340 research outputs found

    A model-based extension to HiP-HOPS for dynamic fault propagation studies

    Get PDF
    HiP-HOPS is a model-based approach for assessing the dependability of safety-critical systems. The method combines models, logic, probabilities and nature-inspired algorithms to provide advanced capabilities for design optimisation, requirement allocation and safety argument generation. To deal with dynamic systems, HiP-HOPS has introduced temporal operators and a temporal logic to represent and assess event sequences in component failure modelling. Although this approach has been shown to work, it is not entirely consistent with the way designers tend to express operational dynamics in models which show mode and state sequences. To align HiP-HOPS better with typical design techniques, in this paper, we extend the method with the ability to explicitly consider different modes of operation. With this added capability HiP-HOPS can create and analyse temporal fault trees from architectural models of a system which are augmented with mode information

    Compositional dependability analysis of dynamic systems with uncertainty

    Get PDF
    Over the past two decades, research has focused on simplifying dependability analysis by looking at how we can synthesise dependability information from system models automatically. This has led to the field of model-based safety assessment (MBSA), which has attracted a significant amount of interest from industry, academia, and government agencies. Different model-based safety analysis methods, such as Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS), are increasingly applied by industry for dependability analysis of safety-critical systems. Such systems may feature multiple modes of operation where the behaviour of the systems and the interactions between system components can change according to what modes of operation the systems are in.MBSA techniques usually combine different classical safety analysis approaches to allow the analysts to perform safety analyses automatically or semi-automatically. For example, HiP-HOPS is a state-of-the-art MBSA approach which enhances an architectural model of a system with logical failure annotations to allow safety studies such as Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA). In this way it shows how the failure of a single component or combinations of failures of different components can lead to system failure. As systems are getting more complex and their behaviour becomes more dynamic, capturing this dynamic behaviour and the many possible interactions between the components is necessary to develop an accurate failure model.One of the ways of modelling this dynamic behaviour is with a state-transition diagram. Introducing a dynamic model compatible with the existing architectural information of systems can provide significant benefits in terms of accurate representation and expressiveness when analysing the dynamic behaviour of modern large-scale and complex safety-critical systems. Thus the first key contribution of this thesis is a methodology to enable MBSA techniques to model dynamic behaviour of systems. This thesis demonstrates the use of this methodology using the HiP-HOPS tool as an example, and thus extends HiP-HOPS with state-transition annotations. This extension allows HiP-HOPS to model more complex dynamic scenarios and perform compositional dynamic dependability analysis of complex systems by generating Pandora temporal fault trees (TFTs). As TFTs capture state, the techniques used for solving classical FTs are not suitable to solve them. They require a state space solution for quantification of probability. This thesis therefore proposes two methodologies based on Petri Nets and Bayesian Networks to provide state space solutions to Pandora TFTs.Uncertainty is another important (yet incomplete) area of MBSA: typical MBSA approaches are not capable of performing quantitative analysis under uncertainty. Therefore, in addition to the above contributions, this thesis proposes a fuzzy set theory based methodology to quantify Pandora temporal fault trees with uncertainty in failure data of components.The proposed methodologies are applied to a case study to demonstrate how they can be used in practice. Finally, the overall contributions of the thesis are evaluated by discussing the results produced and from these conclusions about the potential benefits of the new techniques are drawn

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    A synthesis of logic and biology in the design of dependable systems

    Get PDF
    The technologies of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, have advanced in recent years. Much of this development can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that combines effectively and throughout the design lifecycle these two techniques which are schematically founded on the two pillars of formal logic and biology. Such a design paradigm would apply these techniques synergistically and systematically from the early stages of design to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems that brings these technologies together to realise their combined potential benefits

    Engineering failure analysis and design optimisation with HiP-HOPS

    Get PDF
    The scale and complexity of computer-based safety critical systems, like those used in the transport and manufacturing industries, pose significant challenges for failure analysis. Over the last decade, research has focused on automating this task. In one approach, predictive models of system failure are constructed from the topology of the system and local component failure models using a process of composition. An alternative approach employs model-checking of state automata to study the effects of failure and verify system safety properties. In this paper, we discuss these two approaches to failure analysis. We then focus on Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS) - one of the more advanced compositional approaches - and discuss its capabilities for automatic synthesis of fault trees, combinatorial Failure Modes and Effects Analyses, and reliability versus cost optimisation of systems via application of automatic model transformations. We summarise these contributions and demonstrate the application of HiP-HOPS on a simplified fuel oil system for a ship engine. In light of this example, we discuss strengths and limitations of the method in relation to other state-of-the-art techniques. In particular, because HiP-HOPS is deductive in nature, relating system failures back to their causes, it is less prone to combinatorial explosion and can more readily be iterated. For this reason, it enables exhaustive assessment of combinations of failures and design optimisation using computationally expensive meta-heuristics. (C) 2010 Elsevier Ltd. All rights reserved

    Assisted assignment of automotive safety requirements

    Get PDF
    ISO 26262, a functional-safety standard, uses Automotive Safety Integrity Levels (ASILs) to assign safety requirements to automotive-system elements. System designers initially assign ASILs to system-level hazards and then allocate them to elements of the refined system architecture. Through ASIL decomposition, designers can divide a function & rsquo;s safety requirements among multiple components. However, in practice, manual ASIL decomposition is difficult and produces varying results. To overcome this problem, a new tool automates ASIL allocation and decomposition. It supports the system and software engineering life cycle by enabling users to efficiently allocate safety requirements regarding systematic failures in the design of critical embedded computer systems. The tool is applicable to industries with a similar concept of safety integrity levels. © 1984-2012 IEEE

    Specification and use of component failure patterns

    Get PDF
    Safety-critical systems are typically assessed for their adherence to specified safety properties. They are studied down to the component-level to identify root causes of any hazardous failures. Most recent work with model-based safety analysis has focused on improving system modelling techniques and the algorithms used for automatic analyses of failure models. However, few developments have been made to improve the scope of reusable analysis elements within these techniques. The failure behaviour of components in these techniques is typically specified in such a way that limits the applicability of such specifications across applications. The thesis argues that allowing more general expressions of failure behaviour, identifiable patterns of failure behaviour for use within safety analyses could be specified and reused across systems and applications where the conditions that allow such reuse are present.This thesis presents a novel Generalised Failure Language (GFL) for the specification and use of component failure patterns. Current model-based safety analysis methods are investigated to examine the scope and the limits of achievable reuse within their analyses. One method, HiP-HOPS, is extended to demonstrate the application of GFL and the use of component failure patterns in the context of automated safety analysis. A managed approach to performing reuse is developed alongside the GFL to create a method for more concise and efficient safety analysis. The method is then applied to a simplified fuel supply and a vehicle braking system, as well as on a set of legacy models that have previously been analysed using classical HiP-HOPS. The proposed GFL method is finally compared against the classical HiP-HOPS, and in the light of this study the benefits and limitations of this approach are discussed in the conclusions

    Integrated application of compositional and behavioural safety analysis

    Get PDF
    To address challenges arising in the safety assessment of critical engineering systems, research has recently focused on automating the synthesis of predictive models of system failure from design representations. In one approach, known as compositional safety analysis, system failure models such as fault trees and Failure Modes and Effects Analyses (FMEAs) are constructed from component failure models using a process of composition. Another approach has looked into automating system safety analysis via application of formal verification techniques such as model checking on behavioural models of the system represented as state automata. So far, compositional safety analysis and formal verification have been developed separately and seen as two competing paradigms to the problem of model-based safety analysis. This thesis shows that it is possible to move forward the terms of this debate and use the two paradigms synergistically in the context of an advanced safety assessment process. The thesis develops a systematic approach in which compositional safety analysis provides the basis for the systematic construction and refinement of state-automata that record the transition of a system from normal to degraded and failed states. These state automata can be further enhanced and then be model-checked to verify the satisfaction of safety properties. Note that the development of such models in current practice is ad hoc and relies only on expert knowledge, but it being rationalised and systematised in the proposed approach – a key contribution of this thesis. Overall the approach combines the advantages of compositional safety analysis such as simplicity, efficiency and scalability, with the benefits of formal verification such as the ability for automated verification of safety requirements on dynamic models of the system, and leads to an improved model-based safety analysis process. In the context of this process, a novel generic mechanism is also proposed for modelling the detectability of errors which typically arise as a result of component faults and then propagate through the architecture. This mechanism is used to derive analyses that can aid decisions on appropriate detection and recovery mechanisms in the system model. The thesis starts with an investigation of the potential for useful integration of compositional and formal safety analysis techniques. The approach is then developed in detail and guidelines for analysis and refinement of system models are given. Finally, the process is evaluated in three cases studies that were iteratively performed on increasingly refined and improved models of aircraft and automotive braking and cruise control systems. In the light of the results of these studies, the thesis concludes that integration of compositional and formal safety analysis techniques is feasible and potentially useful in the design of safety critical systems

    Semi-automatic FMEA supporting complex systems with combinations and sequences of failures

    Get PDF
    Failure Modes and Effects Analysis (FMEA) is a well established safety analysis technique used for the assessment of safety critical engineering systems in the automotive industry. Although FMEA has been shown to be useful, the analysis is typically restricted to the effects of single component failures; even partial analysis of combinations or sequences of multiple failures is in practice considered too complex, laborious and costly to perform. In this paper, we describe a new technique in which FMEAs are semi-automatically built from the topology of a system and component-level specifications of failure data. The proposed technique allows an extended form of combinatorial & sequential FMEA in which assessment of the effects of combinations and sequences of failures becomes feasible and cost effective. We show how this technique can address difficulties encountered in classical FMEA and, drawing from a simplified brake-by-wire example, we show how it can improve the assessment of safety critical automotive systems
    • 

    corecore