3,520 research outputs found

    Analysis and implementation of the multiprocessor bandwidth inheritance protocol

    Get PDF
    The Multiprocessor Bandwidth Inheritance (M-BWI) protocol is an extension of the Bandwidth Inheritance (BWI) protocol for symmetric multiprocessor systems. Similar to Priority Inheritance, M-BWI lets a task that has locked a resource execute in the resource reservations of the blocked tasks, thus reducing their blocking time. The protocol is particularly suitable for open systems where different kinds of tasks dynamically arrive and leave, because it guarantees temporal isolation among independent subsets of tasks without requiring any information on their temporal parameters. Additionally, if the temporal parameters of the interacting tasks are known, it is possible to compute an upper bound to the interference suffered by a task due to other interacting tasks. Thus, it is possible to provide timing guarantees for a subset of interacting hard real-time tasks. Finally, the M-BWI protocol is neutral to the underlying scheduling policy: it can be implemented in global, clustered and semi-partitioned scheduling. After introducing the M-BWI protocol, in this paper we formally prove its isolation properties, and propose an algorithm to compute an upper bound to the interference suffered by a task. Then, we describe our implementation of the protocol for the LITMUS RT real-time testbed, and measure its overhead. Finally, we compare M-BWI against FMLP and OMLP, two other protocols for resource sharing in multiprocessor systems

    Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems

    Full text link
    In modern Commercial Off-The-Shelf (COTS) multicore systems, each core can generate many parallel memory requests at a time. The processing of these parallel requests in the DRAM controller greatly affects the memory interference delay experienced by running tasks on the platform. In this paper, we model a modern COTS multicore system which has a nonblocking last-level cache (LLC) and a DRAM controller that prioritizes reads over writes. To minimize interference, we focus on LLC and DRAM bank partitioned systems. Based on the model, we propose an analysis that computes a safe upper bound for the worst-case memory interference delay. We validated our analysis on a real COTS multicore platform with a set of carefully designed synthetic benchmarks as well as SPEC2006 benchmarks. Evaluation results show that our analysis is more accurately capture the worst-case memory interference delay and provides safer upper bounds compared to a recently proposed analysis which significantly under-estimate the delay.Comment: Technical Repor

    A multiprocessor system using a switch matrix configuration

    Get PDF
    This thesis describes a class of interconnection networks based on the use of a switch matrix to provide processor to memory communication. This switch allows a direct link between any processor to any memory module. The cost and performance of this network are analytically examined. The results are compared with those of a multiprocessor system using a time-shared bus configuration and it is shown that for the two extreme cases of maximum and minimum throughput, the two approaches are equivalent from a performance point of view. However, in the general case, even with a higher cost, the switch matrix provides a much better performance than the time-shared bus configuration. Furthermore, the architecture of a multiprocessor MIMD type computer using a switch matrix is investigated and Petri net techniques are used to model process coordination among processors --Abstract, page ii

    A survey of techniques for reducing interference in real-time applications on multicore platforms

    Get PDF
    This survey reviews the scientific literature on techniques for reducing interference in real-time multicore systems, focusing on the approaches proposed between 2015 and 2020. It also presents proposals that use interference reduction techniques without considering the predictability issue. The survey highlights interference sources and categorizes proposals from the perspective of the shared resource. It covers techniques for reducing contentions in main memory, cache memory, a memory bus, and the integration of interference effects into schedulability analysis. Every section contains an overview of each proposal and an assessment of its advantages and disadvantages.This work was supported in part by the Comunidad de Madrid Government "Nuevas Técnicas de Desarrollo de Software de Tiempo Real Embarcado Para Plataformas. MPSoC de Próxima Generación" under Grant IND2019/TIC-17261
    • …
    corecore