74,164 research outputs found

    Dura

    Get PDF
    The reactive event processing language, that is developed in the context of this project, has been called DEAL in previous documents. When we chose this name for our language it has not been used by other authors working in the same research area (complex event processing). However, in the meantime it appears in publications of other authors and because we have not used the name in publications yet we cannot claim that we were the first to use it. In order to avoid ambiguities and name conflicts in future publications we decided to rename our language to Dura which stands for “Declarative uniform reactive event processing language”. Therefore the title of this deliverable has been updated to “Dura – Concepts and Examples”

    Probability, propensity and probabilities of propensities (and of probabilities)

    Full text link
    The process of doing Science in condition of uncertainty is illustrated with a toy experiment in which the inferential and the forecasting aspects are both present. The fundamental aspects of probabilistic reasoning, also relevant in real life applications, arise quite naturally and the resulting discussion among non-ideologized, free-minded people offers an opportunity for clarifications.Comment: Invited contribution to the proceedings MaxEnt 2016 based on the talk given at the workshop (Ghent, Belgium, 10-15 July 2016), supplemented by work done within the program Probability and Statistics in Forensic Science at the Isaac Newton Institute for Mathematical Sciences, Cambridg

    Structurally Tractable Uncertain Data

    Full text link
    Many data management applications must deal with data which is uncertain, incomplete, or noisy. However, on existing uncertain data representations, we cannot tractably perform the important query evaluation tasks of determining query possibility, certainty, or probability: these problems are hard on arbitrary uncertain input instances. We thus ask whether we could restrict the structure of uncertain data so as to guarantee the tractability of exact query evaluation. We present our tractability results for tree and tree-like uncertain data, and a vision for probabilistic rule reasoning. We also study uncertainty about order, proposing a suitable representation, and study uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium 201

    Confidence limits: what is the problem? Is there the solution?

    Get PDF
    This contribution to the debate on confidence limits focuses mostly on the case of measurements with `open likelihood', in the sense that it is defined in the text. I will show that, though a prior-free assessment of {\it confidence} is, in general, not possible, still a search result can be reported in a mostly unbiased and efficient way, which satisfies some desiderata which I believe are shared by the people interested in the subject. The simpler case of `closed likelihood' will also be treated, and I will discuss why a uniform prior on a sensible quantity is a very reasonable choice for most applications. In both cases, I think that much clarity will be achieved if we remove from scientific parlance the misleading expressions `confidence intervals' and `confidence levels'.Comment: 20 pages, 6 figures, using cernrepp.cls (included). Contribution to the Workshop on Confidence Limits, CERN, Geneva, 17-18 January 2000. This paper and related work are also available at http://www-zeus.roma1.infn.it/~agostini/prob+stat.htm

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201
    corecore