
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 1980

A multiprocessor system using a switch matrix configuration A multiprocessor system using a switch matrix configuration

Rabah Aoufi

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Aoufi, Rabah, "A multiprocessor system using a switch matrix configuration" (1980). Masters Theses.
5794.
https://scholarsmine.mst.edu/masters_theses/5794

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5794&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5794?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5794&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A MULTIPROCESSOR SYSTEM USING
A SWITCH MATRIX CONFIGURATION

BY

RABAH AOUFI, 1955 -

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

1980 T4669
c.1
57 pages

Approved by

ii

ABSTRACT

This thesis describes a class of interconnection net

works based on the use of a switch matrix to provide proces

sor to memory communication. This switch allows a direct

link between any processor to any memory module. The cost

and performance of this network are analytically examined.

The results are compared with those of a multiprocessor

system using a time-shared bus configuration and it is shown

that for the two extreme cases of maximum and minimum

throughput, the two approaches are equivalent from a perform

ance point of view. However, in the general case, even with

a higher cost, the switch matrix provides a much better

performance than the time-shared bus configuration. Further

more, the architecture of a multiprocessor MIMD type computer

using a switch matrix is investigated and Petri net tech

niques are used to model process coordination among proces

sors .

iii

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. Darrow

Dawson for his guidance during my graduate work at the

University of Missouri-Rolla. I also would like to thank

Dr. Theodore E. McCracken and Dr. Min Ming Tang for serving

on my Master’s Committee and Mrs. Monique Helterbrand for

her precision and promptness in preparing the typescript.

A special thanks to my mother, Sahara, for her patience,

understanding and moral support during my stay in the United

States of America.

TABLE OF CONTENTS
Page

ABSTRACT .. ii

ACKNOWLEDGMENTS .. iii

LIST OF ILLUSTRATIONS vi

LIST OF TABLES .. vii

I. INTRODUCTION 1

A. Review of Multiprocessing Systems 1

B. Classification of Multiprocessor Systems .. 2

1. Symmetric and Asymmetric Processor.... 2

2. System Organization..................... 3

a. Switch Matrix....................... 3

b. Time-shared Bus 3

c. Multiport Memory Systems 3

C. Outline 4

II. SWITCH ORGANIZATION 5

A. Principle of Operation 5

1. Description 5

2. Contention 5

3. Reliability 8

B. Control of the Switch 10

III. PERFORMANCE AND COST OF THE SYSTEM 13

A. System Throughput 13

1. Maximum Throughput 16

2. Minimum Throughput 16

3. Average Throughput 17

V

Page

B. System Cost 24

IV. THE MIMD MACHINE 30

A. Definition of SIMD and MIMD Machines 30

B. Parallelism Through The Switch Network30

1. Overview 33

2. Node Switch Operation 35

3. Interprocessor Control 35

4. Resource Sharing and Scheduling....... 41

V. CONCLUSION 45

BIBLIOGRAPHY .. 47

VITA ... 49

APPENDIX: THE OCCUPANCY PROBLEM 50

LIST OF ILLUSTRATIONS

Figure Page

1. Multiprocessor Switch Organization 6

2. Conflict due to Absence of Priority Word 9

3. Solution to the Conflict Using Priority Word

Presence .. 9

4. Block Diagram of a Switch Node 11

5. Multiprocessor Data Bus Organization 14

6. System Throughput Vs Number of Processors, m=3 .. 18

7. System Throughput Vs Number of Processors, m=10... 20

8. Transition States of a 4x4 System 22

9. Relative System Cost Vs Number of Processors for

Two Cases, m=10 26

10. System Cost Vs System Throughput, m=10 27

11. Normalized Curves of System Cost/Throughput Vs

Number of Processors, m=10 29

12. Block Diagram of a SIMD Computer 31

13. Block Diagram of a MIMD Computer 32

14. A Marked Petri Net 34

15. Switch Node Operation 36

16. Illustration of the Producer-Consumer Problem 38

17. Solution to the Reliability Problem 40

18. Illustration of The Deadlock Problem 42

19. Solution to The Deadlock Problem 43

vi

vii

LIST OF TABLES

Table Page

I. Table Mapping Memory Addresses Into Switch

Nodes ... 7

II. Input X Coding 10

III. Discrete Markov Chain Model 24

1

I . INTRODUCTION

A. REVIEW OF MULTIPROCESSING SYSTEMS

During the past several years, multiprocessing systems

have been discussed in the literature and a number of differ

ent systems have been implemented or proposed. Low cost mi

croprocessors are now being designed into multiprocessing

systems. Parallel (SIMD) type processors, computer network

ing and multiprocessor systems are among the existing organi

zations. This thesis considers the multiprocessor MIMD

feature. SIMD and MIMD are defined in Section IV.

It is important to recall the fundamental definition of

a multiprocessor system as given by [1], before the advan

tages of multiprocessor systems are presented.

A multiprocessor computer is a system containing two or

more processor units of approximatively comparable capabili

ties. Each unit has access to shared common memory as well

as having common access to at least a portion of the I/O

devices. In addition all processor units are controlled by

one operating system that provides interaction between the

processors and the programs they are executing at all levels.

Several advantages may be realized with multiprocessor

systems. Throughput often increases almost directly with the

number of processors while system cost increases by only a

small amount. Shared resources provide economic advantage by

eliminating devices to be duplicated in other systems. On

the other hand they provide direct access of data without

2

transmission from system to system. The cost of a standby

unit is small and a spare processor can be switched into

the system to replace a failed processor.

B. CLASSIFICATION OF MULTIPROCESSOR SYSTEMS

This section contains a brief discussion of the classi

fication of multiprocessor systems. Two distinguishing fea

tures that differentiate between designs are the use of

processing units and the interconnection of processor units

and memories.

1. Symmetric and Asymmetric Processor: The symmetric

multiprocessor system consists of a network of functionally

equivalent processors. This type system is used in a general

purpose environment, where processing requirements are con

stantly changing. The advantage of this class is that a giv

en task can be assigned to any idle processor for execution*

since there is an equivalence among individual processors.

Another significant advantage of this class is that the fail

ure of a module does not cause the failure of the entire

machine. However, symmetric systems require that every

processor have full capabilities (which increases hardware

expense, and complicates the operating system which becomes

responsible for the identification and control of tasks).

A second group consists of heterogenous processors spe

cially configured for a set number of tasks. Tasks and their

actions must be completely known in advance. In this case,

processors may be specialized to carry out one particular

type of task. One processor may perform all I/O operations,

3

another provides floating point arithmetic capability, a

third provides file maintenance. The operating system is

greatly simplified and becomes a task scheduler.

2. System Organization: In addition to classifying

multiprocessor systems according to processor use, they may

be grouped in relation to the interconnection of processors

with system memories and peripheral devices. Three main

types of organizations are possible.

a. Switch Matrix: This scheme provides direct paths

from any processor to any memory or peripheral. This allows

many processors to simultaneously utilize many different

memory modules, reducing memory reference interference

between processors. However, the switching matrix may be

extremely expensive (the cost increases rapidly with the

number of processors) eliminating much of the cost advantage

of a multiprocessor system.

b. Time-shared Bus: This method is to multiplex all

processors memories and peripheral devices over one data bus.

This is a lower cost approach, but system throughput becomes

limited by bus capacity.

c. Multiport Memory Systems: In this third method each

processor has access through its own bus to all memory mod

ules. Like the two previous organizations, the multiport

system organization has the disadvantage of high cost

multiple-connection hardware.

All of the above organizations and their variations are

useful and worthy of consideration. This thesis is concerned

b

with the symmetric processor and its associated switching ma

trix. Much of the discussion can be applied to the other

classes as well.

C. OUTLINE

The next section describes in detail the switch matrix

organization. Section III analyzes performance and cost of a

typical multiprocessor system. Such a system is the MIMD

type computer treated in section IV where process coordina

tion is modeled using Petri net techniques as a tool for the

purpose.

5

II. SWITCH ORGANIZATION

A. PRINCIPLE OF OPERATION

A block diagram of the switch organization is shown in

Figure 1.

1. Description: The switch that interconnects proces

sors and data memories to allow memory sharing, consists of

a number of nodes connected via ports. Each node contains

two input ports labeled A and B and two output ports labeled

C and D. Each node can send a message on its output ports

and receive one on its input ports. It is assumed that each

memory can respond to a single request during one cycle so

that there is no simultaneous double service. The message

contains the address of the memory to be mapped into physical

memory and a priority word.

When a switch node receives a message, it attempts to

route it correctly through the appropriate path. This is

accomplished by storing in each node a table which maps the

recipient address into the port number as shown in Table I.

Input A could be connected to either the output labeled D or

the output labeled C depending on the value of some generated

control. However, input B could be connected only to the

output labeled C. This technique reduces the complexity of

the table mapping and defines a unique path between the mes

sage entry and its destination. It is clear that the inputs

of the root-node can be switched to anyone of the outputs.

2. Contention: The hierarchy in priority is set by

6

M E M m o— —o

Figure 1. Multiprocessor Switch Organization

7

TABLE I

TABLE MAPPING MEMORY ADDRESSES INTO SWITCH NODES

PROCESSOR UNITS_________ SWITCH NODES__________ MEMORY MODULE

1 1,1
2 2,1 - 1,1
• •

1

p p,l - 2,1 - .. . - 1,1

1

2

1,1 - 1,2

2,1 - 2,2 ~ 1,2

•

•

P p,l - P,2 - . . . - 2,2 - 1,2

2

• • •

• • •

• • •

1 iiCM1-111-11—1 1 ,m

2 2,1 - 2,2 - ... - 2,m - l,m m

P P,1 - P,2 - ... - p,m - ... - 2 ,m -

1 ,m

8

incrementing the request priority as it passes through the

node. Preference to route the request is given then to the

request with highest priority. When a request is accepted,

it is followed by latching sequentially the high order byte

and then the low order byte of the memory address. A message

is then at any instant distributed between two nodes and a

conflict to acquire the node is created between the beginning

of some request and the middle part of another. To avoid

such a conflict, each part of the message should have the

priority word associated with it. This requires an increase

of the message word length. Figures 2 and 3 show a possible

solution to the contention problem.

3. Reliability: When a request has been made by a

processor to access a certain memory address, a signal mes

sage is reported back through the switch to the requesting

processor to indicate whether the operation has been success

ful or not. In case there is a failure of the operation,

another attempt will be made by the processor to achieve its

request granting.

When a switch node fails, a misrouted message could be

created. A leaking message should be inserted at the begin

ning of a request by every originator. This message leaks

out the switch from the misrouted request. The leaking mes

sage consists of a message with a higher priority value en

abling the processor to gain access to the node. The number

of bits associated with each request word should be suffi

cient in order to prevent the priority value from reaching

9

N0DE1 NODE 2 NODE3

Low Order Data
M ESSAG E 1

_ n __n _
High Order Data+Priority

MESSAGE 2

Figure 2. Conflict due to Absence of Priority V.ford

N0DE1 N0DE2 N0DE3

__n _ r i _ MESSAGE1
Low Order Data+Priority

--------------' *-------------- MESSAGE2
High Order Data+Priority

Figure 3+ Solution to the Conflict
Using Priority Word Presence

10

its maximum and overflowing.

B. CONTROL OF THE SWITCH

The functional block diagram of a switch node appears

in Figure 4. All single lines in the figure are multiple

bit lines. The double lines on INOUT box represent incoming

and outgoing address and data lines. A read/write control

line is also provided. The function of the INOUT box is to

set up a connection between the incoming information port

and one of the outgoing ones, according to the value of the

input X. The input X may be encoded with as few as two bits

as shown in Table II.

TABLE II

Input X Coding

Connection Input X

> i o 01

A - D 10

B - C 11

B - D Forbiddei

The function of the CONTROL box is to generate the

signal X and provide arbitration. A request is generated

when its line is presented at the input port. The memory

address is mapped into the stored table to provide the

correct routing of the selected message. A signal X is then

issued to box INOUT to specify the right exit port. When a

request for a busy memory is rejected, a busy signal is

eventually transmitted to the source which originated the

blocked request. The DONE signal is supplied to each

Request 1
B u s y i

R /W

R equest 2
Busy 2

Figure 4. Block Diagram of a Switch Node

12

CONTROL box to guarantee information flow about the success

or failure of operations. In case of failure, new attempts

should be made till the operation is achieved correctly. To

avoid any gate delay, the DONE signal is connected directly

through the network.

Actual implementation of the switch in the real world

requires additional practical considerations. An evaluation

of this interconnection network in terms of system perform-

ance/cost and allowance of programming concurrency will be

made in the next two sections.

13

III. PERFORMANCE AND COST OF THE SYSTEM

A. SYSTEM THROUGHPUT

The estimation of system performance and cost is moti

vated by the work of [2]. In his analysis, Reyling derived

results based on the utilization of a time-sharing technique

as shown in Figure 5* This section deals with the equivalent

space-sharing technique. The analytical results, concerning

system performance and cost, are compared with those of time

sharing technique and validated through examples.

Space-sharing means that a set of resources is parti

tioned into non-intersecting blocks such that each block

executes some application. The applications are executed

independently in parallel. Time-sharing reduces the idle

time. Space-sharing reduces the percentage of resources that

are idled.

To determine multiprocessor throughput as a function of

the number of microprocessors required, the characteristics

of the system have been defined as:

Ts: System throughput defined as the number of instruc

tions executed per second by the system.

Tp: Throughput of an individual processor when there is

no memory interference,

p: Number of processors in the system

m: Number of memory modules in the system.

The effects of interference when memory is used for

making single-word transfers have been considered here;

S Y S T E M DATA BUS

Figure 5. Multiprocessor Data Bus Organization

15

contention for multiple-word transfer units also affects

throughput of a particular system and may be investigated

in a manner similar to the following discussion.

When several processors simultaneously address the

same memory module, a memory interference occurs. If n

generated requests are queued to the same memory module,

then n-1 processors must wait for the module to become un

locked in order to gain access to it. Throughput of the

entire system is reduced because each processor is slowed

down.

In order to study memory interference in more general

terms, maximum, minimum, and average throughput Ts is deter

mined. For this purpose, the following model is described.

At a given instant of time t, p different requests are

generated and divided among the m modules. It is assumed

that the processing time is null. Furthermore it is assumed

that a processor issues a new request immediately after re

ceiving its current request with a uniform probability (1/m).

To illustrate the ideas, an example with p=4 and m=4 is

considered. The number of requests simultaneously present at

memory module j at time t will be indicated by (j). In the

case where:

Xt (D = 0, Xt (2) = 3, Xt (3) = 1, Xt (4) = 0

the model will be illustrated by

P 0 1 2 3
m 2 2 2 3

16

1, Maximum Throughput: The maximum throughput Ts (MAX)

will occur If each memory module receives a single request at

a given Instant of time t. In other terms,

Xt (j) = 1 for j = 1, 2, . . ., m

In this case, all the processors are doing useful work since

they are accessing different memory modules of the shared

main memory. Clearly, Ts will equal pTp. This is shown

graphically in Figures 6 and 7. This result is also true for

time-sharing system performance.

2. Minimum Throughput: It is also of interest to find

the minimum value of T . The worst possible case would be if

all p requests had to be queued to the same memory module j ,

so that

Xt (j) = P for j = 1, 2, . . . , m

and consequently, p-1 processors will be waiting to gain

access to the resource. It is assumed that the probability

that a request will be pending is also (~ —) •

The memory bandwidth B is defined as the number of

requests serviced per cycle. It follows that, for the above

example, the bandwidth would be:

B = numker> of processors _ *J _ ^ no
number of cycles 3 *

where the number of cycles is equal to X^(j) maximum for

lj..., m

The decrease in throughput could be derived by considering

the ratio
r - bandwidth with maximum interference

bandwidth with no interference

expressing the fact that p-l processors would be waiting for

the busy memory module during interference yields

B _ 1 + (p-l) (l/m) = 1
R _ “ 1 + (p-l)(l/m)

The minimum value of Ts is given as:

Ts (min) = (throughput with no interference) x R
_ pxT x R _ PxTp

p ---- I +.(F l M l 7 m T
This minimal value of throughput may be used to determine the

range of possible throughputs and has been plotted in Figure

6 for m=3 and in Figure 7 for m=10. The two figures show

that with the hypothesis stating that m=p, the results are

equivalent to the time-sharing system performance results.

Even with maximum interference, both analysis still depicts

a substantial increase in Ts with p. However, it should be

pointed out that these last two cases concerning performance

bounds are events of small occurence. As an example, a

system with parameter m=p=n has the random sampling probabi

lities

g(l) = and g(p) = 1
nn nn-1

where g(h) is the probability that X^(j) maximum is equal to

h. For a 7x7 system, g(l) and g(7) are given by

1g(l) - —--y = 0.00611 and g(7) ~ ~z—rjf yO = 0.00000849

As one can see, these probabilities are very low to let the

maximum and minimum interference occur frequently.

3. Average Throughput: Average throughput is a

SY
ST

EM

TH
RO

UG
HP

UT

18

Figure 6. System Throughput Vs Number of Processors, m=3

19

deterministic factor of system performance. It is computed

by considering a sequence of transition states viewed as a

discrete Markovian process with state space (l,2,...,m) and

with probability transition A (i , j) from state i to state j.

Let p(i) denote the steady-state probability of state i.

Then,

m
p(i) = P(J)i k=l,2,...,m

J = 1

To simplify the analysis, an assumption is made that all the

states are inter-reachable. The number of busy modules is

represented by a state of m-tuple (pl,p2,...,pm) with

m

i=l

A new state (j j 2 » • • • »Jm) is reachable from state

(i^,i^,...,i) with the transition probability [3]

x! . (1 \
(j* -i.)! . . . (j ■-i) ! \ m)

x

1 1' m ”m

where x is the number of nonzero elements in the new state

vector. Furthermore, the distribution probability p(i) of

all possible states obeys the normalizing equation

m

i=l

In order to compute the elements of the transition ma

trix A(i,j), the enumeration tree of a 4x4 system as in

20

Figure 7. System Throughput Vs Number of Processors.

m= 10

21

Figure 8 has been considered. The letters 1^, I2,..., 1^

denote the initial states, and the letters F^, F2,..., F^

denote the final states. The letter W denote the number of

ways in which transition can occur. This number is the sum

of different combinations to traverse the tree, e.g. the

number of ways to reach state (3*1,0,0) from state (3,1,0,0)

is (lx3+3xl) equal 6 ways. The matrix equation of the

system considered has been derived as

V ~0.25 0.625 0.000 0.0156 0.0152“

1
►-d -tr —
1

P3 0.75 0.375 0 .1 2 5 0.1875 0.1875 P3
P2 = 0.00 0.187 0 .1 2 5 0.1406 0.1406 P2

P1 0.00 0.375 0.625 0.5625 0.5625 P1

po 0.00 0.000 0 .1 2 5 0.0937 0.0937 _ po_

with the constraint: P4+P3+P2+Pl+P0 = 1
The average number of busy memory modules is given by

m m m
5 1 p(1) = V ~ 1 p o Ad,j),
i=l j = l

it follows that the average throughput will be given by

m m
Ts (AVE) = Tp J i J P(j) A (1, j)

i=l j=l

Table III shows the average number of busy memory modules

for an 8x8 discrete Markov chain model during one cycle.

This is in contradiction with the assumption made that the

processing time is null. Figure 6 shows the average

22

1lr 4000

J wy,Fi:4000

I2 3100] W:l/̂ 3000 i\W:3

1111 l4:2100 -2000 < F2:3100

l i Wil/ NW:3 w:i/
oono _ W:4 mnô \ 21 00/ W:1 F3:2200X,W:3 W; 2 / \Wi2\1100 < ► F̂:2110N̂W:2 W:3/̂I3.2200 U100 <\W:1

F5:1111

Figure 8. Transition States of a 4x4 System

23

TABLE III

DISCRETE MARKOV CHAIN MODEL

NUMBER OP PROCESSORS Pc = 1,2.... 8 (ROWS)

NUMBER OF MEMORY MODULES Mp = 1,2.... 8 (COLUMNS)______

1 2 3 ^ 5 6 7 8 1 1 .0000 1.0 000 1.0 000 1 .0000 1.0 000 1.0 000 1.0000 1.0000
2 1.0000 1 .5000 1 .6667 1 .75 0 0 1.8000 1.8333 1.8571 1 .8750

3 1.0000 1.6667 2.0476 2.2692 2.4095 2.5054 2.5748 2.6272

4 1.0000 1 .750 0 2.2707 2 .6 2 10 2.8630 3-0365 3.1657 3.2652

5 1.0000 1.8000 2.4102 2.8633 3-1996 3.4530 3.6482 3.8019

6 1.0000 1.8333 2.5059 3-0370 3.4533 3.7809 4.0415 4.9471

7 1.0000 1.8571 2.5751 3.1663 3.6486 4.0418 4.3636 4.6292

8 1.0000 1 .8 75 0 2.6274 3.2657 3.9624 4.2521 4.6294 4.7491

2H

throughput for a 3x3 system. Actually, the request genera

tion rate follows a certain distribution. In order for the

comparison of the present results with the time-shared bus

performance results to hold, it is assumed that processors

can generate new requests every cycle.

Feller [4] treating the "occupancy problem” had given

the transition probability as

A (n) (i.J)
v=0

(n)where A (i,j) is the probability that there will be j

occupied memories after n additional requests (cf. Appendix).

Average throughput of the considered model has been plotted

in Figure 7« Indeed, the plot shows that there is a more

substantial increase of throughput with the number of proces

sors than in the case of time-sharing configuration.

B. SYSTEM COST

In this section, the system cost shall be studied in

order to determine how much the potential increase of the

system due to the added throughput will cost. For this

purpose the following subsystems costs have been defined:

Cr: Cost of system resources (including memory, mass

storage, and peripheral devices).

Cp: Cost of an individual processor (including MOS

LSI microprocessor chips, power supply cost, and

mechanical assembly).

Cs: Cost of the switch (including wiring, control

25

logic, arbitration and conflict solving, mechanical

assembly of the switch).

For a system with p processors, the total system cost is

derived as

Ct = Cr + pCp + Cs

Two systems have been considered: one in which Cp=Cr/5 and

Cs=P^Cj, the other in which Cp=Cr/30 and Cs=p^Ci. Ci and Cj

are the costs of individual switch node and its associated

control and wiring, and have been equally chosen to be

Ci=Cj=Cr/50

Tp is assumed to be the same in both cases.

Figure 9 shows the increase in Ct with p. Another

assumption that Cr is independent of the number of micro

processors p has been made. In reality, an increase in p

may require an increase in total storage. As opposed to the

results based on time-sharing technique, where cost of the

system has been found to be linear with p, the cost of the

present system using a switch has been found to be parabolic

as expressed respectively by the equations of the two chosen

systems:

Ct=Cr (l+p/5+p2/50) and Ct=Cr (l+p/30+p2/50)

The information in Figures 7 and 9 has been combined in

Figure 10 to indicate cost versus throughput. This cost of

the system is a strong function of the ration Cr/Cp, and

system cost increases rapidly as p approaches 10, diminishing

the cost/effectiveness of the system. In order to determine

the optimum number of microprocessors in the system, the

SY
ST

EM

CO
ST

(C

t)

26

Figure 9« Relative System Cost Vs Number of

Processors for Two Cases. m=10

27

_|____________ I____________ I-------------- L_
2Tp 4Tp 6Tp sip

SYSTEM THRO UG HPUT

Figure 10. System Cost Vs System Throughput

m=10

28

ratio Ct/Ts has been calculated. This ratio is the cost per

instruction execution that the user would have to pay. The

information obtained from Figures 7 and 10, and plotted in

Figure 11 show that, for two systems with analogous param

eters the time system user will be paying less price per

instruction execution than the space-shared system user as

long as the number of processors in the system does not ex

ceed 10. For a larger number, the space-shared configuration

seems to be more attractive. This illustrates the advantages

of minimizing both Cp/Cr and the value of m as shown.

For todayfs microprocessors, the ratio Cp to Cr is

typically very low, since the cost of a complete microproces

sor is in the range of several hundred dollars, while system

memory and peripherals may be in the range of $5,000 to

$20,000. However the cost of a switch increases as p . For

the C.mmp computer developed at Carnegie-Mellon University,

the cost of the switch turned out to be half the cost of the

entire system. A means of decreasing the number of shared

memory modules m in the system is to provide some memory

local to each microprocessor. This approach has a double

advantage of reducing memory reference interference and high

access speed to data memory.

29

Figure 11. Normalized Curves of System

Cost/Throughput Vs Number of Processors. m=10

30

IV. THE MIMD MACHINE

A. DEFINITION OF SIMD AND MIMD MACHINES

The example of multiprocessor systems chosen in this

study was the MIMD type. Two types of parallel processing

systems are single instruction stream-multiple data stream

(SIMD) machines and multiple instructions stream-multiple

data stream (MIMD) machines. An SIMD machine typically

consists of a set of p processors and m memories, an inter

connection network, and a control unit. The control unit

broadcasts instructions to the processors and all active

processors execute the same instruction at the same time.

Thus a single stream instruction drives all the processors.

Each processor executes instructions using data taken from

a memory to which only it is connected. This provides a

multiple data stream. The interconnection network allows

interprocessor communications. A type of such a machine is

the ILLIAC IV [5]. An MIMD machine typically consists of p

processors and m memories, where each processor may follow

an independent instruction stream. Hence, there are multi

ple data streams. As with SIMD there is a multiple data

stream and an interconnection network. An example of such a

machine is the C.mmp[6]. Figures 12 and 13 show the SIMD

and MIMD computers respectively.

B. PARALLELISM THROUGH THE SWITCH NETWORK

A typical MIMD multiprocessor using a switch network

as described previously has been considered. The first part

P R O 1

M E M 1

c o n t Ec?
U N IT

PRO 2

M E M 2

PRO p

M E M m

INTERCONNECTION NETW ORK

Figure 12. Block Diagram of a SIMD Computer

32

I/O C H A N N E LS

Figure 13. Block Diagram of a MIMD Computer

33

of this section will be devoted to the modeling of the switch

node operation, then the rest of the section will examine

problems related to two sensitive areas which are inter

processor control and resource sharing and scheduling. Petri

nets appearing to be a clear and convenient way to express

process coordination are used here to explore such problems.

To avoid any ambiguity for the reader, the definition of

Petri nets and the simulation rules are given explicitly.

1. Overview: James L. Peterson [7] defined a Petri net

as in the following:

"A Petri net is an abstract, formal model of information

flow. The properties, concepts, and techniques of Petri nets

are being developed in a search for natural, simple and

powerful methods for describing and analyzing the flow of

information and control in systems that may exhibit asyn

chronous and concurrent activities.”

Figure 14 shows a simple Petri net. The graph contains

two types of nodes: Circles (called places) and bars (called

transitions). The places and transitions are connected by

direct arcs from places to transitions and from transitions

to places. Place P^ is an input to transition T^ and places

? 2 and P^ are output to transition T^. The execution of

Petri nets is controlled by markers moving around the graph.

Each place has one or more markers in it or may be empty. A

transition is said to be enabled if all its input places

contain at least one marker (or token). The transition fires

by removing the enabling tokens from their input places

*> t2

Figure 14. A Marked Petri Net

35

and generating new tokens which are deposited in the output

places of the transition. Petri nets constitutes a broad

area of study and the reader should consult the literature

on this advanced theory for more information [8,9].

2. Node Switch Operation: When two requests arrive at

a switch node, contention is essentially made as follows:

the switch node selects one packet and rejects the other one

if the two packets are to be passed to the same output. It

takes time t^ to determine the successor node to which the

message is to be sent. If that output is in use, it waits

its turn for the use of the output link. When the selected

output port becomes free, it takes time tg for data to be

available at the output port. Figure 15 models a timed Petri

net of the switch node operation. Input A can select either

output B or C, whereas input B can only select output C.

Place P^ cannot acquire a token and hence disables transition

tg from firing. Consequently output D is forbidden to input

B. When a message-packet is rejected by the switch node, it

is automatically lost. If there is no conflict at the switch

node level, processors carry out their tasks in a concurrent

fashion, creating parallelism as it will be seen in the re

maining of the section.

3. Interprocessor Control: A major concern about inter

processor control lies in synchronization of the processors

to carry out a parallel computation correctly. To illustrate

an example of this problem, the producer-consumer problem

with one producer and two consumers is considered. The items

36

TA tb

Figure 15. Switch Node Operation

37

produced by the producer are passed to the consumers to be

picked up on a random basis. Only one item can be consumed

by one consumer at a time. In order to avoid the access of

the produced item by both consumers simultaneously, one of the

consumers must lock the other from trying to consume the same

item. The instruction to do this must be indivisible. The

indivisibility can be achieved by instructions of the form

"Test-and-Set" as implemented in many systems. Two portions

of code generated by two processors wishing to access a

common resource are called "critical sections". To control

the correct execution of critical sections without conflict,

Dijkstra [10] introduced a new concept using semaphores. A

semaphore is a variable upon which a processor can execute a

P and a V operation as in the following:

V(S): S ◄— S + 1

P(S): L: If S = 0 then go to L else S *4-- S - 1

Figure 16 summarizes the producer-consumer mutual exclu

sion protocol in terms of Petri nets. Places p^ and p^ re

present the producer and places p^, p ^ 5 p^ and p^, p^, pg re

present the consumers. Place P^ models the semaphore setting.

Transitions t^ and t^ are mutually exclusive. Firing one

disables the other automatically. Transitions tg and t^ re

present the critical sections of process 1 and process 2.

Transitions t^, t2, t^, t^ control the entry and exit to the

critical sections. Transition t^ the production process. As

can be seen, synchronization of concurrent processes can be

achieved using semaphore techniques. Unfortunately, the

38

Figure 16. Illustration of the Producer-Consumer

Problem

39

solution to these problems is related to scheduling and

reliability problems. The failure of the processor whose

process is in its critical section may lead to a dangerous

situation. The rest of the processors will be blocked in an

infinite testing loop. In the following discussion, a possi

ble approach to the problem is explored. The use of a lock

instead of a semaphore is provided. The lock consists of

one part to test and set the lock and a busy signal bit to

indicate that the processor executing the critical section

code is successfully running. A process wishing to obtain

the lock tests the appropriate part of the lock with a single

indivisible instruction. If the result of the test indicates

that the lock is free, it is then locked and the locking

process can execute its critical code. If the lock part is

set, the processor performs a second test upon the busy

signal bit. If this bit is set then the processor using the

resource is still executing properly. Otherwise, the oper

ating system unlocks the lock indivisibly, allowing one of

the waiting processors to proceed to use the lock and execute

its critical code. Figure 17 shows a Petri net model of two

concurrent processes using a lock. If either transition t
5

or t^ does not fire, then the firing of transition t^ or t^

resets the lock at place Py. Either process 1 or process 2

at place p1 or p^ has now a token in its place. Transition

t (or transition t^) is now enabled and process 1 (or proc

ess 2) is now ready to use the lock and enter its critical

section.

40

Figure 17* Solution to the Reliability Problem

41

4. Resource Sharing and Scheduling: In this section,

the deadlock problem is examined. To illustrate the ideas

once again, an example of a deadlock problem is considered.

Two processes p1 and request use of memory module M^,

as shown in Figure 18. Process p^ acquires memory module

M^, and then needs and needs to carry on. The

operating system*s resource scheduler services process p^*s

first request (transition t^, and process P 2 *s first

request (transition t2 > M^). From there, neither process can

continue (the places p-̂ and p^ are empty and neither transi

tion t-p M2 nor can fire).

To circumvent the deadlock problem, some prior condi

tions must be set before the system requirements are met.

Prevention of system deadlock has been discussed and careful

ly analyzed in the literature [11]. In the light of this

fruitful analysis and based on the conditions derived in

order to avoid deadlock problems, a solution to the deadlock

problem cited above is given and illustrated in terms of

Petri net techniques as in Figure 19. The graph is self-

explanatory. At transition t^ and t^, there is a mutual ex

clusion set by place p^* Firing of either transition disables

the other and enables its next transition in sequence by

placing a token in either place p^ or p^ accordingly. This

illustrates one of the conditions to avoid the deadlock

problem which consists of preventing a process to hold

exclusive control of some resources while a request for

b2

Figure l8 Illustration of The Deadlock Problem

43

Figure 19. Solution to the Deadlock Problem

more resources is pending.

The deadlock problem has been a burden in the domain

of multiprocessors task scheduling for years and the only

way to circumvent it is to set preventing conditions which

unfortunately increase operating system overhead.

45

V. CONCLUSION

It has been shown that a switch matrix configuration for

the processor-memory interconnection network has reliability

and expandability. If a switch node fails, the system can

still function with less memory and degraded performance.

A computer system model has been used to estimate the

relative performance of a computer using a switch network to

another system using a bus. Performance bounds have been

found to be equivalent in both systems. However, average

throughput has been derived to be increasing more with the

number of processors in the case of switch utilization.

Certain simplifying assumptions have been made to make the

analysis tractable but the model can be used to at least

approximate the performance of some computer systems.

Expressions of the cost of the system have been given

in the case where the cost of system resources C^ is thirty

times and five times the cost of an individual processor CP •
It appears that in a certain number of processors range the

space configuration handles large parallel computations

better than the time configuration.

Parallelism through such a switch network has been view

ed in terms of Petri net modeling techniques. The switch

node operation has been investigated in detail.

Problems related to interprocessor control and resource

sharing and scheduling have been studied. Possible ap

proaches to their solutions have been given and validated

through examples. When the switch node operation has been

46

explored, it has been stated that a non-seleeted message-

packet was rejected by the system and consequently lost.

A topic of significant importance would be the

investigation of networks with buffering capability to

permit request queueing and prevent this loss.

47

BIBLIOGRAPHY

1. Enslow, P.H. (Ed), Multiprocessors and Parallel

Processing, John Wiley & Sons, N.Y. 1974

2. Reyling, G. Jr. Performance and Control of Multiple

Microprocessors Systems, Computer Design, March 1974,

pp 8 1-86.

3. Bhandarkar, D.P. Analysis of Memory Interference in

Multiprocessors, IEEE Trans, on Comp. C-24 (Sep.1975)

pp 897-908

4. Feller, W. An Introduction to Probability Theory and

Its Applications. Vol. I, John Wiley & Sons, N.Y. 1968

5. Davis, R.L. The Illiac IV Processing Element, Trans.on

Comp. C-l8 (Sep. 1968), pp 8OO- 8 1 6

6 . Wulf, W.A. and C.G. Bell, C.mmp A Multimini Processor

Proc. AFIPS 1972 Fall Joint Comp. Conf.4l, AFIPS Press,

Montvale, N.J. 1972, pp 765-777

7. Peterson, J. L. Petri nets, Computing Surveys, Vol.9

No.3 (Sep. 1977) PP 223-252

8 . Murata, T. and Church,R.W. Analysis of Marked Graphs

and Petri nets by Matrix Equations, Research Report

MDC 1.1.8, Dept. Information Engineering, Uni.Illinois

Chicago Circle (Nov. 1975) 25 pp

9. Petri, C .A . Concepts of net Theory in Proceedings Symp.

and Summer School on Mathematical Foundation of Computer

Science, High Tatras, (Sep. 1973) pp 137-146

10. Dijkstra, E.W., Solution of a Problem in Concurrent

Programming, Comm, ACM 8, (Sep. 1 9 6 5) p p •569-570.

48

11. Stone, H.S., Parallel Computers, Introduction to

Computer Architecture, H.S. Stone, ed. SRA, Chicago,

111. 1975, p p 318-374

**9

VITA

Rabah Aoufi was born on March 2, 1955 in Medjana,

Setif State, Algeria. He received his primary and secondary

education in Medjana, Bordj-Bou-Arreridj, and Dellys

(Algeria). In September 197^ he entered the University of

Bab-Ezzouar, Algiers, which was opened to receive students

for the first time. He received the equivalence of a

Bachelor of Science Degree in Electrical Engineering from

l !Ecole Polytechnique d !Alger in May 1977. He then came to

the United States in January 1978 and attended an English

course at Columbia University, New York. In September 1978

he entered the University of Missouri-Rolla and held the

position of Graduate Teaching Assistant during the Fall of

1980.

50

APPENDIX

THE OCCUPANCY PROBLEM

Consider a sequence of independent trials, each consist

ing of placing a request at random at one of m given memory

modules. The system is said to be in State pk if exactly k

memory modules are occupied. This determines a Markov chain

with states P 1,...,Pm and transition probabilities such

that

on expressing the binomial coefficients in terms of fact

orials, this formula simplifies to

k-j-V

with P j ^ = 0 if k < 3

(For a more specific demonstration of this Formula see [4])

	A multiprocessor system using a switch matrix configuration
	Recommended Citation

	tmp.1625671987.pdf.99W1H

