50,025 research outputs found

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    KR3^3: An Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture that combines the complementary strengths of declarative programming and probabilistic graphical models to enable robots to represent, reason with, and learn from, qualitative and quantitative descriptions of uncertainty and knowledge. An action language is used for the low-level (LL) and high-level (HL) system descriptions in the architecture, and the definition of recorded histories in the HL is expanded to allow prioritized defaults. For any given goal, tentative plans created in the HL using default knowledge and commonsense reasoning are implemented in the LL using probabilistic algorithms, with the corresponding observations used to update the HL history. Tight coupling between the two levels enables automatic selection of relevant variables and generation of suitable action policies in the LL for each HL action, and supports reasoning with violation of defaults, noisy observations and unreliable actions in large and complex domains. The architecture is evaluated in simulation and on physical robots transporting objects in indoor domains; the benefit on robots is a reduction in task execution time of 39% compared with a purely probabilistic, but still hierarchical, approach.Comment: The paper appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    A Novel Method For Speech Segmentation Based On Speakers' Characteristics

    Full text link
    Speech Segmentation is the process change point detection for partitioning an input audio stream into regions each of which corresponds to only one audio source or one speaker. One application of this system is in Speaker Diarization systems. There are several methods for speaker segmentation; however, most of the Speaker Diarization Systems use BIC-based Segmentation methods. The main goal of this paper is to propose a new method for speaker segmentation with higher speed than the current methods - e.g. BIC - and acceptable accuracy. Our proposed method is based on the pitch frequency of the speech. The accuracy of this method is similar to the accuracy of common speaker segmentation methods. However, its computation cost is much less than theirs. We show that our method is about 2.4 times faster than the BIC-based method, while the average accuracy of pitch-based method is slightly higher than that of the BIC-based method.Comment: 14 pages, 8 figure

    Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures. Part II: identification from tests under heterogeneous stress field

    Full text link
    In Part I of this paper we have presented a simple model capable of describing the localized failure of a massive structure. In this part, we discuss the identification of the model parameters from two kinds of experiments: a uniaxial tensile test and a three-point bending test. The former is used only for illustration of material parameter response dependence, and we focus mostly upon the latter, discussing the inverse optimization problem for which the specimen is subjected to a heterogeneous stress field.Comment: 18 pages, 12 figures, 6 table

    Automatic Computation of Feynman Diagrams

    Full text link
    Quantum corrections significantly influence the quantities observed in modern particle physics. The corresponding theoretical computations are usually quite lengthy which makes their automation mandatory. This review reports on the current status of automatic calculation of Feynman diagrams in particle physics. The most important theoretical techniques are introduced and their usefulness is demonstrated with the help of simple examples. A survey over frequently used programs and packages is provided, discussing their abilities and fields of applications. Subsequently, some powerful packages which have already been applied to important physical problems are described in more detail. The review closes with the discussion of a few typical applications for the automated computation of Feynman diagrams, addressing current physical questions like properties of the ZZ and Higgs boson, four-loop corrections to renormalization group functions and two-loop electroweak corrections.Comment: Latex, 62 pages. Typos corrected, references updated and some comments added. Vertical offset changed. The complete paper is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ttp98/ttp98-41/ or via www at http://www-ttp.physik.uni-karlsruhe.de/Preprints
    corecore