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ABSTRACT

This thesis describes a class of interconnection net

works based on the use of a switch matrix to provide proces

sor to memory communication. This switch allows a direct 

link between any processor to any memory module. The cost 

and performance of this network are analytically examined.

The results are compared with those of a multiprocessor 

system using a time-shared bus configuration and it is shown 

that for the two extreme cases of maximum and minimum 

throughput, the two approaches are equivalent from a perform

ance point of view. However, in the general case, even with 

a higher cost, the switch matrix provides a much better 

performance than the time-shared bus configuration. Further

more, the architecture of a multiprocessor MIMD type computer 

using a switch matrix is investigated and Petri net tech

niques are used to model process coordination among proces

sors .
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I . INTRODUCTION

A. REVIEW OF MULTIPROCESSING SYSTEMS

During the past several years, multiprocessing systems 

have been discussed in the literature and a number of differ

ent systems have been implemented or proposed. Low cost mi

croprocessors are now being designed into multiprocessing 

systems. Parallel (SIMD) type processors, computer network

ing and multiprocessor systems are among the existing organi

zations. This thesis considers the multiprocessor MIMD 

feature. SIMD and MIMD are defined in Section IV.

It is important to recall the fundamental definition of 

a multiprocessor system as given by [1], before the advan

tages of multiprocessor systems are presented.

A multiprocessor computer is a system containing two or 

more processor units of approximatively comparable capabili

ties. Each unit has access to shared common memory as well 

as having common access to at least a portion of the I/O 

devices. In addition all processor units are controlled by 

one operating system that provides interaction between the 

processors and the programs they are executing at all levels.

Several advantages may be realized with multiprocessor 

systems. Throughput often increases almost directly with the 

number of processors while system cost increases by only a 

small amount. Shared resources provide economic advantage by 

eliminating devices to be duplicated in other systems. On 

the other hand they provide direct access of data without
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transmission from system to system. The cost of a standby 

unit is small and a spare processor can be switched into 

the system to replace a failed processor.

B. CLASSIFICATION OF MULTIPROCESSOR SYSTEMS

This section contains a brief discussion of the classi

fication of multiprocessor systems. Two distinguishing fea

tures that differentiate between designs are the use of 

processing units and the interconnection of processor units 

and memories.

1. Symmetric and Asymmetric Processor: The symmetric 

multiprocessor system consists of a network of functionally 

equivalent processors. This type system is used in a general 

purpose environment, where processing requirements are con

stantly changing. The advantage of this class is that a giv

en task can be assigned to any idle processor for execution* 

since there is an equivalence among individual processors. 

Another significant advantage of this class is that the fail

ure of a module does not cause the failure of the entire 

machine. However, symmetric systems require that every 

processor have full capabilities (which increases hardware 

expense, and complicates the operating system which becomes 

responsible for the identification and control of tasks).

A second group consists of heterogenous processors spe

cially configured for a set number of tasks. Tasks and their 

actions must be completely known in advance. In this case, 

processors may be specialized to carry out one particular 

type of task. One processor may perform all I/O operations,
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another provides floating point arithmetic capability, a 

third provides file maintenance. The operating system is 

greatly simplified and becomes a task scheduler.

2. System Organization: In addition to classifying 

multiprocessor systems according to processor use, they may 

be grouped in relation to the interconnection of processors 

with system memories and peripheral devices. Three main 

types of organizations are possible.

a. Switch Matrix: This scheme provides direct paths 

from any processor to any memory or peripheral. This allows 

many processors to simultaneously utilize many different 

memory modules, reducing memory reference interference 

between processors. However, the switching matrix may be 

extremely expensive (the cost increases rapidly with the 

number of processors) eliminating much of the cost advantage 

of a multiprocessor system.

b. Time-shared Bus: This method is to multiplex all 

processors memories and peripheral devices over one data bus. 

This is a lower cost approach, but system throughput becomes 

limited by bus capacity.

c. Multiport Memory Systems: In this third method each 

processor has access through its own bus to all memory mod

ules. Like the two previous organizations, the multiport 

system organization has the disadvantage of high cost 

multiple-connection hardware.

All of the above organizations and their variations are 

useful and worthy of consideration. This thesis is concerned
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with the symmetric processor and its associated switching ma

trix. Much of the discussion can be applied to the other 

classes as well.

C. OUTLINE

The next section describes in detail the switch matrix 

organization. Section III analyzes performance and cost of a 

typical multiprocessor system. Such a system is the MIMD 

type computer treated in section IV where process coordina

tion is modeled using Petri net techniques as a tool for the 

purpose.
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II. SWITCH ORGANIZATION 

A. PRINCIPLE OF OPERATION

A block diagram of the switch organization is shown in 

Figure 1.

1. Description: The switch that interconnects proces

sors and data memories to allow memory sharing, consists of 

a number of nodes connected via ports. Each node contains 

two input ports labeled A and B and two output ports labeled 

C and D. Each node can send a message on its output ports 

and receive one on its input ports. It is assumed that each 

memory can respond to a single request during one cycle so 

that there is no simultaneous double service. The message 

contains the address of the memory to be mapped into physical 

memory and a priority word.

When a switch node receives a message, it attempts to 

route it correctly through the appropriate path. This is 

accomplished by storing in each node a table which maps the 

recipient address into the port number as shown in Table I. 

Input A could be connected to either the output labeled D or 

the output labeled C depending on the value of some generated 

control. However, input B could be connected only to the 

output labeled C. This technique reduces the complexity of 

the table mapping and defines a unique path between the mes

sage entry and its destination. It is clear that the inputs 

of the root-node can be switched to anyone of the outputs.

2. Contention: The hierarchy in priority is set by



6

M E M m o—  —o

Figure 1. Multiprocessor Switch Organization
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TABLE I

TABLE MAPPING MEMORY ADDRESSES INTO SWITCH NODES

PROCESSOR UNITS_________ SWITCH NODES__________ MEMORY MODULE

1 1,1
2 2,1 -  1,1
• •

1

p p,l - 2,1 - .. . - 1,1

1

2

1,1 - 1,2 

2,1 - 2,2 ~ 1,2

•

•

P p,l - P,2 - . . . - 2,2 - 1,2

2

• • •

• • •

• • •

1 iiCM1-111-11—1 1 ,m

2 2,1 - 2,2 - ... - 2,m - l,m m

P P,1 - P,2 - ... - p,m - ... - 2 ,m -

1 ,m
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incrementing the request priority as it passes through the 

node. Preference to route the request is given then to the 

request with highest priority. When a request is accepted, 

it is followed by latching sequentially the high order byte 

and then the low order byte of the memory address. A message 

is then at any instant distributed between two nodes and a 

conflict to acquire the node is created between the beginning 

of some request and the middle part of another. To avoid 

such a conflict, each part of the message should have the 

priority word associated with it. This requires an increase 

of the message word length. Figures 2 and 3 show a possible 

solution to the contention problem.

3. Reliability: When a request has been made by a 

processor to access a certain memory address, a signal mes

sage is reported back through the switch to the requesting 

processor to indicate whether the operation has been success

ful or not. In case there is a failure of the operation, 

another attempt will be made by the processor to achieve its 

request granting.

When a switch node fails, a misrouted message could be 

created. A leaking message should be inserted at the begin

ning of a request by every originator. This message leaks 

out the switch from the misrouted request. The leaking mes

sage consists of a message with a higher priority value en

abling the processor to gain access to the node. The number 

of bits associated with each request word should be suffi

cient in order to prevent the priority value from reaching
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N0DE1 NODE 2 NODE3

Low Order Data
M ESSAG E 1

_ n __n _
High Order Data+Priority

MESSAGE 2

Figure 2. Conflict due to Absence of Priority V.ford

N0DE1 N0DE2 N0DE3

__n _ r i _  MESSAGE1
Low Order Data+Priority

--------------' *-------------- MESSAGE2
High Order Data+Priority

Figure 3+ Solution to the Conflict 
Using Priority Word Presence
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its maximum and overflowing.

B. CONTROL OF THE SWITCH

The functional block diagram of a switch node appears 

in Figure 4. All single lines in the figure are multiple 

bit lines. The double lines on INOUT box represent incoming 

and outgoing address and data lines. A read/write control 

line is also provided. The function of the INOUT box is to 

set up a connection between the incoming information port 

and one of the outgoing ones, according to the value of the 

input X. The input X may be encoded with as few as two bits 

as shown in Table II.

TABLE II

Input X Coding

Connection Input X

> i o 01

A - D 10

B - C 11

B - D Forbiddei

The function of the CONTROL box is to generate the 

signal X and provide arbitration. A request is generated 

when its line is presented at the input port. The memory 

address is mapped into the stored table to provide the 

correct routing of the selected message. A signal X is then 

issued to box INOUT to specify the right exit port. When a 

request for a busy memory is rejected, a busy signal is 

eventually transmitted to the source which originated the 

blocked request. The DONE signal is supplied to each



Request 1
B u s y i

R /W

R equest 2 
Busy 2

Figure 4. Block Diagram of a Switch Node
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CONTROL box to guarantee information flow about the success 

or failure of operations. In case of failure, new attempts 

should be made till the operation is achieved correctly. To 

avoid any gate delay, the DONE signal is connected directly 

through the network.

Actual implementation of the switch in the real world 

requires additional practical considerations. An evaluation 

of this interconnection network in terms of system perform- 

ance/cost and allowance of programming concurrency will be 

made in the next two sections.



13

III. PERFORMANCE AND COST OF THE SYSTEM 

A. SYSTEM THROUGHPUT

The estimation of system performance and cost is moti

vated by the work of [2]. In his analysis, Reyling derived 

results based on the utilization of a time-sharing technique 

as shown in Figure 5* This section deals with the equivalent 

space-sharing technique. The analytical results, concerning 

system performance and cost, are compared with those of time

sharing technique and validated through examples.

Space-sharing means that a set of resources is parti

tioned into non-intersecting blocks such that each block 

executes some application. The applications are executed 

independently in parallel. Time-sharing reduces the idle 

time. Space-sharing reduces the percentage of resources that 

are idled.

To determine multiprocessor throughput as a function of 

the number of microprocessors required, the characteristics 

of the system have been defined as:

Ts: System throughput defined as the number of instruc

tions executed per second by the system.

Tp: Throughput of an individual processor when there is

no memory interference, 

p: Number of processors in the system

m: Number of memory modules in the system.

The effects of interference when memory is used for 

making single-word transfers have been considered here;



S Y S T E M  DATA BUS

Figure 5. Multiprocessor Data Bus Organization
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contention for multiple-word transfer units also affects 

throughput of a particular system and may be investigated 

in a manner similar to the following discussion.

When several processors simultaneously address the 

same memory module, a memory interference occurs. If n 

generated requests are queued to the same memory module, 

then n-1 processors must wait for the module to become un

locked in order to gain access to it. Throughput of the 

entire system is reduced because each processor is slowed 

down.

In order to study memory interference in more general 

terms, maximum, minimum, and average throughput Ts is deter

mined. For this purpose, the following model is described.

At a given instant of time t, p different requests are 

generated and divided among the m modules. It is assumed 

that the processing time is null. Furthermore it is assumed 

that a processor issues a new request immediately after re

ceiving its current request with a uniform probability (1/m). 

To illustrate the ideas, an example with p=4 and m=4 is 

considered. The number of requests simultaneously present at 

memory module j at time t will be indicated by (j ). In the 

case where:

Xt ( D  = 0, Xt (2) = 3, Xt (3) = 1, Xt (4) = 0

the model will be illustrated by 

P 0 1 2  3 
m 2 2 2 3
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1, Maximum Throughput: The maximum throughput Ts (MAX) 

will occur If each memory module receives a single request at 

a given Instant of time t. In other terms,

Xt (j) = 1 for j = 1, 2, . . ., m 

In this case, all the processors are doing useful work since 

they are accessing different memory modules of the shared 

main memory. Clearly, Ts will equal pTp. This is shown 

graphically in Figures 6 and 7. This result is also true for 

time-sharing system performance.

2. Minimum Throughput: It is also of interest to find 

the minimum value of T . The worst possible case would be if 

all p requests had to be queued to the same memory module j , 

so that

Xt (j ) = P for j = 1, 2, . . . , m 

and consequently, p-1 processors will be waiting to gain 

access to the resource. It is assumed that the probability 

that a request will be pending is also ( ~ — ) •

The memory bandwidth B is defined as the number of 

requests serviced per cycle. It follows that, for the above 

example, the bandwidth would be:

B = numker> of processors _ *J _ ^ no 
number of cycles 3 *

where the number of cycles is equal to X^(j) maximum for

lj..., m

The decrease in throughput could be derived by considering 

the ratio
r - bandwidth with maximum interference 

bandwidth with no interference



expressing the fact that p-l processors would be waiting for 

the busy memory module during interference yields

B _ 1 + (p-l) (l/m) = 1
R _ “ 1 + (p-l)(l/m)

The minimum value of Ts is given as:

Ts (min) = (throughput with no interference) x R 
_ pxT x R _ PxTp

p ---- I  +.( F l M l 7 m T
This minimal value of throughput may be used to determine the 

range of possible throughputs and has been plotted in Figure 

6 for m=3 and in Figure 7 for m=10. The two figures show 

that with the hypothesis stating that m=p, the results are 

equivalent to the time-sharing system performance results. 

Even with maximum interference, both analysis still depicts 

a substantial increase in Ts with p. However, it should be 

pointed out that these last two cases concerning performance 

bounds are events of small occurence. As an example, a 

system with parameter m=p=n has the random sampling probabi

lities

g(l) = and g(p) = 1
nn nn-1

where g(h) is the probability that X^(j) maximum is equal to 

h. For a 7x7 system, g(l) and g(7) are given by

1g(l) - —--y = 0.00611 and g(7) ~ ~z—rjf yO = 0.00000849

As one can see, these probabilities are very low to let the 

maximum and minimum interference occur frequently.

3. Average Throughput: Average throughput is a
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Figure 6. System Throughput Vs Number of Processors, m=3



19

deterministic factor of system performance. It is computed 

by considering a sequence of transition states viewed as a 

discrete Markovian process with state space (l,2,...,m) and 

with probability transition A (i , j ) from state i to state j. 

Let p(i) denote the steady-state probability of state i. 

Then,

m
p(i) = P(J)i k=l,2,...,m

J = 1

To simplify the analysis, an assumption is made that all the 

states are inter-reachable. The number of busy modules is 

represented by a state of m-tuple (pl,p2,...,pm) with

m

i=l

A new state (j j  2 » • • • »Jm ) is reachable from state 

(i^,i^,...,i ) with the transition probability [3]

x! . ( 1 \
(j* -i. )! . . . (j ■-i ) ! \ m )

x

1 1' m ”m

where x is the number of nonzero elements in the new state 

vector. Furthermore, the distribution probability p(i) of 

all possible states obeys the normalizing equation

m

i=l

In order to compute the elements of the transition ma

trix A(i,j), the enumeration tree of a 4x4 system as in
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Figure 7. System Throughput Vs Number of Processors.

m= 10
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Figure 8 has been considered. The letters 1^, I2,..., 1^ 

denote the initial states, and the letters F^, F2,..., F^ 

denote the final states. The letter W denote the number of 

ways in which transition can occur. This number is the sum 

of different combinations to traverse the tree, e.g. the 

number of ways to reach state (3*1,0,0) from state (3,1,0,0) 

is (lx3+3xl) equal 6 ways. The matrix equation of the 

system considered has been derived as

V ~0.25 0.625 0.000 0.0156 0.0152“

1
►-d -tr —
1

P3 0.75 0.375 0 .1 2 5 0.1875 0.1875 P3
P2 = 0.00 0.187 0 .1 2 5 0.1406 0.1406 P2

P1 0.00 0.375 0.625 0.5625 0.5625 P1

_po_ 0.00 0.000 0 .1 2 5 0.0937 0.0937 _ po_

with the constraint: P4+P3+P2+Pl+P0 = 1 
The average number of busy memory modules is given by 

m m m
5 1 p(1) = V ~  1 p o  Ad,j),
i=l j = l

it follows that the average throughput will be given by

m m
Ts (AVE) = Tp J  i J  P(j) A (1, j )

i=l j=l

Table III shows the average number of busy memory modules 

for an 8x8 discrete Markov chain model during one cycle. 

This is in contradiction with the assumption made that the 

processing time is null. Figure 6 shows the average
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1lr 4000

J wy,Fi:4000

I2 3100] W:l/̂ 3000 i\W:3

1111 l4:2100 -2000 < F2:3100

l i Wil/ NW:3 w:i/
oono _ W:4 mnô \ 21 00/ W:1 F3:2200X,W:3 W; 2 / \Wi2\1100 < ► F̂:2110N̂W:2 W:3/̂I3.2200 U100 <\W:1

F5:1111

Figure 8. Transition States of a 4x4 System
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TABLE III

DISCRETE MARKOV CHAIN MODEL

NUMBER OP PROCESSORS Pc = 1,2.... 8 (ROWS)

NUMBER OF MEMORY MODULES Mp = 1,2.... 8 (COLUMNS)______

1 2 3 ^ 5 6 7 8  1 1 .0000 1.0 000 1.0 000 1 .0000 1.0 000 1.0 000 1.0000 1.0000
2 1.0000 1 .5000 1 .6667 1 .75 0 0 1.8000 1.8333 1.8571 1 .8750

3 1.0000 1.6667 2.0476 2.2692 2.4095 2.5054 2.5748 2.6272

4 1.0000 1 .750 0 2.2707 2 .6 2 10 2.8630 3-0365 3.1657 3.2652

5 1.0000 1.8000 2.4102 2.8633 3-1996 3.4530 3.6482 3.8019

6 1.0000 1.8333 2.5059 3-0370 3.4533 3.7809 4.0415 4.9471

7 1.0000 1.8571 2.5751 3.1663 3.6486 4.0418 4.3636 4.6292

8 1.0000 1 .8 75 0 2.6274 3.2657 3.9624 4.2521 4.6294 4.7491
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throughput for a 3x3 system. Actually, the request genera

tion rate follows a certain distribution. In order for the 

comparison of the present results with the time-shared bus 

performance results to hold, it is assumed that processors 

can generate new requests every cycle.

Feller [4] treating the "occupancy problem” had given 

the transition probability as

A (n) (i.J)
v=0

(n)where A (i,j) is the probability that there will be j 

occupied memories after n additional requests (cf. Appendix ). 

Average throughput of the considered model has been plotted 

in Figure 7« Indeed, the plot shows that there is a more 

substantial increase of throughput with the number of proces

sors than in the case of time-sharing configuration.

B. SYSTEM COST

In this section, the system cost shall be studied in 

order to determine how much the potential increase of the 

system due to the added throughput will cost. For this 

purpose the following subsystems costs have been defined:

Cr: Cost of system resources (including memory, mass

storage, and peripheral devices).

Cp: Cost of an individual processor (including MOS

LSI microprocessor chips, power supply cost, and 

mechanical assembly).

Cs: Cost of the switch (including wiring, control
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logic, arbitration and conflict solving, mechanical 

assembly of the switch).

For a system with p processors, the total system cost is 

derived as

Ct = Cr + pCp + Cs

Two systems have been considered: one in which Cp=Cr/5 and 

Cs=P^Cj, the other in which Cp=Cr/30 and Cs=p^Ci. Ci and Cj 

are the costs of individual switch node and its associated 

control and wiring, and have been equally chosen to be 

Ci=Cj=Cr/50

Tp is assumed to be the same in both cases.

Figure 9 shows the increase in Ct with p. Another 

assumption that Cr is independent of the number of micro

processors p has been made. In reality, an increase in p 

may require an increase in total storage. As opposed to the 

results based on time-sharing technique, where cost of the 

system has been found to be linear with p, the cost of the 

present system using a switch has been found to be parabolic 

as expressed respectively by the equations of the two chosen 

systems:

Ct=Cr (l+p/5+p2/50) and Ct=Cr (l+p/30+p2/50)

The information in Figures 7 and 9 has been combined in 

Figure 10 to indicate cost versus throughput. This cost of 

the system is a strong function of the ration Cr/Cp, and 

system cost increases rapidly as p approaches 10, diminishing 

the cost/effectiveness of the system. In order to determine 

the optimum number of microprocessors in the system, the
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Figure 9« Relative System Cost Vs Number of

Processors for Two Cases. m=10
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_|____________ I____________ I-------------- L_
2Tp 4Tp 6Tp sip

SYSTEM  THRO UG HPUT

Figure 10. System Cost Vs System Throughput

m=10



28

ratio Ct/Ts has been calculated. This ratio is the cost per 

instruction execution that the user would have to pay. The 

information obtained from Figures 7 and 10, and plotted in 

Figure 11 show that, for two systems with analogous param

eters the time system user will be paying less price per 

instruction execution than the space-shared system user as 

long as the number of processors in the system does not ex

ceed 10. For a larger number, the space-shared configuration 

seems to be more attractive. This illustrates the advantages 

of minimizing both Cp/Cr and the value of m as shown.

For todayfs microprocessors, the ratio Cp to Cr is 

typically very low, since the cost of a complete microproces

sor is in the range of several hundred dollars, while system 

memory and peripherals may be in the range of $5,000 to 

$20,000. However the cost of a switch increases as p . For 

the C.mmp computer developed at Carnegie-Mellon University, 

the cost of the switch turned out to be half the cost of the 

entire system. A means of decreasing the number of shared 

memory modules m in the system is to provide some memory 

local to each microprocessor. This approach has a double 

advantage of reducing memory reference interference and high 

access speed to data memory.
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Figure 11. Normalized Curves of System 

Cost/Throughput Vs Number of Processors. m=10
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IV. THE MIMD MACHINE

A. DEFINITION OF SIMD AND MIMD MACHINES

The example of multiprocessor systems chosen in this 

study was the MIMD type. Two types of parallel processing 

systems are single instruction stream-multiple data stream 

(SIMD) machines and multiple instructions stream-multiple 

data stream (MIMD) machines. An SIMD machine typically 

consists of a set of p processors and m memories, an inter

connection network, and a control unit. The control unit 

broadcasts instructions to the processors and all active 

processors execute the same instruction at the same time. 

Thus a single stream instruction drives all the processors. 

Each processor executes instructions using data taken from 

a memory to which only it is connected. This provides a 

multiple data stream. The interconnection network allows 

interprocessor communications. A type of such a machine is 

the ILLIAC IV [5]. An MIMD machine typically consists of p 

processors and m memories, where each processor may follow 

an independent instruction stream. Hence, there are multi

ple data streams. As with SIMD there is a multiple data 

stream and an interconnection network. An example of such a 

machine is the C.mmp[6]. Figures 12 and 13 show the SIMD 

and MIMD computers respectively.

B. PARALLELISM THROUGH THE SWITCH NETWORK

A typical MIMD multiprocessor using a switch network 

as described previously has been considered. The first part
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Figure 12. Block Diagram of a SIMD Computer
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Figure 13. Block Diagram of a MIMD Computer
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of this section will be devoted to the modeling of the switch 

node operation, then the rest of the section will examine 

problems related to two sensitive areas which are inter

processor control and resource sharing and scheduling. Petri 

nets appearing to be a clear and convenient way to express 

process coordination are used here to explore such problems. 

To avoid any ambiguity for the reader, the definition of 

Petri nets and the simulation rules are given explicitly.

1. Overview: James L. Peterson [7] defined a Petri net 

as in the following:

"A Petri net is an abstract, formal model of information 

flow. The properties, concepts, and techniques of Petri nets 

are being developed in a search for natural, simple and 

powerful methods for describing and analyzing the flow of 

information and control in systems that may exhibit asyn

chronous and concurrent activities.”

Figure 14 shows a simple Petri net. The graph contains 

two types of nodes: Circles (called places) and bars (called 

transitions). The places and transitions are connected by 

direct arcs from places to transitions and from transitions 

to places. Place P^ is an input to transition T^ and places 

? 2  and P^ are output to transition T^. The execution of 

Petri nets is controlled by markers moving around the graph. 

Each place has one or more markers in it or may be empty. A 

transition is said to be enabled if all its input places 

contain at least one marker (or token). The transition fires 

by removing the enabling tokens from their input places



*> t2

Figure 14. A Marked Petri Net
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and generating new tokens which are deposited in the output 

places of the transition. Petri nets constitutes a broad 

area of study and the reader should consult the literature 

on this advanced theory for more information [8,9].

2. Node Switch Operation: When two requests arrive at 

a switch node, contention is essentially made as follows: 

the switch node selects one packet and rejects the other one 

if the two packets are to be passed to the same output. It 

takes time t^ to determine the successor node to which the 

message is to be sent. If that output is in use, it waits 

its turn for the use of the output link. When the selected 

output port becomes free, it takes time tg for data to be 

available at the output port. Figure 15 models a timed Petri 

net of the switch node operation. Input A can select either 

output B or C, whereas input B can only select output C.

Place P^ cannot acquire a token and hence disables transition 

tg from firing. Consequently output D is forbidden to input 

B. When a message-packet is rejected by the switch node, it 

is automatically lost. If there is no conflict at the switch 

node level, processors carry out their tasks in a concurrent 

fashion, creating parallelism as it will be seen in the re

maining of the section.

3. Interprocessor Control: A major concern about inter

processor control lies in synchronization of the processors 

to carry out a parallel computation correctly. To illustrate 

an example of this problem, the producer-consumer problem 

with one producer and two consumers is considered. The items
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Figure 15. Switch Node Operation
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produced by the producer are passed to the consumers to be 

picked up on a random basis. Only one item can be consumed 

by one consumer at a time. In order to avoid the access of 

the produced item by both consumers simultaneously, one of the 

consumers must lock the other from trying to consume the same 

item. The instruction to do this must be indivisible. The 

indivisibility can be achieved by instructions of the form 

"Test-and-Set" as implemented in many systems. Two portions 

of code generated by two processors wishing to access a 

common resource are called "critical sections". To control 

the correct execution of critical sections without conflict, 

Dijkstra [10] introduced a new concept using semaphores. A 

semaphore is a variable upon which a processor can execute a 

P and a V operation as in the following:

V(S): S ◄—  S + 1

P(S): L: If S = 0 then go to L else S *4--  S - 1

Figure 16 summarizes the producer-consumer mutual exclu

sion protocol in terms of Petri nets. Places p^ and p^ re

present the producer and places p^, p ^ 5 p^ and p^, p^, pg re

present the consumers. Place P^ models the semaphore setting. 

Transitions t^ and t^ are mutually exclusive. Firing one 

disables the other automatically. Transitions tg and t^ re

present the critical sections of process 1 and process 2. 

Transitions t^, t2, t^, t^ control the entry and exit to the 

critical sections. Transition t^ the production process. As 

can be seen, synchronization of concurrent processes can be 

achieved using semaphore techniques. Unfortunately, the
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Figure 16. Illustration of the Producer-Consumer

Problem
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solution to these problems is related to scheduling and 

reliability problems. The failure of the processor whose 

process is in its critical section may lead to a dangerous 

situation. The rest of the processors will be blocked in an 

infinite testing loop. In the following discussion, a possi

ble approach to the problem is explored. The use of a lock 

instead of a semaphore is provided. The lock consists of 

one part to test and set the lock and a busy signal bit to 

indicate that the processor executing the critical section 

code is successfully running. A process wishing to obtain 

the lock tests the appropriate part of the lock with a single 

indivisible instruction. If the result of the test indicates 

that the lock is free, it is then locked and the locking 

process can execute its critical code. If the lock part is 

set, the processor performs a second test upon the busy 

signal bit. If this bit is set then the processor using the 

resource is still executing properly. Otherwise, the oper

ating system unlocks the lock indivisibly, allowing one of 

the waiting processors to proceed to use the lock and execute 

its critical code. Figure 17 shows a Petri net model of two 

concurrent processes using a lock. If either transition t
5

or t^ does not fire, then the firing of transition t^ or t^ 

resets the lock at place Py. Either process 1 or process 2 

at place p1 or p^ has now a token in its place. Transition 

t (or transition t^) is now enabled and process 1 (or proc

ess 2) is now ready to use the lock and enter its critical

section.
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Figure 17* Solution to the Reliability Problem
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4. Resource Sharing and Scheduling: In this section, 

the deadlock problem is examined. To illustrate the ideas 

once again, an example of a deadlock problem is considered.

Two processes p1 and request use of memory module M^,

as shown in Figure 18. Process p^ acquires memory module 

M^, and then needs and needs to carry on. The

operating system*s resource scheduler services process p^*s 

first request (transition t^, and process P 2 *s first

request (transition t2 > M^). From there, neither process can 

continue (the places p-̂  and p^ are empty and neither transi

tion t-p M2 nor can fire).

To circumvent the deadlock problem, some prior condi

tions must be set before the system requirements are met. 

Prevention of system deadlock has been discussed and careful

ly analyzed in the literature [11]. In the light of this 

fruitful analysis and based on the conditions derived in 

order to avoid deadlock problems, a solution to the deadlock 

problem cited above is given and illustrated in terms of 

Petri net techniques as in Figure 19. The graph is self- 

explanatory. At transition t^ and t^, there is a mutual ex

clusion set by place p^* Firing of either transition disables 

the other and enables its next transition in sequence by 

placing a token in either place p^ or p^ accordingly. This 

illustrates one of the conditions to avoid the deadlock 

problem which consists of preventing a process to hold 

exclusive control of some resources while a request for
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Figure l8 Illustration of The Deadlock Problem
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Figure 19. Solution to the Deadlock Problem



more resources is pending.

The deadlock problem has been a burden in the domain 

of multiprocessors task scheduling for years and the only 

way to circumvent it is to set preventing conditions which 

unfortunately increase operating system overhead.
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V. CONCLUSION

It has been shown that a switch matrix configuration for 

the processor-memory interconnection network has reliability 

and expandability. If a switch node fails, the system can 

still function with less memory and degraded performance.

A computer system model has been used to estimate the 

relative performance of a computer using a switch network to 

another system using a bus. Performance bounds have been 

found to be equivalent in both systems. However, average 

throughput has been derived to be increasing more with the 

number of processors in the case of switch utilization. 

Certain simplifying assumptions have been made to make the 

analysis tractable but the model can be used to at least 

approximate the performance of some computer systems.

Expressions of the cost of the system have been given 

in the case where the cost of system resources C^ is thirty 

times and five times the cost of an individual processor CP •
It appears that in a certain number of processors range the 

space configuration handles large parallel computations 

better than the time configuration.

Parallelism through such a switch network has been view

ed in terms of Petri net modeling techniques. The switch 

node operation has been investigated in detail.

Problems related to interprocessor control and resource 

sharing and scheduling have been studied. Possible ap

proaches to their solutions have been given and validated 

through examples. When the switch node operation has been
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explored, it has been stated that a non-seleeted message- 

packet was rejected by the system and consequently lost.

A topic of significant importance would be the 

investigation of networks with buffering capability to 

permit request queueing and prevent this loss.
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APPENDIX

THE OCCUPANCY PROBLEM

Consider a sequence of independent trials, each consist

ing of placing a request at random at one of m given memory 

modules. The system is said to be in State pk if exactly k 

memory modules are occupied. This determines a Markov chain 

with states P 1,...,Pm and transition probabilities such

that

on expressing the binomial coefficients in terms of fact

orials, this formula simplifies to

k-j-V

with P j ^  = 0 if k < 3

(For a more specific demonstration of this Formula see [4])
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