 4.2.

• The generated schedule should minimise the overall execution time of a process

while reducing the execution cost by switching off unneeded workflow engines

- 70 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

and optimising the use of the available ones. For those activities requiring speedy

execution, an exception should be made to allow faster execution even though

that might increase the execution cost. Therefore, the scheduler should balance

between a performance-driven and a market-driven strategy.

4.3.6 Cost factors

The cost for cloud-based software workflows execution is mainly the cost of using cloud

resources. The main cloud resource that will be used for executing software processes

is virtual machines (VMs) which host workflow engines. Most cloud providers (e.g.,

Amazon 1) charges per partial hour use of VMs.

In order to reduce the software workflows execution cost in the cloud, we need to

understand the factors that have an impact on it and which of them we can control.

These factors are listed below:

1. The variety and types of the required VMs since different machine types have

different prices.

2. The number of priority activities. Priority activities bypass any limiting restric-

tions on creating new VMs thus potentially raising the execution cost.

3. The size and complexity of the workflow. The larger the workflow the more it

will cost to execute it. In addition, the complexity of the workflow structure (in

terms of forks, parallel activities and dependencies) impacts the execution cost

and makespan.

4. The complexity of individual activities in workflows. This can be expressed by

the execution time for the activity.

5. The concurrency and frequency of incoming workflow execution requests. This

affects the load that the scheduler has to handle and can potentially create more

demand on certain type of resources which will impact both the cost and the

waiting times for limited resources to become available.

1www.aws.amazon.com

- 71 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

6. Resources acquisition constraints. If the used scheduling algorithm acquires

resources without any restrictions, it will potentially cost more than an algorithm

which limits the resources that can be acquired during a given period. In such

case, the choice of the limit will impact the execution cost and makespan.

Since incoming workflow execution requests cannot be controlled, most of these factors

are uncontrollable. The only controllable factor is the resources acquisition constraints.

The scheduling algorithms could apply some constraints which limit the amount and

optimise the use of the acquired cloud resources. This would potentially reduce the

execution cost. The next subsection describes four different scheduling algorithms for

scheduling software workflows execution in the cloud.

4.3.7 Scheduling algorithms

The scheduling needed for software workflows is a multi-criteria scheduling which

aims to meet the execution requirements of each activity and reduce the overall exe-

cution cost (of all workflows) while not significantly increasing the execution time (of

individual workflows). Here, we define the terms related to the scheduling algorithms:

• Workflow engines pool: is a pool of workflow engines deployed on similar virtual

machines (in terms of computational power and deployment model).

• Workflow makespan (execution time): is the difference between the execution

start time of the first activity in the workflow and the execution end time of the

last activity in the workflow.

• Workflow engine operational hours: are the hourly units of time starting from

the time a workflow engine starts.

• Workflow engines pool size (R): is the maximum number of active workflow

engines a pool can have at any given operational hour.

• Execution cost: is the cost of executing all the desired workflows in the SDaaS

architecture. This can be calculated by aggregating the cost of running each

workflow engine instance as follows:

- 72 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Cost =

n∑
i=1

VMn ∗ tn (4.13)

Where VMn is the price per partial hour for running the virtual machine hosting

the workflow engine and tn is the number of partial hours that workflow engine

has been running.

Workflow engines are deployed on virtual machines (VMs) in the cloud. Most cloud

providers charge per partial hour usage of VMs. This means that the usage time is

rounded to the ceiling number of hours. For example, a one hour and ten minutes

usage is charged as two hours. Therefore, to achieve cost reduction, the workflow

engines pool size R for a given pool should be limited and the workflow engines in the

pool should be utilised as best as possible before they are shut down. For example, if

a workflow engine becomes idle after executing a 10 minutes activity, it can be kept

on standby for the next 50 minutes (to accommodate any upcoming activities) without

incurring any extra cost. To illustrate the effect of activities allocation to workflow

engines on the execution cost, let us have a look at Figure 4.3. The figure shows three

activities [A1, A2, A3] and their execution times [20, 40, 20] minutes respectively. Each

activity is allocated to a workflow engine resulting in the cost of three partial hours and

underutilised workflow engines (the grey areas representing 100 minutes of idle time).

While in Figure 4.4, the three activities are allocated on the workflow engine resulting

in two partial hours cost and better utilisation of the workflow engine (40 minutes of

idle time). The latter scenario would be ideal if the three activities were sequential.

However, if they were concurrent, some of the activities will wait for others to finish

executing. Therefore, there would be a trade-off between the workflow execution cost

and makespan.

Since the pricing for VMs is per partial hour, then starting and shutting down VMs

should happen at the beginning of each operational hour. The decision to allocate an

activity to a workflow engine should be made only when the activity becomes ready

to execute, i.e., it is an event-driven decision. In this chapter, we try four different

scheduling algorithms and benchmark their performance from both execution cost and

makespan perspectives.

- 73 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

A1
(20 mins)

A2
(40 mins)

A3
(20 mins)

Figure 4.3: Allocating activities to workflow engines (a)

A1
(20 mins)

A2
(40 mins)

A3
(20 mins)

Figure 4.4: Allocating activities to workflow engines (b)

Below we explain the four algorithms. These algorithms are all dynamic and cen-

tralised.

4.3.7.1 Unlimited First Come First Serve (UFCFS)

This is the simplest and most basic scheduling approach where the pool size R is

always set to infinity. Once an activity is ready-to-execute, it is allocated to an available

workflow engine in the relevant workflow engines pool (if exists), otherwise a new

pool and/or workflow engine are created. Figure 4.5 shows the UFCFS algorithm.

4.3.7.2 Limited First Come First Serve (LFCFS)

This is a similar approach to the UFCFS except that there is a universal limit on the num-

ber of active workflow engines in any workflow engines pool at any time. Figure 4.6

shows the LFCFS algorithm. The workflow engines pool size limit (R) is an arbitrary

value which aims to restrict the execution cost. If all workflow engines in a pool are

busy and their number has reached R and a new activity is ready to be executed in this

pool, the scheduler will allocate this activity to the workflow engine with the earliest

finishing time. This means that the activity will be delayed until a suitable workflow

engine becomes available again.

- 74 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

1 A c t i v i t y A;
2 Lis t <WorkflowEnginePool> pools ;
3
4 s t a r t
5 f ind a pool in pools which match the computational resources and privacy

requirements of A.
6 i f (pool i s found)
7 {
8 f ind an a v a i l a b l e workflow engine
9 i f (workflow engine i s found)

10 add A to the j o b s queue of the engine ;
11 e l s e
12 {
13 c r e a t e and s t a r t a new workflow engine and add A to i t s j o b s queue ;
14 }
15 }
16 e l s e
17 {
18 c r e a t e a pool ;
19 c r e a t e and s t a r t a new workflow engine in the new pool and add A to i t s

j o b s queue ;
20 }
21 end

Figure 4.5: Unlimited First Come First Serve algorithm

4.3.7.3 Pool-based Adaptive Task Schedule

This algorithm is adapted from the Adaptive Task Schedule algorithm [109] described

in Section 4.2. Here, we define a workflow engines pool size limit R dynamically for

each pool at the beginning of each operational hour, hence the name Pool-based. the

algorithm consists of two main steps:

1. Matching each ready-to-execute activity with a suitable workflow engines pool

(a pool which contains workflow engines matching the required resources for the

activity.

2. For each workflow engines pool i, the pool size limit Ri is dynamically calculated

using the following formula:

Ri = T ∗ Ei (4.14)

Where T is a universal arbitrary real value between 0 to 1 which indicates the proportion

between the activities to be executed and the workflow engines. For example, when T

- 75 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

1 A c t i v i t y A;
2 Lis t <WorkflowEnginePool> pools ;
3 i n t R ; / / the max number of workflow engines in each pool
4
5 s t a r t :
6 f ind a pool in pools which match the computational resources and privacy

requirements of A.
7 i f (pool i s found)
8 {
9 f ind an a v a i l a b l e workflow engine ;

10 i f (workflow engine i s found)
11 add A to the j o b s queue of the engine ;
12 e l s e
13 {
14 i f (number of workflow engines in pool i < R)
15 c r e a t e and s t a r t a new workflow engine and add A to i t s j o b s

queue ;
16 e l s e
17 a l l o c a t e A to the f i r s t a v a i l a b l e engine ;
18 }
19 }
20 e l s e
21 {
22 c r e a t e a pool ;
23 c r e a t e and s t a r t a new workflow engine in the new pool and add A to i t s

j o b s queue ;
24 }
25 end

Figure 4.6: Limited First Come First Serve algorithm

is 0.5, it means that there should be a workflow engine for each two activities. Ei is the

number of activities which match pool i and are expected to start in the next hour.

Unlike the original algorithm which has two versions (one looking forward and one

backward), here we only look at the expected activities in the next hour (forward). Since

the activities arrive in a non-deterministic way, the history alone does not necessarily

give an accurate prediction for the predicted load in the next hour.

Figure 4.7 shows this algorithm. As we can see, the algorithm is very similar to the

LFCFS algorithm except that each pool has its own R.

4.3.7.4 Proportional Adaptive Task Schedule

Similar to the previous two algorithms, this algorithm sets a limit for the workflow

engines pool size R. The difference is that R is now calculated based on the proportion

between the execution time of the activities that are predicted to start in the next hour

and those which have started execution in the past hour. The following formula is

- 76 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

1 A c t i v i t y A;
2 Lis t <WorkflowEnginePool> pools ;
3 L i s t <in t > R ; / / the max number of workflow engines f o r each pool
4
5 s t a r t :
6 f ind a pool in pools which match the computational resources and privacy

requirements of A.
7 i f (pool i s found)
8 {
9 f ind an a v a i l a b l e workflow engine ;

10 i f (workflow engine i s found)
11 add A to the j o b s queue of the engine ;
12 e l s e
13 {
14 i f (number of workflow engines in pool i < Ri)
15 c r e a t e and s t a r t a new workflow engine and add A to i t s j o b s

queue ;
16 e l s e
17 a l l o c a t e A to the f i r s t a v a i l a b l e engine ;
18 }
19 }
20 e l s e
21 {
22 c r e a t e a pool ;
23 c r e a t e and s t a r t a new workflow engine in the new pool and add A to i t s

j o b s queue ;
24 }
25 end

Figure 4.7: Pool-based Adaptive task scheduling algorithm adapted from [109]

applied when Ri for a given pool i is calculated for the first time:

Ri =
⌊Tnext

60

⌋
(4.15)

Where Tnext is the total execution time of the activities that will start in the next hour

(in minutes). Therefore, Ri is the floor of the expected execution hours needed to

execute the activities that would start in the next hour. When Ri has been set before,

the following formula is applied to calculate Ri on every operational hour:

Ri =

⌈
Tnext

Tpast
∗ Ri

′

⌉
(4.16)

Where Tpast is the total execution time (in minutes) of the activities that have started in

the past hour and Ri
′ is the last value of Ri. The proportional adaptive task schedule

- 77 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

algorithm itself is the same as the pool-based adaptive task schedule algorithm in

Figure 4.7.

4.4 Evaluation

To analyse the performance of the algorithms described in the previous section, we

simulate the execution of each algorithm and measure two metrics (as defined in

Section 4.3.7): (a) the makespan for each simulated workflow, and (b) the total cost of

executing all workflows. The simulation is implemented in Java where the scheduler

uses one of the four algorithms to schedule activities from multiple workflow instances.

In this section, we describe the set up and configuration parameters for the simulation.

The simulation consists of three main components: (a) the request generator, (b) the

simulation scheduler, and (c) the workflow engines.

4.4.1 The request generator

In order to simulate a real workflow execution scenario, the request generator generates

requests to execute workflow instances at random times to create non-determinism. In

a real scenario, workflow instances can be requested to be executed at any time and

might be executing in parallel with some other instances.

Since randomisation is used, there is a need to run the simulation several times and

calculate mean values for the desired metrics. We use three input workflow models

of sizes 7, 9 and 10 activities. These models have different requirements for activi-

ties (a mixture of public/private and priority/non-priority activities). The structure of

these models and which activity has which requirements are irrelevant as the request

generator randomly chooses a time to trigger the request for each of the three input

models in each simulation iteration. This creates a non-deterministic load on different

computational resources.

Although these input models are random, they reflect the possible incoming software

workflows execution requests. As we explained in Section 4.3.1, in the SDaaS archi-

tecture, multiple workflow instances can be executing concurrently. The demand on

different workflow engines is non-deterministic as different activities (with different

requirements) from different workflows can become ready-to-execute at anytime.

- 78 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

1

2

3

5

4

6 7

12

10

24

10

8

14 16

1

2

4

3

5 6

7

8

9

20 15

10

25

17 20

30*

15

10

1 2 6

4

3

5

7

8 9

10 20 15

11

13

16 9

6* 5

10 10

T2_Medium (pub)

 T2_Small (private)

T2_Medium (pub)

 T2_Small (private)

T2_Small (pub)

 T2_Large (pub)

 T2_Small (pub)

T2_Large (pub)

M4_Large (pub)

T2_Medium (pub)

 T2_Small (private)

T2_Small (pub)

 T2_Large (pub)

Figure 4.8: The first workflow input model

1

2

3

5

4

6 7

12

10

24

10

8

14 16

1

2

4

3

5 6

7

8

9

20 15

10

25

17 20

30*

15

10

1 2 6

4

3

5

7

8 9

10 20 15

11

13

16 9

6* 5

10 10

T2_Medium (pub)

 T2_Small (private)

T2_Medium (pub)

 T2_Small (private)

T2_Small (pub)

 T2_Large (pub)

 T2_Small (pub)

T2_Large (pub)

M4_Large (pub)

T2_Medium (pub)

 T2_Small (private)

T2_Small (pub)

 T2_Large (pub)

Figure 4.9: The second workflow input model

1

2

3

5

4

6 7

12

10

24

10

8

14 16

1

2

4

3

5 6

7

8

9

20 15

10

25

17 20

30*

15

10

1 2 6

4

3

5

7

8 9

10 20 15

11

13

16 9

6* 5

10 10

T2_Medium (pub)

 T2_Small (private)

T2_Medium (pub)

 T2_Small (private)

T2_Small (pub)

 T2_Large (pub)

 T2_Small (pub)

T2_Large (pub)

M4_Large (pub)

T2_Medium (pub)

 T2_Small (private)

T2_Small (pub)

 T2_Large (pub)

Figure 4.10: The third workflow input model

Figures 4.8, 4.9 and 4.10 illustrate the three input workflow models. Each activity is

colour coded to identify the machine type it requires. The execution time is specified

above each activity where a * symbol indicates that the activity is a priority activity.

- 79 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Table 4.1: Workflow engine VM types and prices

EC2 Machine Type Amazon (Public) Price ($) Private Price ($)
T2_SMALL 0.026 0.0286

T2_MEDIUM 0.052 0.0572
T2_LARGE 0.104 0.1144
M4_LARGE 0.12 0.132

4.4.2 The simulation scheduler

Once the request generator triggers the execution of a workflow instance, the activities

in that instance are scanned and any ready-to-execute activity is pushed into a shared

jobs queue. The scheduler monitors this queue and schedules each activity to a suitable

workflow engine. The scheduler takes two mandatory parameters: the number of

simulations to be run and the algorithm chosen for scheduling. It also takes two optional

parameters: the limit and the threshold. These two parameters are only applicable for

the LFCFS and pool-based adaptive task schedule algorithms respectively.

4.4.3 Workflow engines

The workflow engines are where the execution of activities takes place. For the purpose

of this evaluation, we are only concerned about how long it takes to execute an activity.

Since monitoring the real-time is important here to aggregate waiting times and exe-

cution times for all activities, the workflow engine simulator simulates the execution

by clock ticks. However, while activity execution times in reality can be in minutes or

hours, the simulator scales the execution time down by a factor of 60. Therefore, a 60

minutes execution will be simulated as one minute. Workflow engines are hosted on

VMs. Thus, the execution cost would be the product of the number of partial hours

consumed and the price of the VM. In this simulation, we use a subset of Amazon EC2

VM pricing. Table 4.1 shows the list of the VM types used and their prices as offered

by Amazon in the US-East region. While Amazon prices are for public cloud VMs,

we assume that a private version of those VMs with the same specifications would

cost 10% more than their public counterpart. This is because private cloud requires

in-house hardware and software maintenance, power, cooling, etc.

- 80 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

4.4.4 Performing the simulation

As mentioned before, we need to run the simulation several times to normalise the

obtained results. We run the simulation 8 different times (with different configurations)

and each run consisted of 500 repetitions. The UFCFS algorithm is run once while

the LFCFS is run three times (with the following values for the limit: 1,2 and 4). The

pool-based adaptive task schedule algorithm is also run three times (with the following

values for the threshold: 0.33, 0.5 and 0.75). And the proportional adaptive task schedule

algorithm is run once. The results of the simulation are discussed in the next subsection.

4.4.5 Simulation results

Here, we report on the simulation results. During the simulation, the execution time of

each individual workflow instance and the overall execution cost of all three instances

were captured in each simulation run. Since we scaled the times down by a factor

of 60 (as explained in the Section 4.4), we scale the recorded execution times up by

the same factor. In addition, we need to calculate the mean value of all the 500

simulations. The simulation results are summarised in Table 4.2 where the mean

execution time (in minutes) of each input workflow is presented along with the mean

overall execution cost of the three workflows and the mean of the number of VMs used

for execution. In addition, l and t represent limit and threshold respectively. We can

notice that (expectedly) the UFCFS algorithm gives the fastest execution but also the

most expensive one. On the other hand, the Proportional Adaptive Task Schedule algorithm

gives the best cost efficiency (23.3% cheaper than UFCFS), the best VM utilisation and

the second best overall execution time performance. Figure 4.11 shows a comparison

between algorithms (and their parameter variation) in terms of execution cost.

We calculate the confidence intervals for the means of the results presented in Table 4.2

using a confidence level of 95%. The confidence levels for the cost and the number of

VMs are presented in Table 4.3.

Figures 4.12, 4.13 and 4.14 show the benchmark of all algorithms (the best performing

parameter in case of LFCFS and Pool-based Adaptive Task Schedule) for each input

workflow model. As these charts show, for workflow models 2 and 3, the Proportional

Adaptive Task Schedule gives the second best execution time (after the UFCFS). For

- 81 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Table 4.2: Simulation results summary

Algorithm Parameters
Execution
time (W1)

Execution
time (W2)

Execution
time (W3) Cost ($) VM No.

UFCFS N/A 88.72 139.89 131.22 1.59 9.43
LFCFS l = 1 200.43 253.26 208.46 1.52 5.88
LFCFS l = 2 146.14 206.33 181.80 1.90 8.684
LFCFS l = 4 125.58 194.65 170.89 2.25 11.00

Pool-based
Adaptive t = 0.33 193.93 254.03 208.13 1.64 5.83

Pool-based
Adaptive t = 0.5 176.09 233.25 201.59 1.76 6.56

Pool-based
Adaptive t = 0.75 165.18 217.07 193.51 1.81 7.28

Proportional
Adaptive N/A 144.06 184.15 147.19 1.22 5.81

Mean Cost($)
UFCFS 1.59431
LFCFS (limit =1) 1.524407
LFCFS (limit =2) 1.906963
LFCFS (limit =4) 2.251986
Pool-based Adaptive (threshold = 0.33) 1.645002
Pool-based Adaptive (threshold = 0.5) 1.764554
Pool-based Adaptive (threshold = 0.75) 1.819752
Proportional Adaptive 1.229442

0

0.5

1

1.5

2

2.5

Ex
ec

ut
io

n
Co

st
 ($

)

Cost($)

0.8

1

1.2

1.4

1.6

1.8

Pool-based Adaptive
(t =0.33)

Pool-based Adaptive
(t =0.5)

Pool-based Adaptive
(t = 0.75)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

an
d

Co
st

Pool-based Adaptive benchmark

W1

W2

W3

Cost

Figure 4.11: Execution cost benchmark in all algorithms

workflow model 1, this is not the case. This could be linked to the fact that workflow

model 1 has relatively shorter execution time. However, more experiments are required

to prove that the Proportional Adaptive Task Schedule algorithm is not the best option

for short workflows. In the following subsections we detail the results further for each

algorithm.

4.4.5.1 UFCFS

Figure 4.15 shows the normalised mean values for execution times of the three workflow

input models. Normalisation (which is applied to most of the following charts) is

achieved by dividing each value by the minimum value in its category. In this chart

- 82 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Table 4.3: Simulation results with confidence intervals

Algorithm Parameters Cost($)
Confidence

Interval
of Cost

VM No.
Confidence

Interval
of VM No.

UFCFS N/A 1.59 0.000593 9.43 0.004222
LFCFS l = 1 1.52 0.00067 5.88 0.00132
LFCFS l = 2 1.90 0.000859 8.684 0.002467
LFCFS l = 4 2.25 0.001034 11.00 0.004358

Pool-based
Adaptive t = 0.33 1.64 0.000829 5.83 0.001275

Pool-based
Adaptive t = 0.5 1.76 0.000943 6.56 0.001948

Pool-based
Adaptive t = 0.75 1.81 0.0009 7.28 0.002232

Proportional
Adaptive N/A 1.22 0.000596 5.81 0.001334

3-1 W1 2-1 W1 1 W1 4-2 W1
1-50 1.572093 1.553795 1.030321 1.823335
51-100 1.654859 1.678084 1.094156 1.781586
101-150 1.694635 1.719592 1.17692 1.951459
151-200 1.711426 1.737282 1.227422 1.941784
201-250 1.769969 1.699439 1.389033 2.018031
251-300 1.603145 1.704063 1.036838 1.710113
301-350 1.672509 1.626911 1.09671 1.814233
351-400 1.68062 1.632913 1.155234 1.99367
401-450 1.757645 1.658798 1.309755 2.048396
451-500 1.777117 1.669291 1.299114 1.993219

1

1.2

1.4

1.6

1.8

2

2.2

N
or

m
al

iz
ed

 M
ea

n
of

 E
xe

cu
tio

n
Ti

m
e

different algorithms for workflow 1

Pool-based Adaptive
(threshold = 0.33)

LFCFS (limit = 1)

UFCFS

Proportional Adaptive

Iterations

Figure 4.12: Execution time benchmark for all algorithms for workflow 1

(as well as other charts in this chapter), the simulation runs have been grouped into

groups of 50 runs and their mean was calculated. As the figure shows, UFCFS provides

relatively low execution time since there are no delays required. However, the execution

cost and the number of virtual machines used is relatively high as shown in Table 4.2.

4.4.5.2 LFCFS

We simulated LFCFS with three different limit values. Figures 4.16, 4.17 and 4.18 show

the execution time of the three workflows with the different limit values.

As we can see in these charts, arbitrarily choosing the best value for the limit parameter

is not possible as different values perform differently. The input models and their

- 83 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 M
ea

n
of

 E
xe

cu
tio

n
Ti

m
e

Pool-based Adaptive Schedule for Workflow 3

Threshold = 0.33

Threshold = 0.5

Threshold = 0.75

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 M
ea

n
of

 E
xe

cu
tio

n
Ti

m
e

Execution Time of Workflow 2 in Different Algorithms

Pool-based Adaptive
(threshold = 0.33)

LFCFS (limit = 1)

UFCFS

Proportional Adaptive

Iterations

Figure 4.13: Execution time benchmark for all algorithms for workflow 2

3-1 W3 2-1 W3 1 W3 4-2 W3
1-50 1.451682 1.39096 1.075554 1.271047
51-100 1.506155 1.548814 1.135068 1.298262
101-150 1.563711 1.509726 1.221089 1.330587
151-200 1.481288 1.480019 1.285989 1.32519
201-250 1.637431 1.612644 1.345224 1.353823
251-300 1.441148 1.391646 1.073543 1.276995
301-350 1.495077 1.434461 1.145412 1.281866
351-400 1.529966 1.481163 1.199034 1.372707
401-450 1.582454 1.504158 1.277133 1.389277
451-500 1.622476 1.577446 1.350472 1.414171

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 M
ea

n
of

 E
xe

cu
tio

n
Ti

m
e

Execution Time of Workflow 3 in Different Algorithms

Pool-based Adaptive
(threshold = 0.33)

LFCFS (limit = 1)

UFCFS

Proportional Adaptive

Iterations

Figure 4.14: Execution time benchmark for all algorithms for workflow 3

structure and complexity are among several factors that impact the results when using

a particular limit value. Such factors are unpredictable, therefore, there is no systematic

way for deciding the best arbitrary limit value to use. Finally, Figure 4.19 shows

the normalised mean execution time for each workflow under the three different limit

value as well as the normalised execution cost. We can clearly see that the cost increases

linearly as the limit increases. In contrast, the execution times are reduced when the

limit is higher.

4.4.5.3 Pool-based Adaptive Task Scheduling

By looking at the execution cost in Table 4.2 we see that the lower the threshold, the

lower the execution cost. In Figure 4.20, we show the mean execution time for each

workflow under different threshold values. We also show the overall execution cost. As

expected, the higher the threshold, the faster and more expensive the execution. But

again, there is no precise mechanism for finding the right trade-off point which also

depends (in real situation) on unpredictable input workflow models.

- 84 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

3-1 W2 2-1 W2 1 W2 4-2 W2
1-50 1.516444 1.570442 1.148513 1.369518
51-100 1.559828 1.669787 1.20844 1.457507
101-150 1.558867 1.604477 1.253881 1.453987
151-200 1.556417 1.660899 1.313592 1.430234
201-250 1.694997 1.723453 1.358359 1.513718
251-300 1.457664 1.563115 1.145716 1.407035
301-350 1.55846 1.605177 1.198127 1.39968
351-400 1.513479 1.63237 1.247091 1.463933
401-450 1.56585 1.639681 1.288553 1.487138
451-500 1.655772 1.722475 1.31908 1.483252

1 W1 1 W2 1 W3
1-50 1.030321 1.148513 1.075554
51-100 1.094156 1.20844 1.135068
101-150 1.17692 1.253881 1.221089
151-200 1.227422 1.313592 1.285989
201-250 1.389033 1.358359 1.345224
251-300 1.036838 1.145716 1.073543
301-350 1.09671 1.198127 1.145412
351-400 1.155234 1.247091 1.199034
401-450 1.309755 1.288553 1.277133
451-500 1.299114 1.31908 1.350472

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Execution Time in UFCFS

Workflow 1

Workflow 2

Workflow 3

Iterations

Figure 4.15: Execution times in UFCFS

2-1 W1 2-2 W1 2-3 W1
1-50 1.553795 1.590897 1.500663
51-100 1.678084 1.615549 1.642427
101-150 1.719592 1.655488 1.795112
151-200 1.737282 1.685266 1.865731
201-250 1.699439 1.699439 1.78371
251-300 1.704063 1.552274 1.526406
301-350 1.626911 1.4773 1.63053
351-400 1.632913 1.528898 1.778297
401-450 1.658798 1.658428 1.72575
451-500 1.669291 1.590144 1.926716

3-1 W1 3-2 W1 3-3 W1
1-50 1.572093 1.779335 1.731501
51-100 1.654859 1.76237 1.68421
101-150 1.694635 1.842173 1.753989
151-200 1.711426 2.008383 1.859379
201-250 1.769969 2.045683 1.879532
251-300 1.603145 1.853482 1.647895
301-350 1.672509 1.858271 1.756493
351-400 1.68062 1.869463 1.759749
401-450 1.757645 1.998672 1.892864
451-500 1.777117 2.045795 1.989154

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 M
ea

n
of

 E
xe

cu
tio

n
Ti

m
e

LFCFS for Workflow 1

Limit = 1

Limit = 2

Limit = 4

Iterations

Figure 4.16: Execution times in LFCFS for workflow 1

4.4.5.4 Proportional Adaptive Task Schedule

From Table 4.2 we can see that the Proportional Adaptive Task Schedule gives the best

cost efficient schedule and the second best execution times. Figure 4.21 shows the three

workflows execution times when scheduled using this algorithm. We can conclude that

this algorithm is the most cost-efficient and provides the optimal workflows makespan

among the four algorithms we presented. It is 23.28% cheaper than the UFCFS, 19.74%

cheaper than the best LFCFS variation and 25.61% cheaper than the best Pool-based

Adaptive Task Schedule variation. Additionally, we notice that the Proportional Adap-

tive Task Schedule algorithm is the most efficient from a resource utilisation point of

view (almost twice as efficient as the UFCFS).

- 85 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 M
ea

n
of

 E
xe

cu
tio

n
Ti

m
e

LFCFS for Workflow 2

Limit = 1

Limit = 2

Limit = 4

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 M
ea

n
of

 E
xe

cu
tio

n
Ti

m
e

Pool-based Adaptive Schedule for Workflow 2

Threshold = 0.33

Threshold = 0.5

Threshold = 0.75

Iterations

Figure 4.17: Execution times in LFCFS for workflow 2

2-1 W3 2-2 W3 2-3 W3
1-50 1.39096 1.430111 1.506603
51-100 1.548814 1.514449 1.629432
101-150 1.509726 1.536371 1.673084
151-200 1.480019 1.582461 1.783449
201-250 1.612644 1.72955 1.890965
251-300 1.391646 1.454154 1.534661
301-350 1.434461 1.537371 1.621302
351-400 1.481163 1.5106 1.712524
401-450 1.504158 1.613615 1.779779
451-500 1.577446 1.6558 1.858313

3-1 W3 3-2 W3 3-3 W3
1-50 1.451682 1.515949 1.45842
51-100 1.506155 1.623938 1.57108
101-150 1.563711 1.651704 1.629924
151-200 1.481288 1.595209 1.657191
201-250 1.637431 1.617032 1.694927
251-300 1.441148 1.546453 1.498322
301-350 1.495077 1.513084 1.539978
351-400 1.529966 1.562813 1.57687
401-450 1.582454 1.630871 1.572926
451-500 1.622476 1.6277 1.717996

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 M
ea

n
fo

r E
xe

cu
tio

n
Ti

m
e

LFCFS for Workflow 3

Limit = 1

Limit = 2

Limit = 4

Iterations

Figure 4.18: Execution times in LFCFS for workflow 3

W1 W2 W3 Cost
LFCFS (limit 200.4372 253.2692 208.4627 1.524407
LFCFS (limit 146.1463 206.3342 181.8056 1.906963
LFCFS (limit 125.5861 194.6554 170.8933 2.251986

W1 W2 W3 Cost
LFCFS (limit 1.596015 2.016698 1.659918 1
LFCFS (limit 1.163714 1.64297 1.447657 1.250954
LFCFS (limit 1 1.549975 1.360766 1.477286

W1 W2 W3 Cost
Pool-based 193.9366 254.0341 208.1369 1.645002
Pool-based 176.0984 233.2577 201.5966 1.764554
Pool-based 165.1856 217.0775 193.5139 1.819752

W1 W2 W3 Cost
Pool-based 1.174052 1.537871 1.260018 1
Pool-based 1.066063 1.412095 1.220424 1.072676
Pool-based 1 1.314143 1.171493 1.106231

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

LFCFS (limit =1) LFCFS (limit =2) LFCFS (limit =4)N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

an
d

Co
st

LFCFS benchmark

W1

W2

W3

Cost

Figure 4.19: Execution time and cost benchmark in LFCFS

4.5 Summary

In this chapter, we have highlighted the need for cost-efficient scheduling of software

process workflows in the cloud without causing significant delays in the execution time.

We have shown that software process workflows contain different types of activities

compared to scientific workflows and that the state-of-the-art scheduling approaches

- 86 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

Mean Cost($)
UFCFS 1.59431
LFCFS (limit =1) 1.524407
LFCFS (limit =2) 1.906963
LFCFS (limit =4) 2.251986
Pool-based Adaptive (threshold = 0.33) 1.645002
Pool-based Adaptive (threshold = 0.5) 1.764554
Pool-based Adaptive (threshold = 0.75) 1.819752
Proportional Adaptive 1.229442

0

0.5

1

1.5

2

2.5

Ex
ec

ut
io

n
Co

st
 ($

)

Cost($)

0.8

1

1.2

1.4

1.6

1.8

Pool-based Adaptive
(t =0.33)

Pool-based Adaptive
(t =0.5)

Pool-based Adaptive
(t = 0.75)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

an
d

Co
st

Pool-based Adaptive benchmark

W1

W2

W3

Cost

Figure 4.20: Execution times and cost in Pool-based Adaptive Task Schedule

W1 W2 W3
1-50 1.823335 1.369518 1.271047
51-100 1.781586 1.457507 1.298262
101-150 1.951459 1.453987 1.330587
151-200 1.941784 1.430234 1.32519
201-250 2.018031 1.513718 1.353823
251-300 1.710113 1.407035 1.276995
301-350 1.814233 1.39968 1.281866
351-400 1.99367 1.463933 1.372707
401-450 2.048396 1.487138 1.389277
451-500 1.993219 1.483252 1.414171

1

1.2

1.4

1.6

1.8

2

2.2

N
or

m
al

iz
ed

 M
ea

n
of

 E
xe

cu
tio

n
Ti

m
e

Proportional Adaptive

Workflow 1

Workflow 2

workflow 3

Iterations

Figure 4.21: Execution times in Proportional Adaptive Task Schedule

do not meet the requirements of executing software process workflows. To meet

these requirements, we adapted three algorithms; the Unlimited First Come First Serve

(UFCFS), Limited First Come First Serve (LFCFS) and the Pool-based Adaptive Task

Schedule. We also proposed a fourth one; the Proportional Adaptive Task Schedule.

We evaluated their performance (through simulation) in terms of overall execution cost

and execution times of individual workflow instances. The simulation results show

that the UFCFS gives the shortest makespan while our proposed Proportional Adap-

tive Task Schedule gives the most cost-effective schedule, the best resource utilisation

and the second best makespan. Unlike the LFCFS and the Pool-based Adaptive Task

Schedule, the Proportional Adaptive Task Schedule does not rely on any arbitrary val-

ues and balances between the execution cost and time. The Proportional Adaptive Task

Schedule algorithm is integrated in the proof-of-concept of the SDaaS reference archi-

tecture. In the next chapter, we report on evaluating the SDaaS architecture through a

- 87 -

Chapter 4: Cost-efficient Scheduling of Software Processes Execution in the Cloud

case study where we use the proof-of-concept implementation to execute safety-related

processes.

- 88 -

5
Evaluation: A Case Study on
Cloud-Based Engineering of

Safety-Critical Systems Processes

Contents
5.1 Introduction . 90

5.1.1 The evaluation method . 90

5.1.2 The safety-critical systems case study 91

5.2 EXE-SPEM for Modelling Safety-related Processes 94

5.3 The PSSA Case Study . 94

5.3.1 Argument generation . 97

5.3.2 Implementation . 101

5.3.3 Execution . 103

5.4 Discussion . 105

5.5 Summary . 107

An earlier version of this chapter is published in: S Alajrami, B Gallina, I Sljivo, A Romanovsky,
P Isberg: Towards Cloud-based Enactment of Safety-related Processes. In: Proceedings of the 35th

International Conference on Computer Safety, Reliability and Security (SafeComp’16). Trondheim,
Norway. September, 2016

- 89 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

5.1 Introduction

In previous chapters, we proposed the SDaaS reference architecture and the modelling

language EXE-SPEM. In this chapter, we report on evaluating this cloud-based de-

velopment approach by applying it in a case study from the safety-critical systems

domain. In the next subsection, we reason about the evaluation criteria used in this

chapter, while in Section 5.1.2, we provide the context of the case study used.

5.1.1 The evaluation method

Evaluating software development approaches using controlled experiments is chal-

lenging. This is because such approaches are applied in different contexts with mul-

tiple variables which are difficult to control [40]. Software architecture evaluations

approaches such as SAAM [75], ATAM [76], SAAMCS [81], etc. focus on assessing if an

architecture fulfils a set of requirements or not. We believe such approaches are suitable

for evaluating commercial systems architectures but not for evaluating the SDaaS ar-

chitecture we proposed in Chapter 2. This is mainly because these approaches require

involving some/all related stakeholders in the evaluation process. In the SDaaS case,

this would mean involving real developers and software project managers among other

stakeholders which is not practical at this stage. We believe that the ultimate evaluation

approach is to empirically evaluate the impact of using the SDaaS approach on devel-

opers (e.g., productivity), projects (e.g., cost, time and product quality). However, this

is also not feasible at this stage given the timing constraints for this study. Therefore,

we use a case study approach to evaluate the feasibility of the SDaaS vision.

Case studies have been used to empirically evaluate software engineering approaches [83,

97]. We instantiate the SDaaS reference architecture as we described in Chapter 2. We

use the instantiated proof-of-concept to execute a safety-related process which we

model using EXE-SPEM (see Chapter 3).

In Chapter 2, we argued how the SDaaS architecture meets a set of requirements. In

this chapter, the case study aims to validate the claims listed in Table 5.1.

- 90 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

Table 5.1: Claims to be validated using the case study

No. Claim

C1
Applicability. The SDaaS reference architecture is applicable to domain-specific
processes (safety-critical processes in this case).

C2
Extensibility. Our software process modelling language; EXE-SPEM,
is capable of modelling cloud-based executable processes and can be extended
to fit domain-specific requirements.

C3
Openness. Command line tools and parts of the tools that has a GUI can be
integrated in the SDaaS architecture as activities which can be used
to construct process models.

C4
Provenance. The provenance data about process execution and the process
models can be used to provide insightful knowledge.

C5
Automation. The SDaaS architecture supports automating parts of software
processes and enables automating some originally non-automated activities.

C6
Potential. The SDaaS architecture can save cost and time spent on
system development.

5.1.2 The safety-critical systems case study

Safety-critical systems engineering has to follow best practises. More specifically, safety

standards (such as ISO 26262, ARP4761) provide guidance in terms of reference process

models for the development and assessment of such systems. The complexity of such

systems is reflected in their supply chain, which consists of a complex, geographically-

distributed and heterogeneous supply network. Manufacturers rely on a number of

suppliers, who are in charge of supplying software or hardware components needed

for the assembly of the systems to be produced or for the automation of certain activities

during the production. The reference processes recommended by the standards take

into consideration the complexity of the systems and their supply network.

To be released on the market, the integrated systems must be certified. The certifica-

tion process in various domains is conducted by scrutinising an argument supporting

system safety [98]. In the automotive and rail domains, for instance, such argument

is known as the safety case. In the aerospace domain, an explicit safety case is not

required however as discussed by Holloway [69] an implicit safety case request is con-

tained within the standards. Thus, all safety-critical systems must be accompanied by

a safety case that provides assurance. There are two ways of providing assurance (that

is building a safety case): by product and by process.

Safety cases can/should also reflect the compositional nature of the systems under

- 91 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

examination. Contract-based safety case fragments should be provided by suppliers

and integrated within a complete safety case by the manufacturer, as the safety case

structure proposed within EN50129 [3] in the rail domain might suggest. Even the

provision of a safety case may follow a reference process [8].

The planning and execution of all the recommended reference processes is a time

consuming and costly activity. Moreover, given the compositional and geographically

distributed nature of the supply network, different interpretation of the processes may

coexist resulting in conflicts and ultimately risk of low-quality products.

While the considerations listed in this chapter hold for several complex safety-critical

systems, we focus on aircraft as an example of such systems. To engineer and certify

an aircraft, a set of standards is at disposal to address various aspects such as safety

assessment; system, software, and hardware engineering, etc. Typically, these stan-

dards provide requirements that should be followed to define the process to be used

during the development and assessment of the aircraft and the software and hardware

to be integrated within the aircraft. To define such process, a safety manager may

refer to a reference model or may define a customised one by selecting and composing

compliant process elements. To do the latter, the safety manager has to identify: the

tasks to be executed in the correct order to consume/produce expected artefacts, roles,

specific techniques to be used and in some cases the tools to automate the tasks. A doc-

ument aimed at showing process compliance by providing a process-based argument

is typically required.

Besides the process requirements, safety standards also include product requirements

aimed at assessing the level of a product’s safety based on the product’s behaviour

against the formulated safety requirements. Various analysis and verification results

may be used to show that the product behaves as it should. Since we cannot guarantee

that the final product is acceptably safe, standards are recommending to include a

product-based argument to assure that the system is acceptably safe [61]. Additional

requirements target the assessment process, which in many application domains is

conducted by scrutinising an explicit or implicit safety case. A complete safety case

as the final output of the assessment process should contain both the process and the

product-based arguments to assure that the system development has not only followed

the mandated process, but has also resulted in an acceptably safe product.

- 92 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

The case study presented in this chapter uses the Preliminary System Safety Assessment

(PSSA) process from ARP4761 [2] as an example of safety-related processes. We model

and execute this process in the cloud and use it to validate the claims mentioned in the

Table 5.1.

Our vision is that a manufacturer models the planned safety life-cycle as well as the

corresponding argumentation process. The process model enactment can be distributed

geographically. The stringency (i.e., integrity level) with which the process tasks are

performed is indicated via a standardised process modelling language (EXE-SPEM).

By doing this, conflicting interpretations between teams can be reduced.

Using the cloud as an enactment platform not only reduces cost (through the pay-as-

you-go and on-demand acquisition models), but also provides an accessible platform

for the distributed teams involved in the system engineering process. Additionally,

artefacts from across the different geographical locations can be maintained centrally

which together with provenance data can facilitate the collection and processing of

evidence supporting the system’s safety case. Furthermore, the cloud’s elasticity allows

for acquiring more computational resources as needed for computationally intensive

tasks.

The evaluation of the SDaaS architecture using this case study is achieved by:

• Instantiating the SDaaS reference architecture (see Chapter 2) and using the in-

stantiated prototype to support engineering of safety critical systems.

• Implementing an activity to automate the generation of a fragment of a safety

argument arguing about the safety characteristics of the produced system. The

fragment is generated by analysing the results of the Failure Logic Analysis (FLA)

of the system [54]. The analysis captures product-related evidence (e.g., detecting

partial and full mitigators of failures).

• Implementing an activity to automate evidence capturing and automatic gen-

eration of process-related safety argument fragments. Process-related evidence

include information about the process, stakeholders, tools and standards.

• Enacting an augmented PSSA process with automated safety argument fragments

generation and presenting the generated argument fragments in visual, textual

- 93 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

and machine readable formats. These fragments can then be manually integrated

within a complete safety case for the system.

5.2 EXE-SPEM for Modelling Safety-related Processes

In Chapter 2, we proposed the SDaaS architecture (a cloud-based architecture for soft-

ware process enactment). The architecture adopts a model driven paradigm where

processes are modelled and enacted. In Chapter 3, we have proposed the modelling

language EXE-SPEM for modelling cloud-based executable processes. In this section,

we will see how EXE-SPEM can be used to model safety processes which can be enacted

in the SDaaS architecture.

EXE-SPEM focuses on modelling cloud-based executable process elements. We extend

EXE-SPEM to enable capturing safety-related attributes for process activities. These

attributes are: certification information for roles, the confidence of tools (supporting

process activities) and the guidance and the standard each activity in the process

adheres to. This information is used to support the process-based argument generation.

As explained in Chapter 3, EXE-SPEM models are executable in the cloud. This is

achieved by incorporating execution logic (order, preconditions, tools, versions, etc.)

and cloud resource requirements (virtual machine image type, number of machines,

etc.) into the model.

Each activity can be configured to use an initial set of computational resources and

can also be set to automatically scale these resources after a predefined timeout. The

extensibility of the modelling language to fit different domains relates to claim C2:

Extensibility in Table 5.1.

5.3 The PSSA Case Study

PSSA examines the system architecture to identify how the system failures contribute to

the failure conditions from these identified in the system Functional Hazard Assessment

(FHA) (see Appendix C for details about PSSA and FHA). One of the tasks performed

during PSSA is: determining if the system architecture and concept design can meet

the safety requirements. In this case study, we focus on that portion of PSSA (as an

- 94 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

System
Architecture

Model

FPTC
results

In

Performed by

Process-Based
Argument Generation

FPTC-based
Analysis Product-Based

Argument Generation

Out

Safety Case
Argument
Fragment

In

Safety
Engineer

In

Hazardous
Events

Product-Based
SACM Argument

Out

Process-Based
SACM Argument

Out

In

In

Arguments
Composition

Out

Textual
Argument

Out

Textual
Argument Out

In

Process
 Model

Out

Product Argument

Process Argument

Figure 5.1: PSSA augmented with the argument generation process

example of a safety-related process) which is usually performed with the help of Fault

Tree Analysis (FTA)(see Appendix C for details on FTA). In addition, we automate the

generation of both product and process based argument fragments by analysing the

FTA results (for the product argument) and analysing the process execution provenance

data and the process model (for the process argument) as we explain in Section 5.3.1.

Figure 5.1 shows the EXE-SPEM model of the PSSA portion augmented with the ar-

gument generation process. It consists of the following four activities: FPTC-based

Analysis, Product-based Argument Generation, Process-based Argument Generation

and Arguments Composition. The FPTC-based Analysis activity uses Fault Propaga-

tion and Transformation Calculus (FPTC) to calculate the system level failure behaviour

based on the failure behaviour of the individual system components (see Appendix D

for more details about FPTC). It takes as an input the system architecture model and

generates as an output the failure behaviour of the system. This failure behaviour

can be used by the next activity (Product-based Argument Generation) to verify if the

undesired hazardous events (identified after performing FHA) have been mitigated. The

Process-based Argument Generation activity uses the process model and the SDaaS archi-

- 95 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

Figure 5.2: The architectural model of BSCU components, ports and failures [2]

tecture provenance data to extract process and execution related information which can

be populated as a process-based safety argument by following an argument pattern

which we describe in Section 5.3.1. Finally, the Arguments Composition activity combines

both the product and the process based arguments into one safety argument fragment.

This fragment is then manually compiled with other fragments arguing about other

safety aspects of the system (e.g., about other process portions from ARP4761) to form

the product’s safety case.

In this case study, we use the aircraft Wheel Brake System (WBS) from ARP4761 [2] as

a well-cited example of a safety-critical system. The WBS is described in Appendix D.

Here we will limit our attention to the portion of the WBS architecture that comprises

the BSCU and its sub-components (as shown in Figure 5.2).

Since performing the FHA process for the WBS system is out of the scope of this case

study, we make an assumption that the undesired hazardous events (HEs) are randomly

selected. These hazardous events are the ones that the system should mitigate. A list of

these hazardous events is provided as an input to the Product-based Argument Generation

activity. Each undesired HE is accompanied by a definition of its criticality level.

Criticality levels names vary across different standards. For instance, in ARP4754A [6],

the levels are: negligible, minor, major, hazardous, catastrophic. To abstract this variance

between standards, the levels are mapped to a five-level numerical criticality scale

ranging from 1 (lowest criticality) to 5 (highest criticality).

To summarise, in this case study, we model a portion of a standardised process (PSSA

from ARP4761) and introduce automation of parts of this process portion (for generat-

ing argument fragments) and execute the model in the SDaaS cloud-based architecture.

- 96 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

Not only the SDaaS architecture provides a central accessible platform for creating and

storing the model and artefacts, but also enables the generation of the safety fragments

and their relevant evidence (as explained in the next subsection). Section 5.3.2 reports

on the implementation of the individual activities used in the PSSA model presented

here while Section 5.3.3 describes the execution of the model in the SDaaS prototype

and the generated outputs.

5.3.1 Argument generation

The manual creation of a safety case is a costly and time-consuming process, thus

automation can be used to generate parts of the process and product-based arguments.

The generated argument fragments can be then composed to obtain the complete safety

case, with the possibility of customised tailoring of the links between the generated

fragments. The two prerequisites for the argument fragments generation are: a) the

source of information for the content of the arguments; and b) the target argument

structure and format.

The SDaaS architecture captures provenance data related to the safety process and

stores the artefacts used and produced during the process. The benefit of such data and

artefacts is that it can be the foundation for safety cases. However, manual extraction of

safety cases from this raw data is an expensive, time-consuming and error prone task.

Consequently, we take a step further and automate the generation of safety argument

fragments arguing about both the product and the process aspects of safety.

5.3.1.1 Product-based argument

The product-based argument aims at showing that the product behaves as it should.

To automate the generation of such argument, the analysis and verification results can

be exploited. We build on top of previous study [102] and we extract information about

the failure behaviour of the system from the FPTC analysis results.

FPTC analysis results calculate the failure behaviour of a safety-critical system (see

Appendix D for details about FPTC). Further analysis of these results can determine

if certain failures/hazardous events (HEs) occur or not. This allows us to argue about

how the system handles HEs. If an HE is present in the system, we produce a counter-

evidence in the form of a trace to the source(s) of the HE. If it is not, we find the

- 97 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

component(s) that mitigated it. Mitigation can be partial or full. Full mitigation is

when the failure does not propagate from a component’s input to its output while partial

mitigation is when the failure is present on the output, but at least one of the input causes

of the output failure has been mitigated by the component. The analysis for product-

based argument fragment generation starts by parsing the FPTC results and following

the pseudo code in Figure 5.3. Then the argument is formulated by constructing Claims

and Strategies and supporting them by Evidences/Counter-Evidences following the rules

in Figure 5.4. These rules are adapted from [102] where arguments were generated from

safety contracts. Representations of safety arguments are discussed in Appendix E.

S: the set of system components;
HE: the set of undesired hazardous events
M: list of mitigators;
PM: list of partial mitigators
for each he in HE
{

if(he.criticality > negligible)
if(he exists on the system output)

trace_failure_to_the_source();
else

for each component s in S
if(he is present on s.input)
if(he is not on s.output){

M.add(s);
find_the_mitigating_rule(); }

else
if(the source of he on s.output != s.input)

PM.add(s);
}

Figure 5.3: The pseudo code for analysing the FPTC results

5.3.1.2 Process-based argument

The process-based argument fragment aims at showing that the process mandated by

the corresponding standard has been followed. The MDSafeCer (Model-driven Safety

Certification) method [56] can be used to automate the generation of such arguments.

Via MDSafeCer, process models compliant with e.g., SPEM2.0 are transformed into

composable process-based argumentation models compliant with e.g., SACM and pre-

sented via e.g., GSN goal structures (see Appendix E for details about safety cases

- 98 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

R1: Make CLAIM "All causes of hazardous Failure Modes are acceptable"
R2: For each hazardous event {he} in the set HE, apply the following:
R2.1: If {he} is negligible, make a CLAIM "Hazardous Failure Mode {he}

is negligible"
R2.2: If {he} is not negligible, make a CLAIM "Hazardous Failure Mode

of type {he} absent in contributory software functionality" and
attach CONTEXT "Known causes of {he} failure mode"

R2.2.1: If {he} is present on the output, make COUNTER-EVIDENCE "The
{he} Hazardous Failure Mode present in the contributory software
functionality. Check traces."

R2.2.2: If {he} is not present on the system output, make a STRATEGY
"Argument over failure mechanisms" and attach a JUSTIFICATION "
Identified failure mechanisms describe all known causes of {he}
hazardous Failure Mode"

R2.2.2.1: make a CLAIM "The known causes of secondary failures of
other components are acceptably handled" and leave it
undeveloped.

R2.2.2.2: make a CLAIM about the mitigators "Hazardous event {he}
has been mitigated by {mitigators}" and attach an EVIDENCE "
Mitigation details in the textual argument"

Figure 5.4: Rules for product-based argument construction

representation). This method supports compositional argumentation and reuse. Some

of the aspects that should be covered in such an argument are the tools and techniques

used as well as the qualification of both the tools and the persons using those tools and

techniques. A model of such a process is needed as the source of information for the

process-based argument generation. SPEM2.0 is a modelling language that can be used

to model such a process, which can then be used as the source model for generation of

the target process argument fragments [56]. Therefore, we can use our extended version

of SPEM2.0 models; EXE-SPEM models as a source model for generating process-based

argument fragments.

MDSafeCer provides rules for mapping a subset of SPEM2.0 elements into GSN and

SACM concepts [57]. These rules are shown in Table 5.2. Using these rules, pro-

cess model elements (expressed in SPEM2.0) can be mapped into a safety argument

represented in either GSN or SACM.

MDSafeCer also presents a set of rules for structuring the process-related safety argu-

ment. It starts with a top claim arguing that the process has been compliant with the

standards. This claim is then decomposed further until it reaches an atomic process-

- 99 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

Table 5.2: Concept mapping as proposed by MDSafeCer [56]

SPEM2.0 GSN SACM
Task ta Goal Claim
Role ro Solution InformationElement

Work product wp Solution InformationElement
Tool to Solution InformationElement

Guidance gu Solution InformationElement
Relationship between ta and ro/to/wp/gu supportedby AssertedEvidence

related unit [57]. The detailed rules for structuring a GSN process-based safety argu-

ment fragment [57] are shown below. These rules are applied for each activity in the

process model.

1. Create the top-level goal ID:G1 and statement: “The task ta has been carried

out”. Create the context to be associated to G1. Context ID:C1 and statement:

“Standard x”, where x is a variable. Create an inContextOf link to relate G1 and

C1. Develop the goal G1 further by creating four strategies and for each strategy

a set of sub-goals.

(a) S1: “Argument over roles R”.

(b) S2: “Argument over work products W”.

(c) S3: “Argument over tools T”.

(d) S4: “Argument over guidance G”.

2. Further develop strategy S1 and for every role ro in R: create a goal G1.ro “ro is

certified” and develop this goal further by creating the corresponding solution

E.ro “ro’s certifications” and the supportedBy links necessary to link S1 with G1.ro

and G1.ro with E.ro.

3. Further develop strategy S2 and for every work product wp in W: create a goal

G1.wp “wp is available” and develop this goal further by creating the correspond-

ing solution E.wp “ wp-related name” and the supportedBy links necessary to link

S2 with G1.wp and G1.wp with E.wp.

4. Further develop strategy S3 and for every tool to in T: create a goal G1.to “to is

qualified” and develop this goal further by creating the corresponding solution

E.to “to’s qualifications” and the supportedBy links necessary to link S3 with

G1.to and G1.to with E.to.

- 100 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

5. Further develop strategy S4 and for every guidance gu in G: create a goal G1.gu

“Guidance gu has been followed” and develop this goal further by creating the

corresponding solution E.gu “ gu where and how” and the supportedBy links

necessary to link S4 with G1.gu and G1.gu with E.gu.

5.3.2 Implementation

After modelling the PSSA augmented with the argument generation process (Fig-

ure 5.1), Model to Text transformation is applied on the EXE-SPEM as prescribed in

Chapter 3. The resulted XML model is then enacted in the SDaaS architecture proto-

type. Below, the implementation of each of the activities used in the augmented PSSA

process is detailed.

• FPTC-based analysis

As mentioned in Section 5.3.1, the FPTC analysis is conducted to discover the

fault propagation behaviour in the system. This activity uses Concerto-FLA (the

extended FPTC implementation from the CONCERTO project 1) to perform the

FPTC analysis. The CONCERTO tool-set allows: creating UML-based archi-

tectural models of the system; performing FPTC analysis (using Concerto-FLA)

including back-propagation of the results visually on the models. The architec-

tural model is transformed to the flamm format (an XML-like format) on which

the analysis takes place. The flamm model consists of composite components

(systems) containing atomic components. The (atomic) components have input

and output ports where failures are attached. In addition, each component has a

set of rules defining its failure behaviour. For this case study, we have extracted

the FPTC analysis part from Concerto-FLA into this standalone activity which

generates a flamm model including the analysed failure behaviour of the system.

• Product-based argument generation

This activity uses the FPTC analysis results to construct the argument concerning

the BSCU. The FPTC results are embedded in the output flamm model which

makes it very hard to be extracted by hand. Therefore, this activity parses the

output flamm model and, as described in Section 5.3.1, looks for the non-negligible

1www.concerto-project.org/

- 101 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

undesired hazardous events in it. Once a non-negligible undesired hazardous event

has been found, it is traced down to its causal source (if it is present on the system

output). If the undesired hazardous event is not present on the system output,

the mitigating component which prevented it from propagating to the system

output is identified. Based on this analysis, an argument arguing whether the

system acceptably handles a set of hazardous events (HE) or not is constructed

following the rules described in Figure 5.4. This argument is supported with

evidences/counter-evidences. The constructed argument is represented in two

formats: a) a machine readable format (SACM/XMI) which can be visualised into

a GSN argument using external tools such as Astah GSN editor 2, and b) a textual

format using the Argument Outline which is described in Appendix E. While the

SACM and GSN arguments do not contain the detailed traces of failure propa-

gation and mitigation information for brevity, they refer to the textual argument

which contains these information.

• Process-based argument generation

This activity follows the rules described in Section 5.3.1 for constructing a process-

based argument fragment arguing about the compliance of the process with the

chosen standard/practice (PSSA from ARP4761 in this case). For each activity in

the process, a portion of the argument is constructed by extracting information

such as the guidance followed, the confidence of the tool, etc. Similar to the

product-based argument, this argument is generated in both SACM/XMI (exter-

nally visualised into GSN) and argument outline textual formats.

• Arguments composition

Once the product and process based arguments are generated, this activity takes

as an input both arguments in the SACM/XMI format and combines them into

a single argument arguing about both aspects of the system safety. This is done

by adding a top Claim (Goal) arguing about the safety of the system overall.

The output of this activity is again presented in both SACM/XMI and argument

outline textual format.

2http://astah.net/editions/gsn

- 102 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

The tools described above (whether extracted from existing tools or created from

scratch) relate to claim C3: Openness in Table 5.1.

5.3.3 Execution

The process model shown in Figure 5.1 is executed in the SDaaS prototype we instan-

tiated in Chapter 2. We deployed the Enactment Service and one Workflow Engine on

two different Amazon EC2 "t2.small" machines. Using a web browser, we were able to

execute the process and retrieve the generated artefacts containing the FPTC analysis

results and the safety arguments (separate and combined) in both SACM/XMI and

text formats (see Appendix E for argument representation formats). The SACM/XMI

formats were then converted into GSN diagrams using the Astah GSN editor. Here we

detail what each activity in the process consumed and produced.

FPTC-based analysis

Input: the textual representation of architectural model of the BSCU component as

illustrated in Figure 5.2. The textual representation is in the flamm format. The full

model can be found in Appendix F.

Output: the flamm model enriched with the failures found on each component output

ports. The output model can be found in Appendix G.

Product-based argument generation

Input: the FPTC analysis results as shown in Appendix G and a list of undesired Haz-

ardous Events (HEs) which can be found in Appendix H. Here we assume that the

hazards: omission and late are identified in the FHA process as undesired hazards and

have a criticality level of 5 and 2 respectively.

Output: the product-based argument fragment represented as both SACM and textual

arguments. The SACM argument (can be found in Appendix I) is visualised into the

GSN graph in Figure 5.5. A snippet of the textual representation is shown in Figure 5.6.

The full textual representation containing all the traces and mitigation information can

be found in Appendix J. The automation of this argument generation relates to claim

C5: Automation in Table 5.1.

Process-based argument generation

Input: the process model which can be found in Appendix M.

Output: a process-based argument fragment represented in both SACM and textual

- 103 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

Figure 5.5: GSN representation of the generated product-based argument

...
CLAIM 1.1: HAZARDOUS FAILURE MODE OF TYPE ’OMISSION’ IS
ABSENT IN CONTRIBUTORY SOFTWARE FUNCTIONALITY.

CONTEXT 1.1: Known causes of omission failure mode.
COUNTER_EVIDENCE 1.1: The omission Hazardous Failure
Mode is present in the contributory software
functionality. Check the traces.
CONTEXT 1.1: omission CAUSED BY:
Failure: ’omission ’ On Output Port: ’cmd’ of
Component: ’selectSwitch ’.
CAUSED BY: {Failure: ’omission’ On Input Port:’cmd2’
of Component: ’selectSwitch ’.
CAUSED BY: Failure: ’omission’ On Output Port:’cmd’
of Component: ’subBSCU2 ’.
CAUSED BY:

...

Figure 5.6: The product-based argument represented in text

representations. The SACM is visualised into GSN and a portion of the GSN graph

showing the part of the argument about the FPTC-based Analysis activity is shown in

Figure 5.7. The respective portion of the textual argument is shown in Figure 5.8. The

full SACM and textual process-based argument can be found in Appendices K and L.

The generation of the process argument generation using provenance data relates to

claim C4: Provenance in Table 5.1.

- 104 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

Figure 5.7: GSN representation of partial process-based argument

...
CLAIM C1.3: THE ACTIVITY FPTC_based Analysis HAS BEEN CARRIED

OUT.
CONTEXT C1.3: Standard: ARP4761 -- Performed @

09/03/2016
STRATEGY RC1.3: Argument over roles

CLAIM C1.3.10: ROLE SAFETY ENGINEER IS
CERTIFIED.

[Undeveloped]
STRATEGY WC1.3: Argument over work products

CLAIM C1.3.11: FPTC results IS
AVAILABLE.

EVIDENCE S1.3.11: bscu.flamm
STRATEGY TC1.3: Argument over tools

CLAIM C1.3.12: TOOL FPTC_based Analysis
-VERSION: 1 IS QUALIFIED.

[Undeveloped]
STRATEGY GC1.3: Argument over guidance

CLAIM C1.3.13: GUIDANCE Appendix B3 HAS
BEEN FOLLOWED.

EVIDENCE S1.3.13: Appendix B3
...

Figure 5.8: A portion of the process-based argument represented in text

5.4 Discussion

In Table 5.1, we have listed a set of claims to be validated about the SDaaS architec-

ture. In this section, we will discuss how the case study presented in this chapter has

validated those claims.

- 105 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

• C1: Applicability. The SDaaS reference architecture and approach is applicable to

domain-specific processes (safety-critical processes in this case).

While we have used a process from an aerospace domain standard, processes

from other standards can be modelled and enacted similarly. Although some

other domains might need specific requirements, it is possible to extend the EXE-

SPEM modelling language to include such requirements in the process model and

extend the architecture to handle these requirements if necessary. Alternatively,

new activities can be created and used in the process models to deal with such re-

quirements. We have used the latter approach when we created the process-based

argument generation activity. This activity used the safety-related information in

the process model to generate a process-based safety argument.

• C2: Extensibility. Our software process modelling language; EXE-SPEM, is extensible

and can be extended to fit domain-specific requirements.

As mentioned above, we have embedded safety-related elements (e.g., role certifi-

cation and tool qualification) in EXE-SPEM models. Similarly, additional domain

specific elements could be added to EXE-SPEM meta-model to support other

domains which require specific modelling elements.

• C3: Openness. Command line tools and parts of the tools that has a GUI can be inte-

grated in the SDaaS architecture as activities which can be used to construct processes.

In the case study, we have developed four different activities. The FPTC-based

analysis activity was extracted from the Concerto tool-set which is an eclipse-

based platform. We extracted the core functionality of the FPTC analysis from

this platform and used it as a standalone activity. The other three activities where

developed from scratch. In Chapter 1, we have wrapped command line tools

(e.g., Spin [59] and DiVinE [23]) as activities and used them to run our initial

experiments. Therefore, different types of tools can be integrated in the SDaaS

architecture. However, the heavily interactive GUI tools cannot be supported as

they are, and would require their logic to be implemented as a standalone tool.

- 106 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

• C4: Provenance. The provenance data about process execution and the process models

can be used to provide insightful knowledge.

In the case study, the process-based argument generation activity used the pro-

cess model and provenance data (e.g., which actor performed certain activities) to

build the process-based safety argument. This argument is an insightful evidence

documenting the process that has been followed. Without the provenance data,

such evidence would have had to be constructed manually.

• C5: Automation. The SDaaS architecture supports automating parts of software pro-

cesses and enables automating some originally non-automated activities.

The construction of safety cases is done by human experts who go through de-

sign, documentations and other artefacts to collect and scrutinise the evidences

required to support their claims. As we have seen in the case study, we were

able (thanks to the SDaaS architecture) to automatically generate fragments of the

safety case.

• C6: Potential. The SDaaS architecture can save cost and time spent on system develop-

ment.

Building on the previous point, human experts who construct safety cases are

expensive assets. Automating significant part of the safety case construction

saves significant amount of time and money needed for building those parts

manually.

Based on the case study presented in this chapter, we can claim that the SDaaS archi-

tecture and approach is feasible to apply in different domains and in many scenarios

provided that the required tools can be repackaged as activities from the existing tools

or are built from scratch.

5.5 Summary

In this chapter, we have evaluated the SDaaS reference architecture using a case study

from the safety-critical systems domain. We used the instantiated proof-of-concept

- 107 -

Chapter 5: A Case Study on Cloud-Based Engineering of Safety-Critical Systems

implementation of the architecture to execute a process model representing a portion

of the PSSA process from the ARP4761 standard. The SDaaS architecture allowed us to

execute the process model, automate parts of the execution and automatically generate

safety argument fragments which can be used for safety cases. We also discussed how

the case study validated a set of claims about the the SDaaS architecture. The next

chapter concludes this thesis.

- 108 -

6
Conclusions

Contents
6.1 This Thesis in a Nutshell . 110

6.2 Future Work . 113

6.2.1 Motivating Scenarios . 115

6.3 Concluding Remarks . 116

- 109 -

Chapter 6: Conclusions

6.1 This Thesis in a Nutshell

This thesis investigates undertaking software development in the cloud. More specif-

ically, providing an alternative cloud-based development platform which can support

the entire development life-cycle. This was motivated by the evolution of cloud com-

puting which led it to be the enabling platform for software delivery in the Post-PC

era.

Historically, software engineering has been evolving to exploit disrupting technologies

and cope with management challenges. In the cloud computing (as a disrupting

technology) context, the question becomes: How to adapt software engineering for/in the

cloud?. While some research has investigated the software engineering practises for

developing cloud applications (e.g., [100]), this thesis is the first study investigating a

comprehensive approach for supporting software development in the cloud.

The main contribution of this thesis is proposing a reference architecture for supporting

Software Development as a Service (SDaaS) in the cloud. This architecture uses the

cloud economies of scale to provide computational resources, store software artefacts

and provide an accessible development platform. It adopts a model-driven approach

where software processes are modelled and transformed into executable workflow

models. The use of software process models provides different levels of abstraction

for different stakeholders and enables visualising, monitoring and tracking software

development. Such models are mapped into a machine-readable format, then executed

(enacted) in a distributed set of workflow engines. The workflow engines have dif-

ferent computational specifications (e.g., privacy and power) which allows the SDaaS

architecture to cater for different software workflow activities. The architecture can

scale by adding/releasing workflow engines on demand.

To materialise the SDaaS vision, this thesis investigates and contributes to the three

following areas:

Modelling of cloud-based executable software processes

We found that the existing software process modelling languages do not support mod-

elling cloud-related execution configurations. Many of them do not have native support

for process enactment/execution. Therefore, we propose EXE-SPEM which is an exten-

sion of the OMG SPEM2.0 standard. EXE-SPEM is the first software process modelling

- 110 -

Chapter 6: Conclusions

language for modelling cloud-based executable software processes.

Additionally, we provide an XML schema for representing the process models in a

machine-readable format. We also provide rules for mapping EXE-SPEM models to

this format.

EXE-SPEM inherits its extensibility from SPEM2.0. Domain specific elements can be

integrated in the meta-model. We demonstrated this by integrating some safety-related

attributes to EXE-SPEM meta-model for the case study we described in Chapter 5.

Similarly, it can be done for other domains.

Even though interactions among stakeholders and between stakeholders and the pro-

cess activities are valuable information which can be used to reason about the process,

currently, EXE-SPEM only supports basic interactions between stakeholders and activ-

ities.

Cost-efficient scheduling of software processes execution in the cloud

Cloud offers a massive pool of resources on demand. While the cloud resources may

seem deceptively unlimited, monetary resources are always limited. Software produc-

tion cost is an important factor in the success/failure of software projects. Therefore,

we believe that the SDaaS architecture should use cloud resources in a cost-efficient

way. This inevitably means that a compromise on workflow makespan is necessary.

However, we aim to minimise that compromise.

We propose the Proportional Adaptive Task Schedule algorithm which dynamically re-

stricts the number of workflow engines (VMs) the SDaaS architecture can acquire within

each operational hour. The maximum number is dynamically calculated periodically

based on the proportion between the execution times of the expected activities to arrive

in the next hour, and the execution times of the activities which started execution in

the past hour. We evaluate the algorithm through simulation and by benchmarking it

against three other adapted algorithms. The evaluation shows that our algorithm saves

between 19.74% and 45.78% of the execution cost, provides best resource (VM) utili-

sation and provides second best workflows makespan compared to the other adapted

algorithms. This algorithm is the first that targets scheduling software workflows in

the cloud.

This algorithm can reduce the software production cost when used in the SDaaS archi-

- 111 -

Chapter 6: Conclusions

tecture. However, as a result of this saving, the workflow makespan is increased. While

process authors can statically define certain activities as priority activities (i.e., must

be executed immediately regardless of the cost), the current approach does not allow

the process author (or the stakeholder executing the process) to dynamically make a

trade-off between execution time and cost. Also, it does not automatically make this

trade-off on behalf of the user (e.g., by assigning weights to both cost and makespan

and use them to calculate an optimal schedule). This is left as a future work.

Evaluating the SDaaS architecture

Evaluating the SDaaS architecture is a challenging task. As we discussed in Chapter 5,

we evaluate the reference architecture by instantiating it and using its instance to

conduct a case study from the safety-critical systems domain. We model a portion of

a safety-related process from the aerospace domain and execute it in the cloud. Not

only we were able to execute the process, but also -thanks to the process model and the

SDaaS architecture provenance data- we were able to automatically generate fragments

of a safety case arguing about both product and process-based safety aspects. We also

demonstrated implementing workflow activities (development tools) on the cloud.

Some of these tools were wrapped as a workflow activity while others were created

from scratch. The evaluation proves the feasibility of the approach and the possibility

to utilise it for different domains.

Limitations

The SDaaS architecture can be deployed into any cloud deployment model (public,

private or hybrid). It can also be interfaced with existing platforms using service calls.

This flexibility can address security and privacy concerns when using the cloud, i.e.,

one can use a private cloud to host the process enactment (partially or fully as each

activity can be configured differently) and the generated artefacts.

However, there are some limitations to the type of activities that can be supported

at this point. Software processes are often long-living and typically would involve

human-intensive activities. The instantiated prototype of the architecture does not yet

support intensive interactions with actors (humans) during process execution. Captur-

ing those interactions provides more data which can be used to gain valuable insights

about the process. Furthermore, a failure/exception during a long-running process will

break the execution and the process will need to be restarted. It is essential to have

- 112 -

Chapter 6: Conclusions

support to pause/resume processes in such situations. Since we do not have support to

resume process execution in the case of failures, we recommend splitting long-living

processes into short-living sub-processes. Sub-processing also means better separation

of concerns between teams. Finally, not all activities within a process can be automated

and the borders between what can/cannot be automated are not easy to define. The

benefits from automation remain, however. For example, the automation of arguments

generation in the case study, presented in Chapter 5, saves time and money.

6.2 Future Work

Throughout this thesis, we touched on some topics without going into details. Such

topics include: SLA monitoring, real-time consistency checking, human-to-human

interactions in software processes, mining software repositories and empirical eval-

uations. Each of these topics can be investigated in-depth in separate studies. In

this section, we highlight some potential future directions to complement the work

presented in this thesis.

Tool support for the SDaaS architecture

Implementation of tool support is essential for the adoption of the SDaaS architecture.

The required tool support includes: tools for modelling and designing processes, full

instantiation of the reference architecture supporting all types of process activities, and

integration of more development tools. In addition, a tool discovery/catalogue service

can be implemented to provide information about tools, guidance on how to use them

and trade-offs between different tools.

Empirical studies

In this thesis, we evaluate the SDaaS architecture through a case study. While this

validates the feasibility and applicability of the architecture, it does not evaluate the

impact it would have on stakeholders (e.g., productivity and error rate) and projects

(e.g., cost, quality and time). Therefore, an empirical study investigating those aspects is

needed to analyse the impacts of using the SDaaS architecture in real software projects.

Another aspect that needs to be empirically studied is the usability and accessibility of

the architecture and how it will impact collaboration between (and across) teams.

On demand Micro-Tools

- 113 -

Chapter 6: Conclusions

As Clark predicted in 1999 1, the world is becoming a network of services. Multiple

development tools and environments already offer integration with other tools and

platforms. In this thesis, we focus on modelling software processes as workflows

and executing them in the cloud. The workflow building blocks (the activities) are

either built-in beforehand or custom-made for a specific purpose. We demonstrated

the creation of new activities in the case study presented in Chapter 5. Similarly, we

believe tools could be built from aggregating Micro-Tools in a workflow which can

then be executed in the cloud. Such Micro-Tools can be offered on demand and on

a pay-as-you-go basis. This might even lead to a pay-per-feature-use model where

you custom build your tool by choosing compatible Micro-Tools supporting a set of

required features. We envision the granularity of Micro-Tools to be of atomic features

(e.g., save a file, compile code, etc.) and that a Micro-Tools discovery/catalogue service

can help choose the right Micro-Tools for building your custom tool.

Interaction patterns

As mentioned in Chapter 1, the increasing mobility of the Post-PC era has influenced

the type of devices that are in use. Low specification, lightweight, mobile devices

are becoming essential part in our everyday life. Projects such as TouchDevelop [21]

exploit such devices for software development. New software development interaction

patterns should build on the capacities of mobile devices (e.g., voice recognition and

touch screens). Another aspect of interaction which can be studied is how stakeholders

interact with workflow activities and among themselves (offline).

Big data for software development

In the SDaaS architecture, the processes are modelled, the artefacts are maintained

(with different versions), stakeholders actions are recorded and provenance data about

the process execution is collected. This data can be used for real-time and historical

analysis. Such data can be utilised for the components of the architecture (see Figure 2.3)

that we did not explore in depth in this thesis. These areas are: SLA monitoring when

two or more organisations are collaborating, and consistency checking, to raise an alarm

when processes divert from certain standard processes or constraints.

1http://www.nytimes.com/1999/04/18/business/economic-view-is-mr-gates-pouring-fuel-on-his-
rivals-fire.html

- 114 -

Chapter 6: Conclusions

6.2.1 Motivating Scenarios

In this subsection, we briefly describe two scenarios which show the impact of the

SDaaS architecture and the potential of the future work directions suggested in the

previous section.

6.2.1.1 Continuous delivery

Continuous Delivery [70] has become a trendy software development paradigm. It aims

at automating the build-test-deploy-release cycle. The motivation is to achieve frequent

releases, reduce conflicts and therefore, reduce cost. To achieve such automation,

teams should follow certain practises and use supporting tools/platforms. Humble

and Farley [70] set the principles and technical practises for successful implementation

of Continuous Delivery. An example of a continuous delivery process is the Facebook

deployment pipeline [49].

Discussion

Systems like Facebook are delivered through the Internet where changes and new

features are continuously pushed to users transparently. Faster and frequent releases

(as prescribed in Continuous Delivery) mean that developers will be committing and

releasing code very often (sometimes on daily basis). The benefits of such frequency

are evident. Small and frequent releases mean easier bug locating and fixing as bugs

will be in the newly added code which is small in size [70]. In addition, the code

base is always maintained to be bug-free after each release which leads to reducing the

required integration effort. Automation and repeatability of the software build-test-

deployment-release are a key enabling factor for Continuous Delivery [70]. To pick up

the fruits of Continuous Delivery, the management aspect of the development process

must be considered. For example, if developers do not commit their code regularly, the

Continuous Delivery chain is broken. Therefore, there is a need for convergence and

monitoring support to ensure certain processes and practises are followed. SDaaS uses

process models which can prescribe the recommended practice. Provenance data and

consistency checking can ensure the required convergence. The cloud infrastructure

provides the required tools on demand and also supports the automation of parts of

the process.

- 115 -

Chapter 6: Conclusions

6.2.1.2 Compliance and continuous certification

Small connected devices are being embedded everywhere from the human body to

civil infrastructure and military applications. This means that more and more soft-

ware systems are becoming safety-critical. Safety-critical systems must comply with

certain regulatory standards and be certified by relevant authorities (as we discussed

in Chapter 5).

Discussion

Many software components need to comply with certain domain-specific standards

and regulations. This raises two important requirements for developing such compo-

nents. First, the development team(s) must ensure their compliance with the adopted

standard. Second, the development team must collect and retain evidence that they

did so in order to build their case for certification. As Fuggetta and Di Nitto [53] state,

the software community is challenged with the need to move from rigid compliance

to smart convergence. This is especially important since in a human-centric process

(like software development) it is impossible to force rigid processes and patterns. Im-

plementing the SDaaS consistency checking component and defining consistency rules

can help achieving such smart convergence with the help of the SDaaS provenance data

and process models.

6.3 Concluding Remarks

In the lack of closely-related research on software engineering in the cloud, this thesis

presents the first step towards achieving a transition from the desktop-based devel-

opment environments to cloud-based environments and interconnected tools. Such a

transition is inevitably happening. However, academia has been lagging behind indus-

try in investigating this area. Industrial vendors are moving their development tools

or creating new ones in the cloud without moving towards a comprehensive vision for

Software Development as a Service.

This thesis does not only come to fill an existing gap or meet some needs, but it also

paves the way for future opportunities and provides a high level road map for further

research in the area of software engineering in the cloud as we have shown in the

Section 6.2. Despite the potential of this approach, challenges in software development

- 116 -

Chapter 6: Conclusions

will continue to exist. Indeed, as Fred Brooks puts it, “There is no silver bullet” and we

can only eliminate accidental difficulties in software development. Inherent difficulties

will continue to exist as software and its development evolve [30].

- 117 -

Bibliography

[1] AC 25.1309-1A - System Design and Analysis. Federal Aviation Administration
(FAA), USA, June 1988.

[2] ARP4761: Guidelines and Methods for Conducting the Safety Assessment process on
Civil Airborne Systems And Equipment. SAE International, Warrendale, PA, USA,
1996.

[3] BS EN50129: Railway applications. Communication, signalling and processing systems.
Safety related electronic systems for signalling. Number BS EN 50129:2003. BSI Group,
London, United Kingdom, 2003.

[4] Software Engineering – Metamodel for Development Methodologies. Number ISO/IEC
24744:2007. International Organisation for Standardisation (ISO), Geneva,
Switzerland, 2007.

[5] Software and Systems Process Engineering Meta-Model Specification, V2.0. Number
formal/2008-04-01. Object Management Group (OMG), MA, USA, April 2008.

[6] ARP4754A, Guidelines for Development of Civil Aircraft and Systems. SAE Interna-
tional, Warrendale, PA, USA, 2010.

[7] Business Process Model and Notation, version 2.0. Number formal/2011-01-03. Object
Management Group (OMG), MA, USA, January 2011.

[8] GSN: Community Standard Version 1. Origin Consulting (York) Limited, United
Kingdom, 2011.

[9] SACM: Structured Assurance Case Metamodel, Version 1.0. Number formal/2013-
02-01. Object Management Group (OMG), MA, USA, February 2013.

[10] Kernel And Language For Software Engineering Methods (Essence), V1.1. Num-
ber formal/2015-12-02. Object Management Group (OMG), MA, USA, December
2015.

[11] S Abhishek and M Frank. A Roadmap for Software Engineering for the Cloud:
Results of a Systematic Review. In X Wang, N Ali, I Ramos, and R Vidgen, editors,
Agile and Lean Service-Oriented Development: Foundations, Theory, and Practice,
pages 48–63. IGI Global, 2012.

[12] S Acuña, A De Antonio, X Ferré, M López, and L Maté. The software process:
Modelling, evaluation and improvement. In S. K Chang, editor, Handbook of
Software Engineering and Knowledge Engineering, World Scientific, volume 1, pages
193–237. World Scientific, 2001.

[13] S Alajrami, B Gallina, and A Romanovsky. EXE-SPEM: Towards Cloud-based
Executable Software Process Models. In MODELSWARD’16 - Proceedings of the
4rd International Conference on Model-Driven Engineering and Software Development,
Rome, Italy, 19-21 February., pages 517–526. Scitepress, 2016.

- 118 -

[14] S Alajrami, B Gallina, I Sljivo, A Romanovsky, and P Isberg. Towards Cloud-Based
Enactment of Safety-Related Processes. In A Skavhaug, J Guiochet, and F Bitsch,
editors, Computer Safety, Reliability, and Security - 35th International Conference,
SAFECOMP’16, Trondheim, Norway, September 21-23, Proceedings, pages 309–321.
Springer, 2016.

[15] S Alajrami, A Romanovsky, and B Gallina. Software Development in the Post-
PC Era: Towards Software Development as a Service. In P Abrahamsson and
A Jedlitschka, editors, The 17th International Conference on Product-Focused Software
Process Improvement, PROFES’16, Trondheim, Norway, November 22-24, Proceedings.
Springer, 2016.

[16] A Arunthavanathan, S Shanmugathasan, S Ratnavel, V Thiyagarajah, I Perera,
D Meedeniya, and D Balasubramaniam. Support for traceability management of
software artefacts using Natural Language Processing. In Moratuwa Engineering
Research Conference (MERCon), Katubedda, Sri Lanka April 5-6, Proceedings, pages
18–23. IEEE, April 2016.

[17] M Azoff. White paper: The Benefits of Model Driven Development. MDD in
Modern Web Based Systems. Technical report, Butler Direct Limited, Hull, East
Yorkshire, UK, March 2008.

[18] R Bahsoon, N Ali, I Mistrík, and T. S Mohan. The ieee services track on software
engineering for/in the cloud. In R Bahsoon and L.-J Zhang, editors, Proceedings of
the 2016 IEEE World Congress on Services (SERVICES), San Francisco, USA, June 27
- July 2, pages 97–98, June 2016.

[19] R Bahsoon, I Mistrík, N Ali, T Mohan, and N Medvidović. The future of software
engineering in and for the cloud. Journal of Systems and Software, 86(9):2221–2224,
September 2013.

[20] A Bala and I Chana. Article: A Survey of Various Workflow Scheduling Algo-
rithms in Cloud Environment. IJCA Proceedings on 2nd National Conference on
Information and Communication Technology, NCICT(4):26–30, November 2011.

[21] T Ball, S Burckhardt, J de Halleux, M Moskal, and N Tillmann. Beyond Open
Source: The TouchDevelop Cloud-based Integrated Development Environment.
Technical Report MSR-TR-2014-127, Microsoft Research, September 2014.

[22] S. C Bandinelli, A Fuggetta, and C Ghezzi. Software process model evolution in
the SPADE environment. IEEE Transactions on Software Engineering, 19(12):1128–
1144, 1993.

[23] J Barnat, L Brim, V Havel, J Havlíćek, J Kriho, M Lenćo, P Roćkai, V Śtill, and
J Weiser. DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded C &
C++ Programs. In N Sharygina and H Veith, editors, Computer Aided Verification
- 25th International Conference, CAV’13, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, volume 8044 of LNCS, pages 863–868. Springer, 2013.

[24] A Barnes and J Gray. COTS, workflow, and software process management: an
exploration of software engineering tool development. In 12th Australian Software
Engineering Conference (ASWEC 2000), April 28-30, Canberra, Australia, pages 221–
232. IEEE Computer Society, 2000.

- 119 -

[25] R Bendraou, J Jezequel, M.-P Gervais, and X Blanc. A Comparison of Six UML-
Based Languages for Software Process Modelling. IEEE Transactions on Software
Engineering, 36(5):662–675, Sept 2010.

[26] M Biehl and W Löwe. Automated Architecture Consistency Checking for Model
Driven Software Development. In R Mirandola, I Gorton, and C Hofmeister,
editors, Architectures for Adaptive Software Systems, 5th International Conference on
the Quality of Software Architectures, QoSA 2009, East Stroudsburg, PA, USA, June
24-26, 2009, Proceedings, pages 36–51. Springer, 2009.

[27] P Bishop and R Bloomfield. A Methodology for Safety Case Development. In
F Redmill and T Anderson, editors, Industrial Perspectives of Safety-critical Systems:
6th Safety-critical Systems Symposium, Birmingham, UK, pages 194–203. Springer,
1998.

[28] B Boehm. A spiral model of software development and enhancement. Computer,
21(5):61–72, May 1988.

[29] B Boehm. Some future trends and implications for systems and software engi-
neering processes. Systems Engineering, 9(1):1–19, 2006.

[30] F Brooks. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE
Computer, 20(4):10–19, April 1987.

[31] S Bucur, V Ureche, C Zamfir, and G Candea. Parallel Symbolic Execution for
Automated Real-world Software Testing. In Proceedings of the Sixth European
conference on Computer systems, EuroSys’11, Salzburg, Austria, April 10-13, pages
183–198. ACM, 2011.

[32] E Carmel. Global Software Teams: Collaborating Across Borders and Time Zones.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[33] D Chan and K Leung. Software development as a workflow process. In 4th Asia-
Pacific Software Engineering and International Computer Science Conference (APSEC
’97 / ICSC ’97), December 2-5, Clear Water Bay, Hong Kong, pages 282–291. IEEE
Computer Society, 1997.

[34] M. A Chauhan and M. A Babar. Cloud Infrastructure for Providing Tools As
a Service: Quality Attributes and Potential Solutions. In 2012 Joint Working
IEEE/IFIP Conference on Software Architecture and European Conference on Software
Architecture, WICSA/ECSA’12, Helsinki, Finland, August 20-24 - Companion Volume,
pages 5–13, 2012.

[35] B Combemale, X Crégut, A Caplain, and B Coulette. Towards a Rigorous Process
Modelling with SPEM. In Y Manolopoulos, J Filipe, P Constantopoulos, and
J Cordeiro, editors, ICEIS - Proceedings of the Eighth International Conference on En-
terprise Information Systems: Databases and Information Systems Integration, Paphos,
Cyprus, May 23-27, pages 530–533. INSTICC Press, 2006.

[36] E. O Conchúir, P Ågerfalk, H Olsson, and B Fitzgerald. Global Software De-
velopment: Where Are the Benefits? Commun. ACM, 52(8):127–131, August
2009.

- 120 -

[37] R Conradi, M. L Jaccheri, C Mazzi, M. N Nguyen, and A Aarsten. Design, Use
and Implementation of SPELL, a Language for Software Process Modelling and
Evolution. In Software Process Technology, Second European Workshop, EWSPT ’92,
Trondheim, Norway, September 7-8, Proceedings, pages 167–177, 1992.

[38] G. C. B Costa, C. M. L Werner, and R Braga. Software Process Performance
Improvement Using Data Provenance and Ontology. In M La Rosa, P Loos, and
O Pastor, editors, Business Process Management Forum - BPM Forum 2016, Rio de
Janeiro, Brazil, September 18-22, Proceedings, pages 55–71. Springer, 2016.

[39] B Curtis, M. I Kellner, and J Over. Process Modeling. Commun. ACM, 35(9):75–90,
September 1992.

[40] R Dawson, P Bones, B. J Oates, P Brereton, M Azuma, and M. L Jackson. Empirical
Methodologies in Software Engineering. In 11th International Workshop on Software
Technology and Engineering Practice (STEP’03), 19-21 September 2003, Amsterdam,
The Netherlands, pages 52–58. IEEE Computer Society, 2003.

[41] E. W Dijkstra. The Humble Programmer. Commun. ACM, 15(10):859–866, October
1972.

[42] J.-L Doumont. Verbal versus visual: A word is worth a thousand pictures, too.
Technical communication, 49(2):219–224, 2002.

[43] P Dourish and V Bellotti. Awareness and Coordination in Shared Workspaces.
In CSCW ’92, Proceedings of the Conference on Computer Supported Cooperative Work,
Toronto, Canada, October 31 - November 4, pages 107–114. ACM, 1992.

[44] J. J Durillo and R Prodan. Multi-objective workflow scheduling in Amazon EC2.
Cluster Computing, 17(2):169–189, 2014.

[45] R Ellner, S Al-Hilank, J Drexler, M Jung, D Kips, and M Philippsen. eSPEM
- A SPEM Extension for Enactable Behavior Modeling. In T Kühne, B Selic,
M.-P Gervais, and F Terrier, editors, Modelling Foundations and Applications, 6th
European Conference, ECMFA 2010, Paris, France, June 15-18. Proceedings, volume
6138 of Lecture Notes in Computer Science, pages 116–131. 2010.

[46] R Ellner, S Al-Hilank, J Drexler, M Jung, D Kips, and M Philippsen. A FUML-
Based Distributed Execution Machine for Enacting Software Process Models. In
R. B France, J. M Kuester, B Bordbar, and R Paige, editors, Modelling Foundations
and Applications - 7th European Conference, ECMFA 2011, Birmingham, UK, June 6 -
9, 2011 Proceedings, volume 6698 of Lecture Notes in Computer Science, pages 19–34.
Springer, 2011.

[47] B Elvesæter, G Benguria, and S Ilieva. A Comparison of the Essence 1.0 and SPEM
2.0 Specifications for Software Engineering Methods. In R Lbath, Bendraou,
B Coulette, and M.-P Gervais, editors, Proceedings of the Third Workshop on Process-
Based Approaches for Model-Driven Engineering, PMDE@ECOOP’13, Montpellier,
France, July 1, PMDE ’13, pages 2:1–2:10. ACM, 2013.

[48] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of

- 121 -

personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). Official Journal of the European
Union, L119/59, May 2016.

[49] D Feitelson, E Frachtenberg, and K Beck. Development and Deployment at
Facebook. IEEE Internet Computing, 17(4):8–17, July 2013.

[50] J Fiaidhi, I Bojanova, J Zhang, and L.-J Zhang. Enforcing Multitenancy for Cloud
Computing Environments. IT Professional, 14(1):16–18, January 2012.

[51] D. G Firesmith and B Henderson-Sellers. The OPEN Process Framework: An
Introduction. OPEN series. Addison-Wesley, 2002.

[52] A Fuggetta. Software Process: A Roadmap. In Proceedings of the Conference on The
Future of Software Engineering Co-located with the International Conference on Software
Engineering ICSE’00, Limerick, Ireland, June 4-11, pages 25–34. ACM, 2000.

[53] A Fuggetta and E Di Nitto. Software Process. In Proceedings of the on Future
of Software Engineering, FOSE’14, Hyderabad, India, May 31 - June 7, pages 1–12.
ACM, 2014.

[54] B Gallina, M. A Javed, F. U Muram, and S Punnekkat. Model-driven Depend-
ability Analysis Method for Component-based Architectures. In 38th Euromicro
Conference on Software Engineering and Advanced Applications, SEAA’12, Cesme,
Izmir, Turkey, September 5-8, pages 233–240. IEEE, 2012.

[55] B Gallina, E Sefer, and A Refsdal. Towards safety risk assessment of socio-
technical systems via failure logic analysis. In 2nd IEEE International Symposium
on Software Reliability Engineering Workshops, joint event of ISSRE’14, Naples, Italy,
November 3-6, pages 287–292, 2014.

[56] B Gallina. A Model-driven Safety Certification Method for Process Compliance.
In 25th IEEE International Symposium on Software Reliability Engineering Workshops,
ISSRE Workshops, Naples, Italy, November 3-6, pages 204–209. IEEE, 2014.

[57] B Gallina, K Pitchai, and K Lundqvist. S-TunExSPEM: Towards an Extension of
SPEM 2.0 to Model and Exchange Tunable Safety-Oriented Processes. In R Lee,
editor, Software Engineering Research, Management and Applications [selected papers
from the 11th International Conference on Software Engineering Research, Management
and Applications, SERA 2013, Prague, Czech Republic, August 7-9]., volume 496 of
Studies in Computational Intelligence, pages 215–230. Springer, 2014.

[58] J. H Gerard. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[59] J. H Gerard. The Model Checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

[60] C Gutwin, K Schneider, D Paquette, and R Penner. Supporting Group Awareness
in Distributed Software Development. In R Bastide, P Palanque, and J Roth, edi-
tors, Engineering Human Computer Interaction and Interactive Systems, Joint Working
Conferences EHCI-DSVIS’04, Hamburg, Germany, July 11-13, Revised Selected Papers,
pages 383–397. Springer, 2004.

- 122 -

[61] I Habli and T Kelly. Process and Product Certification Arguments: Getting the
Balance Right. SIGBED Rev., 3(4):1–8, 2006.

[62] S. I Hashmi, V Clerc, M Razavian, C Manteli, D. A Tamburri, P Lago, E. D Nitto,
and I Richardson. Using the cloud to facilitate global software development chal-
lenges. In 2011 IEEE Sixth International Conference on Global Software Engineering
Workshop, pages 70–77, Aug 2011.

[63] C. L Heitmeyer, R. D Jeffords, and B. G Labaw. Automated Consistency Checking
of Requirements Specifications. ACM Transactions on Software Engineering and
Methodology, 5(3):231–261, July 1996.

[64] B Henderson-Sellers and C Gonzalez-Perez. A comparison of four process meta-
models and the creation of a new generic standard. Information and Software
Technology, 47(1):49 – 65, 2005.

[65] J. D Herbsleb. Global Software Engineering: The Future of Socio-technical Coor-
dination. In L. C Briand and A. L Wolf, editors, International Conference on Software
Engineering, ISCE’07, Workshop on the Future of Software Engineering, FOSE’07, May
23-25, Minneapolis, MN, USA, pages 188–198. IEEE Computer Society, 2007.

[66] H Hiden, S Woodman, P Watson, and J Cala. Developing cloud applications
using the e-Science Central platform. Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, 371(1983), 2012.

[67] D Hollingsworth. Workflow Reference Model. Number TC00-1003. Workflow Man-
agement Coalition (WfMC), January 1995.

[68] C. M Holloway. Safety Case Notations: Alternatives for the Non-Graphically
Inclined? In 3rd IET International Conference on System Safety, October 20-22,
Birmingham, UK, pages 1–6. IET, 2008.

[69] C. M Holloway. Explicate ’78: Uncovering the Implicit Assurance Case in DO-
178C. Technical Report 20150009473, NASA Langley Research Centre, USA, 2015.

[70] J Humble and D Farley. Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st edition,
2010.

[71] S Jang, X Wu, V Taylor, G Mehta, K Vahi, and E Deelman. Using performance
prediction to allocate grid resources. Technical Report GriPhyN Project, TR 2004-
25, Texas A&M University, USA, 2004.

[72] R. W Jensen. Improving Software Development Productivity: Effective Leadership and
Quantitative Methods in Software Management. Pearson Education, 2014.

[73] H Kagdi, M. L Collard, and J. I Maletic. A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. Journal of
Software Maintenance and Evolution: Research and Practice, 19(2):77–131, 2007.

[74] G. E Kaiser, N. S Barghouti, and M. H Sokolsky. Preliminary experience with
process modelling in the MARVEL software development environment kernel.
In Proceedings of the Twenty-Third Annual Hawaii International Conference on System
Sciences, Kailua-Kona, HI, USA. January 2-5, volume 2, pages 131–140, 1990.

- 123 -

[75] R Kazman, L Bass, M Webb, and G Abowd. SAAM: A Method for Analyzing
the Properties of Software Architectures. In Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, May 16-21, ICSE ’94, pages
81–90. IEEE Computer Society Press, USA, 1994.

[76] R Kazman, M Klein, and P Clements. ATAM: Method for Architecture Evalu-
ation. Technical Report CMU/SEI-2000-TR-004, Software Engineering Institute,
Carnegie Mellon University, USA, 2000.

[77] M Kellner, R Madachy, and D Raffo. Software Process Simulation Modeling:
Why? What? How? Journal of Systems and Software, 46(2-3):91 – 105, 1999.

[78] G Kim, K Behr, and G Spafford. The Phoenix Project: A Novel About IT, DevOps,
and Helping Your Business Win. IT Revolution Press, 1st edition, 2013.

[79] M Kuhrmann, D. M Fernández, and R Steenweg. Systematic Software Process
Development: Where Do We Stand Today? In D Notkin, B. H. C Cheng, and
K Pohl, editors, International Conference on Software and System Process, ICSSP ’13,
San Francisco, CA, USA, May 18-19, pages 166–170. ACM, 2013.

[80] F Lanubile, F Calefato, and C Ebert. Group Awareness in Global Software Engi-
neering. IEEE Software, 30(2):18–23, March 2013.

[81] N Lassing, D Rijsenbrij, and H van Vliet. On Software Architecture Analysis of
Flexibility, Complexity of Changes: Size Isn’t Everything. In Proceedings of the
Second Nordic Software Architecture Workshop (NOSA ’99), Ronneby, Sweden, Au-
gust 12-13. Department of Software Engineering and Computer Science/Blekinge
Institute of Technology, Sweden, 1999.

[82] K Liu, H Jin, J Chen, X Liu, D Yuan, and Y Yang. A Compromised-Time-Cost
Scheduling Algorithm in SwinDeW-C for Instance-Intensive Cost-Constrained
Workflows on Cloud Computing Platform. International Journal of High Perfor-
mance Computing Applications, 24:445–456, November 2010.

[83] L Maciaszek and B Liong. Practical Software Engineering: A Case-Study Approach.
Addison-Wesley, 2004.

[84] M Mao and M Humphrey. Scaling and Scheduling to Maximise Application
Performance within Budget Constraints in Cloud Workflows. In IEEE 27th Inter-
national Symposium on Parallel Distributed Processing (IPDPS), May 20-24, Boston,
Massachusetts USA, pages 67–78. CPS, May 2013.

[85] M Mao and M Humphrey. Auto-scaling to Minimise Cost and Meet Application
Deadlines in Cloud Workflows. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, November 12-18,
SC’11, Seattle, WA, USA, pages 49:1–49:12. ACM, 2011.

[86] E. M Maximilien and P Campos. Facts, Trends and Challenges in Modern Soft-
ware Development. International Journal of Agile and Extreme Software Development,
1(1):1–5, July 2012.

- 124 -

[87] S Meilin, Y Guangxin, X Yong, and W Shangguang. Workflow management
systems: a survey. In X Chunpei, editor, International Conference on Communication
Technology (ICCT ’98) Proceedings, Beijing, China, October 22-24, volume 2, pages
S33–05–1 – S33–05–6. Publishing House of Construction Materials, IEEE, October
1998.

[88] J Münch, O Armbrust, M Kowalczyk, and M Soto. Software Process Definition and
Management. Springer, 2012.

[89] P Naur and B Randell, editors. Software Engineering: Report of a conference spon-
sored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels,
Belgium, Scientific Affairs Division, NATO. 1969.

[90] A Oberweis. Workflow Management In Software Engineering Projects. In S Med-
hat, editor, Proceedings of the 2nd International Conference on Concurrent Engineering
and Electronic Design Automation, April 7-8, Bournemouth, United Kingdom, pages
55–60. Society for Computer Simulation, 1994.

[91] M Oriol and F Ullah. YETI on the Cloud. In Third International Conference on Soft-
ware Testing, Verification and Validation, ICST’10, Paris, France, April 7-9, Workshops
Proceedings, pages 434–437, 2010.

[92] M Paulk, W Curtis, M. B Chrissis, and C Weber. Capability Maturity Model
for Software (Version 1.1). Technical Report CMU/SEI-93-TR-024, Software Engi-
neering Institute, Carnegie Mellon University, USA, 1993.

[93] C Portela, A Vasconcelos, A Silva, E Silva, M Gomes, M Ronny, W Lira, and
S Oliveira. xSPIDER_ML: Proposal of a Software Processes Enactment Language
Compliant with SPEM 2.0. Journal of Software Engineering and Applications, 5(6):375
– 384, 2012.

[94] M Rahman, R Hassan, R Ranjan, and R Buyya. Adaptive workflow scheduling for
dynamic grid and cloud computing environment. Concurrency and Computation:
Practice and Experience, 25(13):1816–1842, 2013.

[95] W Royce. Managing the Development of Large Software Systems: Concepts and
Techniques. In Proceedings of the 9th International Conference on Software Engineering
(ICSE’87), California, USA, March 30 - April 2, pages 328–338. IEEE Computer
Society Press, USA, 1987.

[96] W Royce. Current Problems. In C Anderson and M Dorfman, editors, Aerospace
Software Engineering: A Collection of Concepts. American Institute of Aeronautics,
Inc., Washington DC, 1991.

[97] P Runeson, M Host, A Rainer, and B Regnell. Case Study Research in Software
Engineering: Guidelines and Examples. Wiley Publishing, 1st edition, 2012.

[98] J Rushby. New Challenges in Certification for Aircraft Software. In Proceedings
of the 11th International Conference on Embedded Software, EMSOFT’11, part of the
Seventh Embedded Systems Week, ESWeek’11, Taipei, Taiwan, October 9-14, EMSOFT,
pages 211–218, 2011.

- 125 -

[99] D. C Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Com-
puter, 39(2):25–31, February 2006.

[100] E Silva and D Lucrédio. Software Engineering for the Cloud: A Research
Roadmap. In 26th Brazilian Symposium on Software Engineering, SBES’12, Natal,
Brazil, September 23-28, pages 71–80, Sept 2012.

[101] L Singh and S Singh. Article: A Survey of Workflow Scheduling Algorithms and
Research Issues. International Journal of Computer Applications, 74(15):21–28, July
2013.

[102] I Sljivo, B Gallina, J Carlson, H Hansson, and S Puri. A Method to Generate
Reusable Safety Case Fragments from Compositional Safety Analysis. In Software
Reuse for Dynamic Systems in the Cloud and Beyond - 14th International Conference on
Software Reuse, ICSR’15, Miami, FL, USA, January 4-6, Proceedings, pages 253–268.
Springer, 2015.

[103] W Smith, I. T Foster, and V. E Taylor. Predicting Application Run Times Using
Historical Information. In Job Scheduling Strategies for Parallel Processing, IPP-
S/SPDP’98 Workshop, Orlando, Florida, USA, March 30, Proceedings, pages 122–142,
London, UK, 1998. Springer.

[104] R Steenweg, M Kuhrmann, and D. M Fernández. Software Engineering Pro-
cess Metamodels. Technical Report TUM-I1220, Technical University of Munich,
Germany, 2012.

[105] W van der Aalst and A ter Hofstede. YAWL: yet another workflow language.
Information Systems, 30(4):245 – 275, 2005.

[106] M. Y Vardi and P Wolper. Reasoning about Infinite Computations. Information
and Computation, 115(1):1 – 37, 1994.

[107] W. E Vesel, F. F Goldberg, N. H Roberts, and D. F Haasl. Fault Tree Handbook
(NUREG-0492). United States Nuclear Regulatory Commission, USA, January
1981.

[108] Vijindra and S Shenai. Survey on Scheduling Issues in Cloud Computing. Inter-
national Conference on Modelling Optimization and Computing, Procedia Engineering,
38:2881 – 2888, 2012.

[109] J Wang, P Korambath, I Altintas, J Davis, and D Crawl. Workflow as a Service in
the Cloud: Architecture and Scheduling Algorithms. Procedia Computer Science,
29:546 – 556, 2014.

[110] WFMC. Workflow Management Coalition Terminology & Glossary , Issue 3. Number
WFMC-TC-1011. February 1999.

[111] WFMC. XML Process Definition Language 2.2. Number WFMC-TC-1025. August
2012.

[112] K Wolstencroft, R Haines, D Fellows, A Williams, D Withers, S Owen, S Soiland-
Reyes, I Dunlop, A Nenadic, P Fisher, J Bhagat, K Belhajjame, F Bacall, A Hardisty,
A Nieva de la Hidalga, M. P Balcazar Vargas, S Sufi, and C Goble. The Taverna

- 126 -

workflow suite: designing and executing workflows of Web Services on the
desktop, web or in the cloud. Nucleic Acids Research, 41(W1):W557–W561, 2013.

[113] Z Wu, X Liu, Z Ni, D Yuan, and Y Yang. A market-oriented hierarchical scheduling
strategy in cloud workflow systems. The Journal of Supercomputing, 63(1):256–293,
2013.

[114] Z Xiao and Y Xiao. Security and Privacy in Cloud Computing. IEEE Communica-
tions Surveys Tutorials, 15(2):843–859, February 2013.

[115] J Yu, R Buyya, and C. K Tham. Cost-based scheduling of scientific workflow
applications on utility grids. In H Stockinger, R Buyya, and R Perrott, editors, First
International Conference on e-Science and Grid Computing (e-Science’05), December 5-
8, Melbourne, Australia, pages 140–147, July 2005.

[116] J Yu and R Buyya. A Taxonomy of Scientific Workflow Systems for Grid Com-
puting. SIGMOD Rec., 34(3):44–49, September 2005.

[117] F Yuan, M Li, and Z Wan. SPEM2XPDL: Towards SPEM Model Enactment. In
H. R Arabnia, H Reza, L Deligiannidis, J. J Cuadrado-Gallego, V Schmidt, and
A. M. G Solo, editors, Proceedings of the International Conference on Software Engi-
neering Research and Practice & Conference on Programming Languages and Compilers,
SERP’06, Las Vegas, Nevada, USA, June 26-29, Volume 1, pages 240–245, 2006.

- 127 -

Appendices

- 128 -

A
The XML Schema for EXE-SPEM

- 129 -

B
The XML ProcessModel for Facebook’s

Continuous Delivery Process

<?xml version="1.0" encoding="UTF-8"?>
<Process xmlns="http://mycompany.com/namesspace" xmlns:xsi="http://www.w3.org/2001/XMLSchema -

instance" ID="ID1" xsi:schemaLocation="http://mycompany.com/namesspace Process-v1.2.xsd">
<Description>Facebook Process</Description>
<Start_with>560c154ae4b0564154k3e5bb</Start_with>
<Elements>

<Activity ID="560c154ae4b0564154k3e5bb">
<Name>Code Dev</Name>
<Description>editing source code files</Description>
<Interactive>true</Interactive>
<No_of_input_ports>0</No_of_input_ports>
<No_of_output_ports>1</No_of_output_ports>
<Wait_for_input>false</Wait_for_input>
<Responsible_role>Engineer 1</Responsible_role>
<Version>1</Version>

<Out_ports>
<Out_port>

<Next_activity>560c154ae4b0564154k3z4fs</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature
</Description>
<Version>1</Version>

</Artefact>
</Out_port>

</Out_ports>
</Activity>

<Activity ID="560c154ae4b0564154k3z4fs">
<Name>Phabricator Review</Name>
<Description>checking source code files</Description>
<Interactive>true</Interactive>
<No_of_input_ports>1</No_of_input_ports>
<No_of_output_ports>2</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Engineer 2</Responsible_role>
<Version>1</Version>

<In_ports>
<In_port>

<From_activity>560c154ae4b0564154k3e5bb</From_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>1</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity>560c154ae4b0564154k3e5bb</Next_activity>

- 130 -

Appendix B: The XML Process Model for Facebook’s Continuous Delivery Process

<Artefact ID="560c154ae4b0564156c5h8nx">
<Filename>fix_requests</Filename>
<Filetype>doc</Filetype>
<Description>requests for bug fixing</Description>
<Version>1</Version>

</Artefact>
</Out_port>
<Out_port>

<Next_activity>560c154ae4b0564154k3kl2d</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>2</Version>

</Artefact>
</Out_port>

</Out_ports>
</Activity>

<Activity ID="560c154ae4b0564154k3kl2d">
<Name>Regression Testing</Name>
<Description>integrating the code and performing regression testing</

Description>
<Interactive>false</Interactive>
<No_of_input_ports>1</No_of_input_ports>
<No_of_output_ports>2</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Engineer 2</Responsible_role>
<Version>1</Version>

<In_ports>
<In_port>

<From_activity>560c154ae4b0564154k3z4fs</From_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>2</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity>560c154ae4b0564154k3kl2d</Next_activity>
<Artefact ID="560c154ae4b0564156c5si7q">

<Filename>bug_fixes</Filename>
<Filetype>doc</Filetype>
<Description>requests for bug fixing</Description>
<Version>1</Version>

</Artefact>
</Out_port>
<Out_port>

<Next_activity>560c154ae4b0564154k3jl9e;560c154ae4b0564154k3ld4r
</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>3</Version>

</Artefact>
</Out_port>

</Out_ports>
<Cloud_config>

<Cloud_deployment_model>public</Cloud_deployment_model>
<Cloud_provider>AWS</Cloud_provider>
<Instance_type>m3.xlarge</Instance_type>
<No_of_instances>2</No_of_instances>
<Timeout>2</Timeout>

</Cloud_config>
</Activity>

<Activity ID="560c154ae4b0564154k3jl9e">
<Name>Internal Release</Name>
<Description>releasing the new feature for internal use</Description>

- 131 -

Appendix B: The XML Process Model for Facebook’s Continuous Delivery Process

<Interactive>false</Interactive>
<No_of_input_ports>1</No_of_input_ports>
<No_of_output_ports>1</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Engineer 3</Responsible_role>
<Version>1</Version>

<In_ports>
<In_port>

<From_activity>560c154ae4b0564154k3kl2d</From_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>3</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity>560c154ae4b0564154k3ld4r</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>3</Version>

</Artefact>
</Out_port>

</Out_ports>
</Activity>

<Activity ID="560c154ae4b0564154k3ld4r">
<Name>Preflab Testing</Name>
<Description>performing tests using Preflab</Description>
<Interactive>false</Interactive>
<No_of_input_ports>1</No_of_input_ports>
<No_of_output_ports>1</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Engineer 3</Responsible_role>
<Version>1</Version>

<In_ports>
<In_port>

<From_activity>560c154ae4b0564154k3kl2d</From_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>3</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity>560c154ae4b0564154k3ld4r</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>4</Version>

</Artefact>
</Out_port>

</Out_ports>
</Activity>

<Activity ID="560c154ae4b0564154k3ld4r">
<Name>Deploy 1</Name>
<Description>deploy new feature to internal servers only</Description>
<Interactive>false</Interactive>
<No_of_input_ports>2</No_of_input_ports>
<No_of_output_ports>1</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Engineer 4</Responsible_role>

- 132 -

Appendix B: The XML Process Model for Facebook’s Continuous Delivery Process

<Version>1</Version>

<In_ports>
<In_port>

<From_activity>560c154ae4b0564154k3jl9e</From_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>3</Version>

</Artefact>
</In_port>
<In_port>

<From_activity>560c154ae4b0564154k3ld4r</From_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>4</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity>560c154ae4b0564154k3bv4t</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>5</Version>

</Artefact>
</Out_port>

</Out_ports>
</Activity>

<Activity ID="560c154ae4b0564154k3bv4t">
<Name>Deploy 2</Name>
<Description>deploy new feature to 1% of global servers</Description>
<Interactive>false</Interactive>
<No_of_input_ports>1</No_of_input_ports>
<No_of_output_ports>1</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Engineer 4</Responsible_role>
<Version>1</Version>

<In_ports>
<In_port>

<From_activity>560c154ae4b0564154k3ld4r</From_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>5</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity>560c154ae4b0564154k3sl8r</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>6</Version>

</Artefact>
</Out_port>

</Out_ports>
</Activity>

<Activity ID="560c154ae4b0564154k3sl8r">
<Name>Deploy 3</Name>
<Description>deploy new feature to all servers</Description>
<Interactive>false</Interactive>
<No_of_input_ports>1</No_of_input_ports>

- 133 -

Appendix B: The XML Process Model for Facebook’s Continuous Delivery Process

<No_of_output_ports>1</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Engineer 4</Responsible_role>
<Version>1</Version>

<In_ports>
<In_port>

<From_activity>560c154ae4b0564154k3bv4t</From_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>6</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity></Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>source_code</Filename>
<Filetype>zip</Filetype>
<Description>the source code for the new feature</Description>
<Version>7</Version>

</Artefact>
</Out_port>

</Out_ports>
</Activity>

<Control_Point ID="560d33bbe4b02110e8jm2n16">
<Message>Choose whether to switch the feature on to all or subset of users.
</Message>
<Options>

<Option>
<ActivityID>560c154ae4b0564154k3xy1q</ActivityID>
<Parameter>allOrSubset</Parameter>

</Option>
</Options>

</Control_Point>

<Activity ID="560c154ae4b0564154k3xy1q">
<Name>Gatekeeper</Name>
<Description>switch the feature on to all or subset of users</Description>
<Interactive>false</Interactive>
<No_of_input_ports>1</No_of_input_ports>
<No_of_output_ports>0</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Engineer 4</Responsible_role>
<Version>1</Version>

<In_ports>
<In_port>

<From_activity>560d33bbe4b02110e8jm2n16</From_activity>
<Parameter>allOrSubset</Parameter>

</In_port>
</In_ports>

</Activity>

</Elements>
</Process>

- 134 -

C
ARP4761

Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne

Systems and Equipment- ARP4761- is an Aerospace Recommended Practice from SAE

International. It was proposed to simplify and clarify the Federal Aviation Administra-

tion (FAA) advisory circular AC 25.1309-1A [1]. It is intended to be used in conjunction

with ARP4754A. Both standards follow a functional approach to safety. ARP4761 is

a document that provides guidance to perform safety assessment. More specifically,

defines a set of partially ordered activities that need to be performed in support of the

airworthiness process to handle hazardous events (system and equipment failure or

malfunction that may lead to hazards). This set of partially ordered activities is known

as Airworthiness Safety Assessment Process. The process is iterative and it starts with a

high level design which is used to derive the safety requirements of the system. During

the design development, the design evolves and so do the safety requirements. The

safety assessment process verifies that the design meets the safety requirements and

complies with the regulations.

Figure C.1 provides an overview of the Airworthiness Safety Assessment Process for

aircraft. Safety assessment is an iterative process. As development phases evolve, the

safety assessment evolves iteratively. For example, as the aircraft requirements evolve

from the concept development phase to the preliminary design phase, new hazards

and functions might be introduced. Therefore, the safety assessment evolves with the

development cycle.

We focus on three processes within the Airworthiness Safety Assessment Process. The

Functional Hazard Assessment (FHA) which identifies failure conditions in the system

followed by Preliminary System Safety Assessment (PSSA) which evaluates the system

design/architecture. Finally, System Safety Assessment (SSA) assess if the system de-

sign meets the safety requirements. The Airworthiness Safety Assessment Process also

- 135 -

Appendix C: ARP4761

Why?

Functional Hazard Analysis

Figure C.1: An overview of the airworthiness safety assessment process [2]

includes the use of other techniques and tools for Common Cause Analysis (CCA) such

as Zonal Safety Analysis (ZSA), Particular Risk Analysis (PRA) and Common Mode

Analysis (CMA). Details about these techniques are beyond the scope of this thesis and

are provided in the ARP4761 guidelines [2].

The FHA, PSSA and SSA processes are further detailed below:

- 136 -

Appendix C: ARP4761

• Functional Hazard Assessment (FHA)

FHA identifies the failure conditions in a system and classifies them based on their

severity level. It is performed at both the aircraft and the system levels to examine

the effect of individual and combined failures on the aircraft. FHA is a top-down

process which starts at the aircraft level and proceeds to finer grained systems

and subsystems. It starts with specifying high-level functional requirements (e.g.,

"To control aircraft trajectory") and identifying their associated failure conditions

(e.g., "Loss of aircraft control"). This is then used to derive lower level requirements

in an iterative manner. The identified failure conditions are then classified based

on their severity ranging from a negligible/minor failure (a failure that does not

have safety implications) to severe/catastrophic failures (failures which severely

impacts the security of the aircraft). Based on this classification, tolerable limits

of occurrence of these failures and Development Assurance Levels (DAL) are

specified. The identified and classified failure conditions are passed as an input

for the PSSA process.

• Preliminary System Safety Assessment (PSSA)

PSSA is conducted at multiple stages of the system development including sys-

tem, item and hardware/software design definitions. It consists of a systematic

examination of a proposed system architecture(s) to identify how system failures

contribute to the failure conditions identified in the system FHA. It usually uses

techniques like Fault Tree Analysis (FTA), Dependence Diagrams (DD) or Markov

Analysis (MA) to identify system faults. PSSA takes in input the system FHA

and the description of each system architecture under consideration. Based on

the input received, the following set of tasks are performed within PSSA:

1. Completion of the list of aircraft and system level safety requirements,

2. Determination whether the received input architecture and planned concept

design can reasonably be expected to meet the safety requirements and

objectives,

3. Derivation of the safety requirements for the design of lower level items.

PSSA is focused on analysing the proposed system design and architecture to

validate its safety. Moreover, PSSA includes identifying the derived safety re-

- 137 -

Appendix C: ARP4761
Why?

Functional Hazard Analysis

Figure C.2: Example of the relationship between FHA and FTA [2]

quirements, associating them with Development Assurance Levels (DALs) and

allocating them to architectural elements. The final outcome of PSSA is: develop-

ment failures effects of hardware and software, DALs, protective strategies and

architectural features necessary to meet safety objectives. For further details, the

reader may refer to Appendix B of ARP4761 [2].

Fault Tree Analysis (FTA) PSSA is usually conducted using FTA [107]. FTA is

a deductive reasoning method for identifying root causes of hazardous (unde-

sired) failures. A Fault Tree represents a group of events (parallel or sequential)

and their interrelationships which can cause an undesired event of system fail-

ure. That undesired event is usually the root of the tree and is called top event.

Events are categorised as: primary, intermediate and top events. Fault trees are

usually graphically represented. Details about the different types of events and

- 138 -

Appendix C: ARP4761

the graphical symbols for the fault tree’s building elements can be found in [107].

Figure C.2 illustrates an example of the aircraft FHA and its relationship with

FTA. Each failure condition has an FTA which is then explored more in depth as

the development of the system design proceeds.

• System Safety Assessment (SSA)

The SSA process evaluates if the final design and implementation of the system

meet the safety requirements identified at FHA and PSSA.

- 139 -

D
ARP4761 Wheel Brake System

To demonstrate the Airworthiness Safety Assessment Process, ARP4761 includes a

detailed example showing how the process can be applied to a small aircraft system.

This system is the Aircraft Wheel Brake System (WBS) illustrated in Figure D.1. The

system consists of mechanical components (e.g., valves and pedals) and a Brake System

Control Unit (BSCU) which controls the operation of the brake through a hydraulic

system connected to the wheels of the aircraft.

The BSCU (as illustrated in Figure D.2) contains sub-components and is connected

to the input of the pedals and sends output signals to the hydraulic system which

mechanically control the aircraft wheels. Internally, each BSCU sub-component takes

input and produces output which contributes to the BSCU output. Failures may occur

on the input ports and propagate through the internal sub-components. Failures may

either be mitigated, propagated as they are or transformed to another failure condition

by each sub-component.

In line with the PSSA, we focus is on the failure behaviour of the system to show that the

unacceptable failures have been successfully mitigated. Fault Propagation and Trans-

formation Calculus (FPTC) is a failure logic analysis allowing for the calculation of the

system level failure behaviour based on the failure behaviour of the individual compo-

nents. The propagation of failures from the inputs to the outputs of a component are

captured via FPTC rules. For example, the FPTC rule “I1.valueCoarse→ O1.comission”

for a component with input I1 and output O1, states that when I1 port exhibits coarse

(i.e., clearly detectable) value failure, then the output O1 port exhibits commission fail-

ure (i.e., O1 is provided when not supposed to). Such rules capture the system failure

behaviour that should be considered in the corresponding product-based argument.

The supported FPTC syntax is shown in Figure D.3.

Figure D.4 details the input/output ports of each component and show the possible

- 140 -

Appendix D: ARP4761 Wheel Brake System
SERL

4761 – Wheel Brake System

9

BSCU

Brake System
Annunciation

Accumulator

Pedal
Pos. 1

Pedal
Pos. 2

Pwr Green
Pump

Blue
Pump

 Wheel

Shut Off
Selector

Valve

Isolation
Valve

Selector
Valve

Anti Skid

CMD/
Anti Skid

Mech. Pedal Position

AS
Shut Off

Valve

Meter
Valve

Meter
Valve

N
O
R
M
A
L

A
L
T
E
R
N
A
T
E

Figure D.1: The wheel brake system [2]

failures on the BSCU input and output ports.

The ARP4761 guidelines document demonstrates in detail how the Airworthiness

Safety Assessment Process is applied to assess the safety of this system.

- 141 -

Appendix D: ARP4761 Wheel Brake System

Figure D.2: The wheel brake system sub-components [2]

behaviour = expression + expression = LHS ’→’ RHS
LHS = portname’.’ bL | portname ’.’ bL (’,’ portname ’.’ bL) +
RHS = portname’.’ bR | portname ’.’ bR (’,’ portname ’.’ bR) +
failure = ’early’ | ’late’ | ’commission’ | ’omission’ | ’valueSubtle’ | ’valueCoarse’
bL = ’wildcard’ | bR
bR = ’noFailure’ | failure

Figure D.3: FPTC syntax [54]

Figure D.4: The architectural model of BSCU components, ports and failures [2]

- 142 -

E
Safety Case Representation

Safety case argument fragments can be represented in different safety case representa-

tions, e.g., textually, graphically or machine-readable. These three types of representa-

tions are described below:

E.1 Visual representation

Goal Structuring Notation (GSN) [8] and Claims-Arguments-Evidence (CAE) [27] are

the two main graphical notations for safety case representation. Here, we focus only

on GSN.

Figure E.1 shows the basic GSN elements. The goal element is characterised by a

statement representing a claim that should be supported by the underlying argument.

Strategies can be used to describe the method used to develop a goal into additional

sub-goals. The diamond symbol can be used to indicate that the goal needs further

development. Different statements can be further clarified with the context element,

while solutions are used to describe the evidence that the connected goal has been

achieved. The supportedBy relationship is used to associate goals and strategies with

other goals, strategies and solutions, while the inContextOf relationship is used to

associate the goals, strategies and solutions with other supporting elements such as

contexts.

Figure E.2 shows a simple GSN based argument fragment, where the top goal C1 is

{Solution id}
<statement>

{Strategy id}
<statement>

{Goal id}
<statement>

{Context id}
<statement>

Requires further
developmentinContextOf supportedBy

Figure E.1: GSN Elements

- 143 -

Appendix E: Safety Case Representation

Figure E.2: An example of a GSN argument

decomposed via strategy RC1.1. The strategy is clarified by the context statement

IRC1.1. The strategy is further supported by the goal C1.1, which is finally supported

by the solution S1.2.

E.2 Machine-readable representation

To support argument portability between the different representations and tools, a

standardised SACM/ARM XMI argument format [9] is available. SACM defines a

meta-model for representing structured assurance cases which communicate the safety

and security of a system. The safety of the system is represented with Claims (equivalent

to Goals in GSN) that can be supported by reasoning [9]. The reasoning is done by

associating claims together to support a bigger claim in an inferential way. Structured

arguments usually make reference to evidences.

The importing and exporting of arguments in XMI format is supported by different

tools (e.g., Astah GSN Editor1) such that a graphical (or even a textual) argument

can be stored and/or previewed using the same XMI format. The XMI format of the

argument from Figure E.2 is shown in Figure E.3. Both GSN and XMI examples are

adapted from the SACM standard document [9].

E.3 Textual representation

People have different learning patterns. While some tend to be more visual others still

prefer text [42]. For that reason, Holloway [68] presented five textual representations

of safety assurance cases. He uses a GSN example and represents it in these notations.

The textual notations are:

1http://astah.net/editions/gsn

- 144 -

Appendix E: Safety Case Representation

<ARM:Argumentation>
<argumentElement xsi:type="ARM:Claim" xmi:id="1" id="C1" content="C/S

logic is fault free"/>
<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="2" id="RC1.1"

content="Argument by omission of all identified software hazards"
describedInference="16"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="4" id="IRC1.1
" content="Identified sw hazards"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="5" id="C1.1" content="
Unintended opening of press (after PoNR) can only occur as a result
of component failure"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="11" id="S1.2"
content="Hazard directed test results"/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="16" id="C1.1.1
" source="5" target="1"/>

<argumentElement xsi:type="ARM:AssertedContext" xmi:id="21" id="CIRC1.1"
source="4" target="2"/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="22" id="S1.1"
source="11" target="5"/>

</ARM:Argumentation>

Figure E.3: The GSN argument encoded in SACM/ARM XMI format

We know that catastrophic hazard H2 has been sufficiently mitigated
because fault tree analysis shows that its probability of occurrence
is less than 1x10-6 per annum, and the acceptable probability in our
environment for a catastrophic hazard is 1x10-6 per annum.

Figure E.4: Example of the normal prose [68]

• Normal prose is a normal textual representation of safety cases and is widely

used in the law and philosophy fields. The problem with this notation is that it

is very easy to lose of the structure of the argument between the words, and that

is where the next representation comes in play. Figure E.4 shows an example of a

normal prose,

• Structured prose to overcome the possible loss of structure in the normal prose,

a structure can be added to the prose by explicitly denoting the critical parts of

the safety case. Figure E.5 shows an example of structured prose,

• Argument outline for further structuring, numerical outlines can be used to

represent the structure of the safety case argument. The text used is almost

identical to the one used to annotate a GSN diagram. Figure E.6 shows an

- 145 -

Appendix E: Safety Case Representation

The evidence that catastrophic hazard H2 has been sufficiently
mitigated is a fault tree analysis showing that its probability of
occurrence is less than 1x10-6 per annum. The justification for
using this evidence is that the acceptable probability in our
environment for a catastrophic hazard is 1x10-6 per annum.

Figure E.5: Example of the structured prose [68]

Claim 1.1.2: Probability of H2 occurring < 1x10-6 per annum.
Justification 1.1.2: 1x10-6 per annum limit for catastrophic hazards.
Evidence 1.1.2.: Fault Tree analysis.

Figure E.6: Example of the argument outline [68]

...
(claim H2 OK
(justification CatHaz)
(evidence FTA))
...

Figure E.7: Example of the LISP style [68]

example of the argument outline,

• Mathematical proof this is inspired from geometry proofs where statements

are supported by reasons which are either given assumptions or reference to

statements established later in the proof,

• Lisp style this format is based on the programming language LISP. Figure E.7

shows an example of this format.

- 146 -

F
The BSCU Flamm ArchitecturalModel

<?xml version="1.0" encoding="ASCII"?>
<flamm:CompositeComponent xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmlns:flamm="

http://www.polarsys.org/chess/fla/flamm" id="model::modelComponentView::bscuSys" name="
bscuSys">

<inputPorts id="model::modelComponentView::bscuSys::pedal2" name="pedal2" connectedPorts="//
@components.2/@inputPorts.1 //@components.1/@inputPorts.0" owner="/">
<failures id="noFailure"/>
<failures type="failure" id="late"/>

</inputPorts>
<inputPorts id="model::modelComponentView::bscuSys::pedal1" name="pedal1" connectedPorts="//

@components.1/@inputPorts.1 //@components.2/@inputPorts.0" owner="/">
<failures id="noFailure"/>

</inputPorts>
<outputPorts id="model::modelComponentView::bscuSys::cmd" name="cmd" connectedPorts="//

@components.0/@outputPorts.0" owner="/"/>
<outputPorts id="model::modelComponentView::bscuSys::valid" name="valid" connectedPorts="//

@components.3/@outputPorts.0" owner="/"/>
<components xsi:type="flamm:SimpleComponent" id="

model::modelComponentView::bscuSys::selectSwitch" name="selectSwitch">
<inputPorts id="model::modelComponentView::selectSwitchImpl::valid" name="valid"
connectedPorts="//@components.1/@outputPorts.0" owner="//@components.0"/>
<inputPorts id="model::modelComponentView::selectSwitchImpl::cmd2" name="cmd2"
connectedPorts="//@components.2/@outputPorts.1" owner="//@components.0"/>
<inputPorts id="model::modelComponentView::selectSwitchImpl::cmd1" name="cmd1"
connectedPorts="//@components.1/@outputPorts.1" owner="//@components.0"/>
<outputPorts id="model::modelComponentView::selectSwitchImpl::cmd" name="cmd"
connectedPorts="//@outputPorts.0" owner="//@components.0"/>
<rules>

<inputExpression port="//@components.0/@inputPorts.0">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.0/@inputPorts.2">

<failures type="failure" id="late"/>
</inputExpression>
<inputExpression port="//@components.0/@inputPorts.1">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.0/@outputPorts.0">

<failures type="failure" id="late"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.0/@inputPorts.0">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.0/@inputPorts.2">

<failures type="failure" id="omission"/>
</inputExpression>
<inputExpression port="//@components.0/@inputPorts.1">

<failures type="failure" id="omission"/>
</inputExpression>
<outputExpression port="//@components.0/@outputPorts.0">

<failures type="failure" id="omission"/>
</outputExpression>

</rules>
</components>
<components xsi:type="flamm:SimpleComponent" id="

model::modelComponentView::bscuSys::subBSCU1" name="subBSCU1">

- 147 -

Appendix F: The BSCU Flamm Architectural Model

<inputPorts id="model::modelComponentView::subBSCU1impl::pedal2" name="pedal2"
connectedPorts="//@inputPorts.0" owner="//@components.1"/>
<inputPorts id="model::modelComponentView::subBSCU1impl::pedal1" name="pedal1"
connectedPorts="//@inputPorts.1" owner="//@components.1"/>
<outputPorts id="model::modelComponentView::subBSCU1impl::valid" name="valid"
connectedPorts="//@components.3/@inputPorts.1 //@components.0/@inputPorts.0" owner="//
@components.1"/>
<outputPorts id="model::modelComponentView::subBSCU1impl::cmd" name="cmd" connectedPorts="
//@components.0/@inputPorts.2" owner="//@components.1"/>
<rules>

<inputExpression port="//@components.1/@inputPorts.1">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.1/@inputPorts.0">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.1/@outputPorts.0">

<failures type="failure" id="late"/>
</outputExpression>
<outputExpression port="//@components.1/@outputPorts.1">

<failures type="failure" id="late"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.1/@inputPorts.1">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.1/@inputPorts.0">

<failures id="noFailure"/>
</inputExpression>
<outputExpression port="//@components.1/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>
<outputExpression port="//@components.1/@outputPorts.1">

<failures type="failure" id="omission"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.1/@inputPorts.1">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.1/@inputPorts.0">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.1/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>
<outputExpression port="//@components.1/@outputPorts.1">

<failures type="failure" id="omission"/>
</outputExpression>

</rules>
</components>
<components xsi:type="flamm:SimpleComponent" id="

model::modelComponentView::bscuSys::subBSCU2" name="subBSCU2">
<inputPorts id="model::modelComponentView::subBSCU2impl::pedal1" name="pedal1"
connectedPorts="//@inputPorts.1" owner="//@components.2"/>
<inputPorts id="model::modelComponentView::subBSCU2impl::pedal2" name="pedal2"
connectedPorts="//@inputPorts.0" owner="//@components.2"/>
<outputPorts id="model::modelComponentView::subBSCU2impl::valid" name="valid"
connectedPorts="//@components.3/@inputPorts.0" owner="//@components.2"/>
<outputPorts id="model::modelComponentView::subBSCU2impl::cmd" name="cmd" connectedPorts="
//@components.0/@inputPorts.1" owner="//@components.2"/>
<rules>

<inputExpression port="//@components.2/@inputPorts.0">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.2/@inputPorts.1">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.2/@outputPorts.0">

<failures type="failure" id="late"/>
</outputExpression>
<outputExpression port="//@components.2/@outputPorts.1">

<failures type="failure" id="late"/>

- 148 -

Appendix F: The BSCU Flamm Architectural Model

</outputExpression>
</rules>
<rules>

<inputExpression port="//@components.2/@inputPorts.0">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.2/@inputPorts.1">

<failures id="noFailure"/>
</inputExpression>
<outputExpression port="//@components.2/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>
<outputExpression port="//@components.2/@outputPorts.1">

<failures type="failure" id="omission"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.2/@inputPorts.0">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.2/@inputPorts.1">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.2/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>
<outputExpression port="//@components.2/@outputPorts.1">

<failures type="failure" id="omission"/>
</outputExpression>

</rules>
</components>
<components xsi:type="flamm:SimpleComponent" id="

model::modelComponentView::bscuSys::validSwitch" name="validSwitch">
<inputPorts id="model::modelComponentView::validSwitchImpl::valid2" name="valid2"
connectedPorts="//@components.2/@outputPorts.0" owner="//@components.3"/>
<inputPorts id="model::modelComponentView::validSwitchImpl::valid1" name="valid1"
connectedPorts="//@components.1/@outputPorts.0" owner="//@components.3"/>
<outputPorts id="model::modelComponentView::validSwitchImpl::valid" name="valid"
connectedPorts="//@outputPorts.1" owner="//@components.3"/>
<rules>

<inputExpression port="//@components.3/@inputPorts.1">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.3/@inputPorts.0">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.3/@outputPorts.0">

<failures type="failure" id="late"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.3/@inputPorts.1">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.3/@inputPorts.0">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.3/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.3/@inputPorts.1">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.3/@inputPorts.0">

<failures id="noFailure"/>
</inputExpression>
<outputExpression port="//@components.3/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>

</rules>
</components>

</flamm:CompositeComponent>

- 149 -

G
The BSCU Flamm ArchitecturalModel

With FPTC Results

<?xml version="1.0" encoding="ASCII"?>
<flamm:CompositeComponent xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="

http://www.w3.org/2001/XMLSchema -instance" xmlns:flamm="http://www.polarsys.org/chess/fla/
flamm" id="model::modelComponentView::bscuSys" name="bscuSys">

<inputPorts id="model::modelComponentView::bscuSys::pedal2" name="pedal2" connectedPorts="//
@components.2/@inputPorts.1 //@components.1/@inputPorts.0" owner="/">
<failures id="noFailure"/>
<failures type="failure" id="late"/>

</inputPorts>
<inputPorts id="model::modelComponentView::bscuSys::pedal1" name="pedal1" connectedPorts="//

@components.1/@inputPorts.1 //@components.2/@inputPorts.0" owner="/">
<failures id="noFailure"/>

</inputPorts>
<outputPorts id="model::modelComponentView::bscuSys::cmd" name="cmd" connectedPorts="//

@components.0/@outputPorts.0" owner="/">
<failures id="noFailure" previousFailures="//@components.0/@outputPorts.0/@failures.0"/>
<failures type="failure" id="omission" previousFailures="//@components.0/@outputPorts.0/
@failures.1"/>

</outputPorts>
<outputPorts id="model::modelComponentView::bscuSys::valid" name="valid" connectedPorts="//

@components.3/@outputPorts.0" owner="/">
<failures id="noFailure" previousFailures="//@components.3/@outputPorts.0/@failures.0"/>

</outputPorts>
<components xsi:type="flamm:SimpleComponent" id="

model::modelComponentView::bscuSys::selectSwitch" name="selectSwitch">
<inputPorts id="model::modelComponentView::selectSwitchImpl::valid" name="valid"
connectedPorts="//@components.1/@outputPorts.0" owner="//@components.0">

<failures id="noFailure" previousFailures="//@components.1/@outputPorts.0/@failures.0"/>
</inputPorts>
<inputPorts id="model::modelComponentView::selectSwitchImpl::cmd2" name="cmd2"
connectedPorts="//@components.2/@outputPorts.1" owner="//@components.0">

<failures id="noFailure" previousFailures="//@components.2/@outputPorts.1/@failures.0"/>
<failures type="failure" id="omission" previousFailures="//@components.2/@outputPorts.1/

@failures.1"/>
</inputPorts>
<inputPorts id="model::modelComponentView::selectSwitchImpl::cmd1" name="cmd1"
connectedPorts="//@components.1/@outputPorts.1" owner="//@components.0">

<failures id="noFailure" previousFailures="//@components.1/@outputPorts.1/@failures.0"/>
<failures type="failure" id="omission" previousFailures="//@components.1/@outputPorts.1/

@failures.1"/>
</inputPorts>
<outputPorts id="model::modelComponentView::selectSwitchImpl::cmd" name="cmd"
connectedPorts="//@outputPorts.0" owner="//@components.0">

<failures id="noFailure" previousFailures="//@components.0/@inputPorts.0/@failures.0 //
@components.0/@inputPorts.1/@failures.0 //@components.0/@inputPorts.2/@failures.0"/>

<failures type="failure" id="omission" previousFailures="//@components.0/@inputPorts.1/
@failures.1 //@components.0/@inputPorts.2/@failures.1 //@components.0/@inputPorts.0/
@failures.0"/>
</outputPorts>
<rules>

<inputExpression port="//@components.0/@inputPorts.0">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.0/@inputPorts.2">

- 150 -

Appendix G: The BSCU Flamm Architectural Model With FPTC Results

<failures type="failure" id="late"/>
</inputExpression>
<inputExpression port="//@components.0/@inputPorts.1">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.0/@outputPorts.0">

<failures type="failure" id="late"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.0/@inputPorts.0">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.0/@inputPorts.2">

<failures type="failure" id="omission"/>
</inputExpression>
<inputExpression port="//@components.0/@inputPorts.1">

<failures type="failure" id="omission"/>
</inputExpression>
<outputExpression port="//@components.0/@outputPorts.0">

<failures type="failure" id="omission"/>
</outputExpression>

</rules>
</components>
<components xsi:type="flamm:SimpleComponent" id="

model::modelComponentView::bscuSys::subBSCU1" name="subBSCU1">
<inputPorts id="model::modelComponentView::subBSCU1impl::pedal2" name="pedal2"
connectedPorts="//@inputPorts.0" owner="//@components.1">

<failures id="noFailure" previousFailures="//@inputPorts.0/@failures.0"/>
<failures type="failure" id="late" previousFailures="//@inputPorts.0/@failures.1"/>

</inputPorts>
<inputPorts id="model::modelComponentView::subBSCU1impl::pedal1" name="pedal1"
connectedPorts="//@inputPorts.1" owner="//@components.1">

<failures id="noFailure" previousFailures="//@inputPorts.1/@failures.0"/>
</inputPorts>
<outputPorts id="model::modelComponentView::subBSCU1impl::valid" name="valid"
connectedPorts="//@components.3/@inputPorts.1 //@components.0/@inputPorts.0" owner="//
@components.1">

<failures id="noFailure" previousFailures="//@components.1/@inputPorts.0/@failures.1 //
@components.1/@inputPorts.1/@failures.0 //@components.1/@inputPorts.0/@failures.0"/>
</outputPorts>
<outputPorts id="model::modelComponentView::subBSCU1impl::cmd" name="cmd" connectedPorts="
//@components.0/@inputPorts.2" owner="//@components.1">

<failures id="noFailure" previousFailures="//@components.1/@inputPorts.0/@failures.0 //
@components.1/@inputPorts.1/@failures.0"/>

<failures type="failure" id="omission" previousFailures="//@components.1/@inputPorts.0/
@failures.1 //@components.1/@inputPorts.1/@failures.0"/>
</outputPorts>
<rules>

<inputExpression port="//@components.1/@inputPorts.1">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.1/@inputPorts.0">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.1/@outputPorts.0">

<failures type="failure" id="late"/>
</outputExpression>
<outputExpression port="//@components.1/@outputPorts.1">

<failures type="failure" id="late"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.1/@inputPorts.1">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.1/@inputPorts.0">

<failures id="noFailure"/>
</inputExpression>
<outputExpression port="//@components.1/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>
<outputExpression port="//@components.1/@outputPorts.1">

<failures type="failure" id="omission"/>

- 151 -

Appendix G: The BSCU Flamm Architectural Model With FPTC Results

</outputExpression>
</rules>
<rules>

<inputExpression port="//@components.1/@inputPorts.1">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.1/@inputPorts.0">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.1/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>
<outputExpression port="//@components.1/@outputPorts.1">

<failures type="failure" id="omission"/>
</outputExpression>

</rules>
</components>
<components xsi:type="flamm:SimpleComponent" id="

model::modelComponentView::bscuSys::subBSCU2" name="subBSCU2">
<inputPorts id="model::modelComponentView::subBSCU2impl::pedal1" name="pedal1"
connectedPorts="//@inputPorts.1" owner="//@components.2">

<failures id="noFailure" previousFailures="//@inputPorts.1/@failures.0"/>
</inputPorts>
<inputPorts id="model::modelComponentView::subBSCU2impl::pedal2" name="pedal2"
connectedPorts="//@inputPorts.0" owner="//@components.2">

<failures id="noFailure" previousFailures="//@inputPorts.0/@failures.0"/>
<failures type="failure" id="late" previousFailures="//@inputPorts.0/@failures.1"/>

</inputPorts>
<outputPorts id="model::modelComponentView::subBSCU2impl::valid" name="valid"
connectedPorts="//@components.3/@inputPorts.0" owner="//@components.2">

<failures id="noFailure" previousFailures="//@components.2/@inputPorts.0/@failures.0 //
@components.2/@inputPorts.1/@failures.0 //@components.2/@inputPorts.1/@failures.1"/>
</outputPorts>
<outputPorts id="model::modelComponentView::subBSCU2impl::cmd" name="cmd" connectedPorts="
//@components.0/@inputPorts.1" owner="//@components.2">

<failures id="noFailure" previousFailures="//@components.2/@inputPorts.0/@failures.0 //
@components.2/@inputPorts.1/@failures.0"/>

<failures type="failure" id="omission" previousFailures="//@components.2/@inputPorts.0/
@failures.0 //@components.2/@inputPorts.1/@failures.1"/>
</outputPorts>
<rules>

<inputExpression port="//@components.2/@inputPorts.0">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.2/@inputPorts.1">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.2/@outputPorts.0">

<failures type="failure" id="late"/>
</outputExpression>
<outputExpression port="//@components.2/@outputPorts.1">

<failures type="failure" id="late"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.2/@inputPorts.0">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.2/@inputPorts.1">

<failures id="noFailure"/>
</inputExpression>
<outputExpression port="//@components.2/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>
<outputExpression port="//@components.2/@outputPorts.1">

<failures type="failure" id="omission"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.2/@inputPorts.0">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.2/@inputPorts.1">

<failures type="failure" id="late"/>

- 152 -

Appendix G: The BSCU Flamm Architectural Model With FPTC Results

</inputExpression>
<outputExpression port="//@components.2/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>
<outputExpression port="//@components.2/@outputPorts.1">

<failures type="failure" id="omission"/>
</outputExpression>

</rules>
</components>
<components xsi:type="flamm:SimpleComponent" id="

model::modelComponentView::bscuSys::validSwitch" name="validSwitch">
<inputPorts id="model::modelComponentView::validSwitchImpl::valid2" name="valid2"
connectedPorts="//@components.2/@outputPorts.0" owner="//@components.3">

<failures id="noFailure" previousFailures="//@components.2/@outputPorts.0/@failures.0"/>
</inputPorts>
<inputPorts id="model::modelComponentView::validSwitchImpl::valid1" name="valid1"
connectedPorts="//@components.1/@outputPorts.0" owner="//@components.3">

<failures id="noFailure" previousFailures="//@components.1/@outputPorts.0/@failures.0"/>
</inputPorts>
<outputPorts id="model::modelComponentView::validSwitchImpl::valid" name="valid"
connectedPorts="//@outputPorts.1" owner="//@components.3">

<failures id="noFailure" previousFailures="//@components.3/@inputPorts.0/@failures.0 //
@components.3/@inputPorts.1/@failures.0"/>
</outputPorts>
<rules>

<inputExpression port="//@components.3/@inputPorts.1">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.3/@inputPorts.0">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.3/@outputPorts.0">

<failures type="failure" id="late"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.3/@inputPorts.1">
<failures id="noFailure"/>

</inputExpression>
<inputExpression port="//@components.3/@inputPorts.0">

<failures type="failure" id="late"/>
</inputExpression>
<outputExpression port="//@components.3/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>

</rules>
<rules>

<inputExpression port="//@components.3/@inputPorts.1">
<failures type="failure" id="late"/>

</inputExpression>
<inputExpression port="//@components.3/@inputPorts.0">

<failures id="noFailure"/>
</inputExpression>
<outputExpression port="//@components.3/@outputPorts.0">

<failures id="noFailure"/>
</outputExpression>

</rules>
</components>

</flamm:CompositeComponent>

- 153 -

H
The Undesired Hazardous Events

<parameters>
<domain>ARP4754A</domain>

<criticalityLevels>
<!-- change the criticality expressions below according
to the desired standard/domain. You can add more levels
as necessary. -->
<level id="1" expression="negligible" />
<!-- lowest criticality (negligible) level -->
<level id="2" expression="minor" />
<level id="3" expression="major" />
<level id="4" expression="hazardous" />
<level id="5" expression="catastrophic" />
<!-- highest criticality level -->
</criticalityLevels>

<hazardousEvents>
<failure type="omission" criticality="5"/>
<failure type="late" criticality="2"/>

</hazardousEvents>
</parameters>

- 154 -

I
The SACM/XMI Representation of the

Product-Based Argument

<?xml version="1.0" encoding="utf-8"?>
<ARM:Argumentation xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1" xmlns:xsi=

"http://www.w3.org/2001/XMLSchema -instance" xmlns:ARM="www.omg.org/spec/SACM/20120501/
Argumentation" xmi:id="0" id="GSN">

<argumentElement xsi:type="ARM:Claim" xmi:id="1" id="C1" content="All causes of hazardous
Failure Modes are acceptable" toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="2" id="C1.1" content="Hazardous Failure Mode of
type 'late' is absent in contributory software functionality." toBeSupported="
false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="3" id="IC1.1" content="Known causes
of late failure mode." toBeSupported="false"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="5" id="RC1.1" content="Argument over
failure mechanisms " describedInference="17 18 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="6" id="IRC1.1" content="Identified
failure mechanisms describe all known causes of Late hazardous Failure Mode" toBeSupported
="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="8" id="C1.1.1" content="The known causes of
secondary failures of other components are acceptably handled" toBeSupported="true"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="9" id="C1.1.2" content="The component
successfully handles the primary failures" toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="10" id="C1.1.2.1" content="Hazardous event: late
has been mitigated by component(s): subBSCU1 ,subBSCU2" toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="11" id="S1.1.2.1" content="
Mitigation details in product_arg.txt." toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="12" id="C1.2" content="Hazardous Failure Mode of
type 'omission' is absent in contributory software functionality."

toBeSupported="false"/>
<argumentElement xsi:type="ARM:InformationElement" xmi:id="13" id="IC1.2" content="Known

causes of omission failure mode." toBeSupported="false"/>
<argumentElement xsi:type="ARM:InformationElement" xmi:id="15" id="S1.2" content="Counter

Evidence in product_arg.txt." toBeSupported="false"/>
<argumentElement xsi:type="ARM:AssertedContext" xmi:id="4" id="C1.1" toBeSupported="false"

source="3" target="2"/>
<argumentElement xsi:type="ARM:AssertedContext" xmi:id="7" id="RC1.1" toBeSupported="false"

source="6" target="5"/>
<argumentElement xsi:type="ARM:AssertedContext" xmi:id="14" id="C1.2" toBeSupported="false"

source="13" target="12"/>
<argumentElement xsi:type="ARM:AssertedInference" xmi:id="16" id="C1.1" toBeSupported="false"

source="2" target="1 "/>
<argumentElement xsi:type="ARM:AssertedInference" xmi:id="17" id="C1.1.1" toBeSupported="false

" source="8" target="2 "/>
<argumentElement xsi:type="ARM:AssertedInference" xmi:id="18" id="C1.1.2" toBeSupported="false

" source="9" target="2 "/>
<argumentElement xsi:type="ARM:AssertedInference" xmi:id="19" id="C1.1.2.1" toBeSupported="

false" source="10" target="9 "/>
<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="20" id="S1.1.2.1" toBeSupported="

false" source="11" target="10 "/>
<argumentElement xsi:type="ARM:AssertedInference" xmi:id="21" id="C1.2" toBeSupported="false"

source="12" target="1 "/>
<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="22" id="S1.2" toBeSupported="false"

source="15" target="12 "/></ARM:Argumentation>

- 155 -

J
The Argument Outline Textual

Representation of the Product-Based
Argument

CLAIM C1: ALL CAUSES OF HAZARDOUS FAILURE MODES ARE ACCEPTABLE

CLAIM C1.1: HAZARDOUS FAILURE MODE OF TYPE ’LATE’ IS ABSENT IN CONTRIBUTORY SOFTWARE
FUNCTIONALITY.

CONTEXT C1.1: Known causes of Late failure mode.

STRATEGY RC1.1: Argument over failure mechanisms

JUSTIFICATION RC1.1: Identified failure mechanisms describe all known causes of Late
hazardous Failure Mode

CLAIM C1.1.1: THE KNOWN CAUSES OF SECONDARY FAILURES OF OTHER
COMPONENTS ARE ACCEPTABLY HANDLED

[Undeveloped]

CLAIM C1.1.2: THE COMPONENT SUCCESSFULLY HANDLES THE PRIMARY FAILURES

CLAIM C1.1.2.1: HAZARDOUS EVENT: LATE HAS BEEN MITIGATED BY
COMPONENT(S): SUBBSCU1,SUBBSCU2

CONTEXT C1.1.2.1: late is mitigated by: subBSCU1
through rule: RULE:
INPUT EXPRESSION: -PORT: //@components.1/@inputPorts.1
Failure: -TYPE: failure -ID: late -PREVIOUS_FAILURES: null

INPUT EXPRESSION: -PORT: //@components.1/@inputPorts.0
Failure: -TYPE: null -ID: noFailure -PREVIOUS_FAILURES: null

OUTPUT EXPRESSION: -PORT: //@components.1/@outputPorts.0
Failure: -TYPE: null -ID: noFailure -PREVIOUS_FAILURES: null

OUTPUT EXPRESSION: -PORT: //@components.1/@outputPorts.1
Failure: -TYPE: failure -ID: omission -PREVIOUS_FAILURES: null

through rule: RULE:
INPUT EXPRESSION: -PORT: //@components.1/@inputPorts.1
Failure: -TYPE: null -ID: noFailure -PREVIOUS_FAILURES: null

INPUT EXPRESSION: -PORT: //@components.1/@inputPorts.0
Failure: -TYPE: failure -ID: late -PREVIOUS_FAILURES: null

OUTPUT EXPRESSION: -PORT: //@components.1/@outputPorts.0
Failure: -TYPE: null -ID: noFailure -PREVIOUS_FAILURES: null

OUTPUT EXPRESSION: -PORT: //@components.1/@outputPorts.1
Failure: -TYPE: failure -ID: omission -PREVIOUS_FAILURES: null

Late is mitigated by: subBSCU2
through rule: RULE:

- 156 -

Appendix J: The Argument Outline Textual Representation of the Product-Based
Argument

INPUT EXPRESSION: -PORT: //@components.2/@inputPorts.0
Failure: -TYPE: failure -ID: late -PREVIOUS_FAILURES: null

INPUT EXPRESSION: -PORT: //@components.2/@inputPorts.1
Failure: -TYPE: null -ID: noFailure -PREVIOUS_FAILURES: null

OUTPUT EXPRESSION: -PORT: //@components.2/@outputPorts.0
Failure: -TYPE: null -ID: noFailure -PREVIOUS_FAILURES: null

OUTPUT EXPRESSION: -PORT: //@components.2/@outputPorts.1
Failure: -TYPE: failure -ID: omission -PREVIOUS_FAILURES: null

through rule: RULE:
INPUT EXPRESSION: -PORT: //@components.2/@inputPorts.0
Failure: -TYPE: null -ID: noFailure -PREVIOUS_FAILURES: null

INPUT EXPRESSION: -PORT: //@components.2/@inputPorts.1
Failure: -TYPE: failure -ID: late -PREVIOUS_FAILURES: null

OUTPUT EXPRESSION: -PORT: //@components.2/@outputPorts.0
Failure: -TYPE: null -ID: noFailure -PREVIOUS_FAILURES: null

OUTPUT EXPRESSION: -PORT: //@components.2/@outputPorts.1
Failure: -TYPE: failure -ID: omission -PREVIOUS_FAILURES: null

EVIDENCE S1.1.2.1: Mitigation details in product_arg.txt.

CLAIM C1.2: HAZARDOUS FAILURE MODE OF TYPE ’OMISSION’ IS ABSENT IN CONTRIBUTORY
SOFTWARE

FUNCTIONALITY.
CONTEXT C1.2: Known causes of omission failure mode.

COUNTER_EVIDENCE S1.2: Counter Evidence in product_arg.txt.

CONTEXT S1.2: Omission CAUSED BY:
Failure: ’omission ’ On Output Port: ’cmd’ of Component: ’selectSwitch ’. CAUSED BY:
{
Failure: ’omission ’ On Input Port: ’cmd2’ of Component: ’selectSwitch ’. CAUSED BY:
Failure: ’omission ’ On Output Port: ’cmd’ of Component: ’subBSCU2 ’. CAUSED BY:
{
Failure: ’noFailure ’ On Input Port: ’pedal1’ of Component: ’subBSCU2 ’. CAUSED BY:
Failure: ’noFailure ’ On Input Port: ’pedal1’ of Component: ’System [the composite
component]’. CAUSED BY: NO FURTHER CAUSES.

AND
Failure: ’late’ On Input Port: ’pedal2’ of Component: ’subBSCU2 ’. CAUSED BY:
Failure: ’late’ On Input Port: ’pedal2’ of Component: ’System [the composite component

]’.
CAUSED BY: NO FURTHER CAUSES.

}

AND
Failure: ’omission ’ On Input Port: ’cmd1’ of Component: ’selectSwitch ’. CAUSED BY:
Failure: ’omission ’ On Output Port: ’cmd’ of Component: ’subBSCU1 ’. CAUSED BY:
{
Failure: ’late’ On Input Port: ’pedal2’ of Component: ’subBSCU1 ’. CAUSED BY:
Failure: ’late’ On Input Port: ’pedal2’ of Component: ’System [the composite component

]’.
CAUSED BY: NO FURTHER CAUSES.

AND
Failure: ’noFailure ’ On Input Port: ’pedal1’ of Component: ’subBSCU1 ’. CAUSED BY:
Failure: ’noFailure ’ On Input Port: ’pedal1’ of Component: ’System [the composite
component]’. CAUSED BY: NO FURTHER CAUSES.

}

AND

- 157 -

Appendix J: The Argument Outline Textual Representation of the Product-Based
Argument

Failure: ’noFailure ’ On Input Port: ’valid’ of Component: ’selectSwitch ’. CAUSED BY:
Failure: ’noFailure ’ On Output Port: ’valid’ of Component: ’subBSCU1 ’. CAUSED BY:
{
Failure: ’late’ On Input Port: ’pedal2’ of Component: ’subBSCU1 ’. CAUSED BY:
Failure: ’late’ On Input Port: ’pedal2’ of Component: ’System [the composite component

]’.
CAUSED BY: NO FURTHER CAUSES.

AND
Failure: ’noFailure ’ On Input Port: ’pedal1’ of Component: ’subBSCU1 ’. CAUSED BY:
Failure: ’noFailure ’ On Input Port: ’pedal1’ of Component: ’System [the composite
component]’. CAUSED BY: NO FURTHER CAUSES.

AND
Failure: ’noFailure ’ On Input Port: ’pedal2’ of Component: ’subBSCU1 ’. CAUSED BY:
Failure: ’noFailure ’ On Input Port: ’pedal2’ of Component: ’System [the composite
component]’. CAUSED BY: NO FURTHER CAUSES.

}

}

- 158 -

K
The SACM/XMI Representation of the

Process-Based Argument

<?xml version="1.0" encoding="utf-8"?>
<ARM:Argumentation xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1" xmlns:xsi=

"http://www.w3.org/2001/XMLSchema -instance" xmlns:ARM="www.omg.org/spec/SACM/20120501/
Argumentation" xmi:id="0" id="GSN">

<argumentElement xsi:type="ARM:Claim" xmi:id="1" id="C1" content="The process meets the safety
requirements." toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="2" id="C1.1" content="The activity Process-
Based_Argument_Generation has been carried out." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="3" id="IC1.1" content="Standard:
ARP4761 -- Performed @ 09/03/2016 18:21:21" toBeSupported="false"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="5" id="RC1.1" content="Argument over
roles " describedInference="67 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="6" id="C1.1.1" content="Role Safety Engineer is
certified." toBeSupported="true"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="8" id="WC1.1" content="Argument over
work products " describedInference="69 71 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="9" id="C1.1.2" content="Process-Based SACM
Argument is available." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="10" id="S1.1.2" content="
processBasedSafetySACMArgument.xmi" toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="11" id="C1.1.3" content="Textual Argument is
available." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="12" id="S1.1.3" content="
processBasedSafetyArgument.txt" toBeSupported="false"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="13" id="TC1.1" content="Argument
over tools " describedInference="73 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="14" id="C1.1.4" content="Tool Process-
Based_Argument_Generation -version: 1 is qualified." toBeSupported="true"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="16" id="GC1.1" content="Argument
over guidance " describedInference="75 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="17" id="C1.1.5" content="Guidance Appendix B3
has been followed." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="18" id="S1.1.5" content="Appendix
B3" toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="19" id="C1.2" content="The activity
Arguments_Composition has been carried out." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="20" id="IC1.2" content="Standard:
ARP4761 -- Performed @ 09/03/2016 18:21:21" toBeSupported="false"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="22" id="RC1.2" content="Argument
over roles " describedInference="78 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="23" id="C1.2.6" content="Role Safety Engineer is
certified." toBeSupported="true"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="25" id="WC1.2" content="Argument
over work products " describedInference="80 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="26" id="C1.2.7" content="Safety Case Argument
Fragment is available." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="27" id="S1.2.7" content="
CombinedSafetySACMArgument.xmi" toBeSupported="false"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="28" id="TC1.2" content="Argument
over tools " describedInference="82 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="29" id="C1.2.8" content="Tool
Arguments_Composition -version: 1 is qualified." toBeSupported="true"/>

- 159 -

Appendix K: The SACM/XMI Representation of the Process-Based Argument

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="31" id="GC1.2" content="Argument
over guidance " describedInference="84 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="32" id="C1.2.9" content="Guidance Appendix B3
has been followed." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="33" id="S1.2.9" content="Appendix
B3" toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="34" id="C1.3" content="The activity FPTC_based
Analysis has been carried out." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="35" id="IC1.3" content="Standard:
ARP4761 -- Performed @ 09/03/2016 18:21:21" toBeSupported="false"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="37" id="RC1.3" content="Argument
over roles " describedInference="87 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="38" id="C1.3.10" content="Role Safety Engineer
is certified." toBeSupported="true"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="40" id="WC1.3" content="Argument
over work products " describedInference="89 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="41" id="C1.3.11" content="FPTC results is
available." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="42" id="S1.3.11" content="bscu.
flamm" toBeSupported="false"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="43" id="TC1.3" content="Argument
over tools " describedInference="91 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="44" id="C1.3.12" content="Tool FPTC_based
Analysis -version: 1 is qualified." toBeSupported="true"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="46" id="GC1.3" content="Argument
over guidance " describedInference="93 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="47" id="C1.3.13" content="Guidance Appendix B3
has been followed." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="48" id="S1.3.13" content="Appendix
B3" toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="49" id="C1.4" content="The activity Product-
Based_Argument_Generation has been carried out." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="50" id="IC1.4" content="Standard:
ARP4761 -- Performed @ 09/03/2016 18:21:21" toBeSupported="false"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="52" id="RC1.4" content="Argument
over roles " describedInference="96 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="53" id="C1.4.14" content="Role Safety Engineer
is certified." toBeSupported="true"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="55" id="WC1.4" content="Argument
over work products " describedInference="98 100 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="56" id="C1.4.15" content="Product-Based SACM
Argument is available." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="57" id="S1.4.15" content="
productBasedSafetySACMArgument.xmi" toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="58" id="C1.4.16" content="Textual Argument is
available." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="59" id="S1.4.16" content="
productBasedSafetyArgument.txt" toBeSupported="false"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="60" id="TC1.4" content="Argument
over tools " describedInference="102 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="61" id="C1.4.17" content="Tool Product-
Based_Argument_Generation -version: 3 is qualified." toBeSupported="true"/>

<argumentElement xsi:type="ARM:ArgumentReasoning" xmi:id="63" id="GC1.4" content="Argument
over guidance " describedInference="104 " toBeSupported="false"/>

<argumentElement xsi:type="ARM:Claim" xmi:id="64" id="C1.4.18" content="Guidance Appendix B3
has been followed." toBeSupported="false"/>

<argumentElement xsi:type="ARM:InformationElement" xmi:id="65" id="S1.4.18" content="Appendix
B3" toBeSupported="false"/>

<argumentElement xsi:type="ARM:AssertedContext" xmi:id="4" id="C1.1" toBeSupported="false"
source="3" target="2"/>

<argumentElement xsi:type="ARM:AssertedContext" xmi:id="21" id="C1.2" toBeSupported="false"
source="20" target="19"/>

<argumentElement xsi:type="ARM:AssertedContext" xmi:id="36" id="C1.3" toBeSupported="false"
source="35" target="34"/>

<argumentElement xsi:type="ARM:AssertedContext" xmi:id="51" id="C1.4" toBeSupported="false"
source="50" target="49"/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="66" id="C1.1" toBeSupported="false"
source="2" target="1 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="67" id="C1.1.1" toBeSupported="false
" source="6" target="2 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="69" id="C1.1.2" toBeSupported="false
" source="9" target="2 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="70" id="S1.1.2" toBeSupported="false"
source="10" target="9 "/>

- 160 -

Appendix K: The SACM/XMI Representation of the Process-Based Argument

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="71" id="C1.1.3" toBeSupported="false
" source="11" target="2 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="72" id="S1.1.3" toBeSupported="false"
source="12" target="11 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="73" id="C1.1.4" toBeSupported="false
" source="14" target="2 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="75" id="C1.1.5" toBeSupported="false
" source="17" target="2 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="76" id="S1.1.5" toBeSupported="false"
source="18" target="17 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="77" id="C1.2" toBeSupported="false"
source="19" target="1 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="78" id="C1.2.6" toBeSupported="false
" source="23" target="19 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="80" id="C1.2.7" toBeSupported="false
" source="26" target="19 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="81" id="S1.2.7" toBeSupported="false"
source="27" target="26 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="82" id="C1.2.8" toBeSupported="false
" source="29" target="19 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="84" id="C1.2.9" toBeSupported="false
" source="32" target="19 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="85" id="S1.2.9" toBeSupported="false"
source="33" target="32 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="86" id="C1.3" toBeSupported="false"
source="34" target="1 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="87" id="C1.3.10" toBeSupported="
false" source="38" target="34 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="89" id="C1.3.11" toBeSupported="
false" source="41" target="34 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="90" id="S1.3.11" toBeSupported="false
" source="42" target="41 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="91" id="C1.3.12" toBeSupported="
false" source="44" target="34 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="93" id="C1.3.13" toBeSupported="
false" source="47" target="34 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="94" id="S1.3.13" toBeSupported="false
" source="48" target="47 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="95" id="C1.4" toBeSupported="false"
source="49" target="1 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="96" id="C1.4.14" toBeSupported="
false" source="53" target="49 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="98" id="C1.4.15" toBeSupported="
false" source="56" target="49 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="99" id="S1.4.15" toBeSupported="false
" source="57" target="56 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="100" id="C1.4.16" toBeSupported="
false" source="58" target="49 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="101" id="S1.4.16" toBeSupported="
false" source="59" target="58 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="102" id="C1.4.17" toBeSupported="
false" source="61" target="49 "/>

<argumentElement xsi:type="ARM:AssertedInference" xmi:id="104" id="C1.4.18" toBeSupported="
false" source="64" target="49 "/>

<argumentElement xsi:type="ARM:AssertedEvidence" xmi:id="105" id="S1.4.18" toBeSupported="
false" source="65" target="64 "/>

</ARM:Argumentation>

- 161 -

L
The Argument Outline Textual

Representation of the Process-Based
Argument

CLAIM C1: THE PROCESS MEETS THE SAFETY REQUIREMENTS.

CLAIM C1.1: THE ACTIVITY PROCESS_ARGUMENT_GENERATOR HAS BEEN CARRIED OUT.
CONTEXT C1.1: Standard: ARP4761 -- Performed @ 09/03/2016 18:21:21

STRATEGY RC1.1: Argument over roles

CLAIM C1.1.1: ROLE SAFETY ENGINEER IS CERTIFIED.
[Undeveloped]

STRATEGY WC1.1: Argument over work products

CLAIM C1.1.2: Process-Based SACM Argument IS AVAILABLE.
EVIDENCE S1.1.2: processBasedSafetySACMArgument.xmi

CLAIM C1.1.3: Textual Argument IS AVAILABLE.
EVIDENCE S1.1.3: processBasedSafetyArgument.txt

STRATEGY TC1.1: Argument over tools

CLAIM C1.1.4: TOOL PROCESS_ARGUMENT_GENERATOR -VERSION: 1 IS QUALIFIED
.

[Undeveloped]

STRATEGY GC1.1: Argument over guidance

CLAIM C1.1.5: GUIDANCE APPENDIX B3 HAS BEEN FOLLOWED.
EVIDENCE S1.1.5: Appendix B3

CLAIM C1.2: THE ACTIVITY ARGUMENTS COMPOSITION HAS BEEN CARRIED OUT.
CONTEXT C1.2: Standard: ARP4761 -- Performed @ 09/03/2016 18:21:21

STRATEGY RC1.2: Argument over roles

CLAIM C1.2.6: ROLE SAFETY ENGINEER IS CERTIFIED.
[Undeveloped]

STRATEGY WC1.2: Argument over work products

- 162 -

Appendix L: The Argument Outline Textual Representation of the Process-Based
Argument

CLAIM C1.2.7: Safety Case Argument Fragment IS AVAILABLE.
EVIDENCE S1.2.7: CombinedSafetySACMArgument.xmi

STRATEGY TC1.2: Argument over tools

CLAIM C1.2.8: TOOL ARGUMENT_MERGER -VERSION: 1 IS QUALIFIED.
[Undeveloped]

STRATEGY GC1.2: Argument over guidance

CLAIM C1.2.9: GUIDANCE APPENDIX B3 HAS BEEN FOLLOWED.
EVIDENCE S1.2.9: Appendix B3

CLAIM C1.3: THE ACTIVITY FPTC_based Analysis HAS BEEN CARRIED OUT.
CONTEXT C1.3: Standard: ARP4761 -- Performed @ 09/03/2016 18:21:21

STRATEGY RC1.3: Argument over roles

CLAIM C1.3.10: ROLE SAFETY ENGINEER IS CERTIFIED.
[Undeveloped]

STRATEGY WC1.3: Argument over work products

CLAIM C1.3.11: FPTC results IS AVAILABLE.
EVIDENCE S1.3.11: bscu.flamm

STRATEGY TC1.3: Argument over tools

CLAIM C1.3.12: TOOL FPTC_based Analysis -VERSION: 1 IS QUALIFIED.
[Undeveloped]

STRATEGY GC1.3: Argument over guidance

CLAIM C1.3.13: GUIDANCE APPENDIX B3 HAS BEEN FOLLOWED.
EVIDENCE S1.3.13: Appendix B3

CLAIM C1.4: THE ACTIVITY PRODUCT_ARGUMENT_GENERATOR HAS BEEN CARRIED OUT.
CONTEXT C1.4: Standard: ARP4761 -- Performed @ 09/03/2016 18:21:21

STRATEGY RC1.4: Argument over roles

CLAIM C1.4.14: ROLE SAFETY ENGINEER IS CERTIFIED.
[Undeveloped]

STRATEGY WC1.4: Argument over work products

CLAIM C1.4.15: Product-Based SACM Argument IS AVAILABLE.
EVIDENCE S1.4.15: productBasedSafetySACMArgument.xmi

CLAIM C1.4.16: Textual Argument IS AVAILABLE.
EVIDENCE S1.4.16: productBasedSafetyArgument.txt

- 163 -

Appendix L: The Argument Outline Textual Representation of the Process-Based
Argument

STRATEGY TC1.4: Argument over tools

CLAIM C1.4.17: TOOL PRODUCT_ARGUMENT_GENERATOR -VERSION: 3 IS
QUALIFIED.

[Undeveloped]

STRATEGY GC1.4: Argument over guidance

CLAIM C1.4.18: GUIDANCE APPENDIX B3 HAS BEEN FOLLOWED.
EVIDENCE S1.4.18: Appendix B3

- 164 -

M
The XML PSSA ProcessModel

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2015 rel. 4 (x64) (http://www.altova.com)-->
<Process xmlns="http://ncl.ac.uk/namesspace" xmlns:xsi="http://www.w3.org/2001/XMLSchema -

instance" ID="ID1" xsi:schemaLocation="http://ncl.ac.uk/namesspace Process-v1.2.xsd">
<Description>Safety Process</Description>
<Start_with>560c154ae4b0564156c5d5bb</Start_with>
<Elements>

<Activity ID="560c154ae4b0564156c5d5bb">
<Name>FPTC_based Analysis</Name>
<Description>fault propagation analysis task using FPTC analysis</Description>
<Interactive>false</Interactive>
<No_of_input_ports>1</No_of_input_ports>
<No_of_output_ports>1</No_of_output_ports>
<Wait_for_input>false</Wait_for_input>
<Responsible_role>Safety Engineer</Responsible_role>
<Standard>ARP4761</Standard>
<Guidance>Appendix B3</Guidance>
<Tool_qualification>null</Tool_qualification>
<Version>1</Version>
<In_ports>
<In_port>

<From_activity>null</From_activity>
<Artefact ID="560c154ae4b0564156c5d5b9">

<Filename>bscu.flamm</Filename>
<Filetype>flamm</Filetype>
<Description>the input model for FPTC analysis</Description>
<Version>1</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>
<Out_port>

<Next_activity>560c154ae4b0564156c5d5bb</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>bscu.flamm</Filename>
<Filetype>flamm</Filetype>
<Description>the result of the FPTC analysis task</Description>
<Version>1</Version>
</Artefact>

</Out_port>
</Out_ports>

</Activity>

<Activity ID="560c154ae4b0564156c5d5bb">
<Name>Product-Based_Argument_Generation</Name>
<Description>product based argument generation from FPTC results</Description>
<Interactive>false</Interactive>
<No_of_input_ports>2</No_of_input_ports>
<No_of_output_ports>2</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Safety Engineer</Responsible_role>
<Standard>ARP4761</Standard>
<Guidance>Appendix B3</Guidance>
<Tool_qualification>null</Tool_qualification>
<Version>3</Version>
<In_ports>

<In_port>

- 165 -

Appendix M: The XML PSSA Process Model

<From_activity>560c154ae4b0564156c5d5bb</From_activity>
<Artefact ID="560c154ae4b0564156c5d5b9">

<Filename>bscu.flamm</Filename>
<Filetype>flamm</Filetype>
<Description>the FPTC results</Description>
<Version>1</Version>

</Artefact>
</In_port>
<In_port>

<From_activity>null</From_activity>
<Artefact ID="560c154ae4b0564156c5d5b9">

<Filename>hazardous_events.xml</Filename>
<Filetype>xml</Filetype>
<Description>the hazards to look for</Description>
<Version>1</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity>560c154ae4b0564156c5d5bb</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>productBasedSafetySACMArgument.xmi</Filename>
<Filetype>xmi</Filetype>

<Description>the SACM representation of the product-based argument
</Description>

<Version>1</Version>
</Artefact>

</Out_port>
<Out_port>

<Next_activity>null</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>productBasedSafetyArgument.txt</Filename>
<Filetype>txt</Filetype>

<Description>the textual representation of the product-based argument
</Description>

<Version>1</Version>
</Artefact>

</Out_port>
</Out_ports>

</Activity>

<Activity ID="560c154ae4b0564156c5d5bb">
<Name>Process-Based_Argument_Generation</Name>
<Description>process based argument generation</Description>
<Interactive>false</Interactive>
<No_of_input_ports>0</No_of_input_ports>
<No_of_output_ports>2</No_of_output_ports>
<Wait_for_input>false</Wait_for_input>
<Responsible_role>Safety Engineer</Responsible_role>
<Standard>ARP4761</Standard>
<Guidance>Appendix B3</Guidance>
<Tool_qualification>null</Tool_qualification>
<Version>1</Version>
<In_ports>

<In_port>
<From_activity>null</From_activity>
<Artefact ID="560c154ae4b0564156c5d5b9">

<Filename>process_model.xml</Filename>
<Filetype>xml</Filetype>
<Description>the XML process model</Description>
<Version>1</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity>560c154ae4b0564156c5d5bb</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>processBasedSafetySACMArgument.xmi</Filename>
<Filetype>xmi</Filetype>

<Description>the SACM representation of the process-based argument
</Description>

<Version>1</Version>

- 166 -

Appendix M: The XML PSSA Process Model

</Artefact>
</Out_port>
<Out_port>

<Next_activity>null</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>processBasedSafetyArgument.txt</Filename>
<Filetype>txt</Filetype>

<Description>the textual representation of the process-based argument
</Description>

<Version>1</Version>
</Artefact>

</Out_port>
</Out_ports>

</Activity>

<Activity ID="560c154ae4b0564156c5d5bb">
<Name>Argument_Merger</Name>
<Description>merge product and process based arguments</Description>
<Interactive>false</Interactive>
<No_of_input_ports>2</No_of_input_ports>
<No_of_output_ports>1</No_of_output_ports>
<Wait_for_input>true</Wait_for_input>
<Responsible_role>Safety Engineer</Responsible_role>
<Standard>ARP4761</Standard>
<Guidance>Appendix B3</Guidance>
<Tool_qualification>Qualified</Tool_qualification>
<Version>1</Version>
<In_ports>

<In_port>
<From_activity>560c154ae4b0564156c5d5bb</From_activity>
<Artefact ID="560c154ae4b0564156c5d5b9">

<Filename>productBasedSafetySACMArgument.xmi</Filename>
<Filetype>xmi</Filetype>
<Description>the product based SACM argument</Description>
<Version>1</Version>

</Artefact>
</In_port>
<In_port>

<From_activity>560c154ae4b0564156c5d5bb</From_activity>
<Artefact ID="560c154ae4b0564156c5d5b9">

<Filename>processBasedSafetySACMArgument.xmi</Filename>
<Filetype>xmi</Filetype>
<Description>the process based argument</Description>
<Version>1</Version>

</Artefact>
</In_port>

</In_ports>
<Out_ports>

<Out_port>
<Next_activity>null</Next_activity>
<Artefact ID="560c154ae4b0564156c5d5ba">

<Filename>CombinedSafetySACMArgument.xmi</Filename>
<Filetype>xmi</Filetype>

<Description>the SACM representation of the merged argument
</Description>

<Version>1</Version>
</Artefact>

</Out_port>
</Out_ports>

</Activity>
</Elements>

</Process>

- 167 -

	Introduction
	Preface
	Software Engineering Evolution
	Software Development as a Service
	Motivation
	Software process workflows
	Initial experiments
	Software development tools in the cloud

	Thesis Storyline and Contributions

	Reference Architecture for Software Development as a Service (SDaaS)
	Introduction
	Terminology & Definitions
	Requirements for SDaaS
	Non-cloud-related requirements
	R1: Awareness and synchronisation support
	R2: Availability of tools in real time
	R3: Organisational policy convergenceenforcement
	R4: Capturing process and provenance data
	R5: Accessible artefacts
	R6: Governance and inter-organisation collaboration

	Cloud-related requirements
	R7: Privacy and legal compliance
	R8: Multi-tenancy
	R9: Scalability

	Reference Architecture for SDaaS
	WfMC compliance
	Process modelling (Design Time)
	The enactment service (Run-time)
	Artefacts manager
	External tools
	The execution manager
	Workflow engines registry
	Scheduler
	Consistency checker
	SLA monitor
	External workflow collaboration

	Workflow engines

	Specifications of the SDaaS Workflows
	Activities types
	Interaction patterns
	Software workflows life-cycle
	Activities life-cycle
	Artefacts life-cycle

	Proof of Concept
	Implementation & deployment
	Migrated tools
	Spin
	DiVinE
	Concerto-FLA

	Discussion
	Summary

	Modelling Software Processes for Cloud-Based Execution Using EXE-SPEM
	Introduction
	Background
	Software process modelling
	Software process modelling standards
	SPEM2.0
	ESSENCE
	ISO 24744
	Choosing SPEM2.0 for software process modelling

	Requirements for Cloud-Based Executable Software Process Models
	EXE-SPEM
	Model to Text Transformation
	Sample Process
	Discussion
	Summary

	Cost-efficient Scheduling of Software Processes Execution in the Cloud
	Introduction
	Background
	Workflow scheduling
	Workflow scheduling algorithms

	Scheduling SDaaS Software Workflows in the Cloud
	Assumptions
	Objectives
	Motivation
	Problem definition & assumptions
	Scheduling requirements
	Cost factors
	Scheduling algorithms
	Unlimited First Come First Serve (UFCFS)
	Limited First Come First Serve (LFCFS)
	Pool-based Adaptive Task Schedule
	Proportional Adaptive Task Schedule

	Evaluation
	The request generator
	The simulation scheduler
	Workflow engines
	Performing the simulation
	Simulation results
	UFCFS
	LFCFS
	Pool-based Adaptive Task Scheduling
	Proportional Adaptive Task Schedule

	Summary

	Evaluation: A Case Study on Cloud-Based Engineering of Safety-Critical Systems Processes
	Introduction
	The evaluation method
	The safety-critical systems case study

	EXE-SPEM for Modelling Safety-related ProcessesThe SDaaS Architecture for Safety-Critical Systems
	The PSSA Case Study
	Argument generation
	Product-based argument
	Process-based argument

	Implementation
	Execution

	Discussion
	Summary

	Conclusions
	This Thesis in a Nutshell
	Future Work
	Motivating Scenarios
	Continuous delivery
	Compliance and continuous certification

	Concluding Remarks

	Bibliography
	Appendices
	The XML Schema for EXE-SPEM
	The XML Process Model for Facebook's Continuous Delivery Process
	ARP4761
	ARP4761 Wheel Brake System
	Safety Case Representation
	Visual representation
	Machine-readable representation
	Textual representation

	The BSCU Flamm Architectural Model
	The BSCU Flamm Architectural Model With FPTC Results
	The Undesired Hazardous Events
	The SACM/XMI Representation of the Product-Based Argument
	The Argument Outline Textual Representation of the Product-Based Argument
	The SACM/XMI Representation of the Process-Based Argument
	The Argument Outline Textual Representation of the Process-Based Argument
	The XML PSSA Process Model

