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Abstract
This contribution to the debate on confidence limits focuses mostly on the
case of measurements with ‘open likelihood’ , in the sense that it is defined in
the text. I will show that, though a prior-free assessment of confidence is, in
general, not possible, still a search result can be reported in a mostly unbiased
and efficient way, which satisfiessomedesideratawhich I believeareshared by
thepeopleinterested in thesubject. Thesimpler caseof ‘closed likelihood’ will
also betreated, and I will discusswhy auniform prior on asensiblequantity is
avery reasonablechoicefor most applications. In both cases, I think that much
clarity will be achieved if we remove from scientific parlance the misleading
expressions ‘confidence intervals’ and ‘confidence levels’ .

“You see, aquestion hasarisen,
about which wecannot come to an agreement,

probably becausewehave read too many books”
(Brecht’s Galileo)1

1. INTRODUCTION

The blooming of papers on ‘ limits’ in the past couple of years [1]–[11] and a workshop [12] entirely
dedicated to the subject are striking indicators of the level of the problem. It is difficult not to agree
that at the root of the problem is the standard physicist’s education in statistics, based on the collection
of frequentistic prescriptions, given the lofty name of ‘classical statistical theory’ by their supporters,
‘ frequentistic adhoc-eries’2 by their opponents. In fact, while in routine measurements characterized by
a narrow likelihood, ‘correct numbers’ are obtained by frequentistic prescriptions (though the intuitive
interpretation that physicistsattribute to them is that of probabilistic statements3 about truevalues [15]),

1“ Sehen Sie, es ist eine Frage enstanden, über die wir uns nicht einig werden können, wahrscheinlich, weil wir zu viele
Bücher gelesen haben.” (Bertolt Brecht, Leben des Galilei).

2For example, even Sir Ronald Fisher used to refer to Neyman’s statistical confidence method as “ that technological and
commercial apparatus which is known as an acceptance procedure” [13]. In my opinion, the term ‘classical’ is misleading, as
aretheresultsof thesemethods. Thenamegivesthe impression of being analogousto ‘classical physics’ , which wasdeveloped
by our ‘classicals’ , and that still holds for ordinary problems. Instead, the classicals of probability theory, like Laplace, Gauss,
Bayes, Bernoulli and Poisson, had an approach to the problem more similar to what we would call nowadays ‘Bayesian’ (for
an historical account seeRef. [14]).

3It is a matter of fact [15] that confidence levels are intuitively thought of (and usually taught) by the large majority of
physicists as degrees of belief on true values, although the expression ‘degree of belief ’ is avoided, because “beliefs are not
scientific” . Even books which do insist on stating that probability statements are not referred to true values (“ true values are
constants of unknown value”) have a hard time explaining the real meaning of the result, i.e. something which maps into the
human mind’s perception of uncertain events. So, they are forced to use ambiguous sentences which remain stamped in the
memory of the reader much more than the frequentistically-correct twisted reasoning that they try to explain. For example a
classical particle physics statistics book [16] speaks about “ the faith we attach to this statement” , as if ‘ faith’ was not the same
as degree of belief. Another one [17] introduces the argument by saying that “we want to find the range . . .which contains the
truevalue #%$ with probability & ” , though rational peopleareat a loss in trying to convince themselves that theproposition “ the
rangecontains #%$ with probability & ” does not imply “ #'$ is in that rangewith probability & ” .

3
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they fail in “difficult cases: small or unobserved signal, background larger than signal, background not
well known, and measurements near aphysical boundary” [12].

It is interesting to notethat many of theabove-cited paperson limitshavebeen written in thewake
of an article [2] which was promptly adopted by the PDG [4] as the longed-for ultimate solution to the
problem, which could finally “ removean original motivation for thedescription of Bayesian intervalsby
the PDG” [2]. However, although Ref. [2], thanks to the authority of the PDG, has been widely used by
many experimental teams to publish limits, even by people who did not understand the method or were
sceptical about it,4 that article has triggered a debate between those who simply object to the approach
(e.g. Ref. [5]), those who propose other prescriptions (many of these authors do it with the explicit
purposeof “avoiding Bayesian contaminations” [11] or of “giving astrong contribution to rid physicsof
Bayesian intrusions”5 [6]), and thosewho just propose to change radically thepath [7, 10].

The present contribution to the debate, based on Refs. [7, 10, 15, 8, 19, 20], is in the framework
of what has been initially the physicists’ approach to probability,6 and which I maintain [15] is still the
intuitive reasoning of the large majority of physicists, despite the ‘ frequentistic intrusion’ in the form
of standard statistical courses in the physics curriculum. I will show by examples that an aseptic prior-
free assessment of ‘confidence’ is a contradiction in terms and, consequently, that the solution to the
problem of assessing ‘objective’ confidence limits does not exist. Finally, I will show how it is possible,
nevertheless, to present search results in an objective (in the sense this committing word is commonly
perceived) and optimal way which satisfies the desiderata expressed in Section 2. The price to pay is
to remove the expression ‘confidence limit’ from our parlance and talk, instead, of ‘sensitivity bound’
to mean a prior-free result. Instead, the expression ‘probabilistic bound’ should be used to assess how
much we are really confident, i.e. how much we believe that the quantity of interest is above or below
thebound, under clearly stated prior assumptions.

Thepresent paper focusesmostly on the ‘difficult cases’ [12], which will beclassified as ‘ frontier
measurements’ [22], characterized by an ‘open likelihood’ , aswill bebetter specified in Section 7, where
this situation will be compared to the easier case of ‘close likelihood’ . It will be shown why there are
good reasons to present routinely theexperimental outcome in two different ways for the two cases.

2. DESIDERATA FOR AN OPTIMAL PRESENTATION OF SEARCH RESULTS

Let us specify an optimal presentation of asearch result in terms of somedesired properties.
( The way of reporting the result should not depend on whether the experimental team is more or

less convinced to have found thesignal looked for.( The report should allow an easy, consistent and efficient combination of all pieces of information
which could come from several experiments, search channels and running periods. By efficient
I mean the following: if many independent data sets each provide a little evidence in favour of
the searched-for signal, the combination of all data should enhance that hypothesis; if, instead,
the indications provided by the different data are incoherent, their combination should result in
stronger constraints on the intensity of the postulated process (a higher mass, a lower coupling,
etc.).( Even results coming from low-sensitivity (and/or very noisy) data sets could be included in the

4This non-scientific practice has been well expressed by a colleague: “At least we have a rule, no matter if good or bad,
to which we can adhere. Some of the limits have changed? You know, it is like when governments change the rules of social
games: some win, some lose.” When people ask me why I disagree with Ref. [2], I just encourage them to read the paper
carefully, instead of simply picking anumber from a table.

5See Ref. [18] to get an idea of the present ‘Bayesian intrusion’ in the sciences, especially in those disciplines in which
frequentistic methods arose.

6Insightful historical remarks about the correlation physicists–‘Bayesians’ (in the modern sense) can be found in the first
two sectionsof Chapter 10 of Jaynes’sbook [21]. For amoreextensiveaccount of theoriginal approach of Laplace, Gaussand
other physicists and mathematicians, seeRef. [14].
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combination, without them spoiling the quality of the result obtainable by the clean and high-
sensitivity data sets alone. If the poor-quality data carry the slightest piece of evidence, this infor-
mation should play thecorrect roleof slightly increasing theglobal evidence.( The presentation of the result (and its meaning) should not depend on the particular application
(Higgs search, scaleof contact-interaction, proton decay, etc.).( The result should be stated in such a way that it cannot be misleading. This requires that it should
easily map into thenatural categories developed by thehuman mind for uncertain events.( Uncertainties due to systematic effects of uncertain size should be included in a consistent and (at
least conceptually) simpleway.( Subjective contributions of the persons who provide the results should be kept at a minimum.
Thesecontributionscannot vanish, in thesense that wehavealways to rely on the“understanding,
critical analysisand integrity” [23] of theexperimentersbut at least thedependenceon thebelieved
values of thequantity should beminimal.( The result should summarize completely the experiment, and no extra pieces of information (lu-
minosity, cross-sections, efficiencies, expected number of background events, observed number of
events) should be required for further analyses.7( Theresult should beready to beturned into probabilistic statements, needed to form one’sopinion
about thequantity of interest or to takedecisions.( The result should not lead to paradoxical conclusions.

3. ASSESSING THE DEGREE OF CONFIDENCE

As Barlow says [24], “Most statistics courses gloss over the definition of what is meant by probability,
with at best ashort mumbleto theeffect that thereisno universal agreement. Theimplication isthat such
detailsareirrelevanciesof concern only to long-haired philosophers, and need not troubleushard-headed
scientists. This is short-sighted; uncertainty about what we really mean when we calculate probabilities
leads to confusion and bodging, particularly on the subject of confidence levels. . . .Sloppy thinking
and confused arguments in this area arise mainly from changing one’s definition of ‘probability’ in
midstream, or, indeed, of not defining it clearly at all” . Ask your colleagues how they perceive the
statement “95% confidence level lower bound of 77.5 GeV/ )+* is obtained for the mass of the Standard
Model Higgs boson” [3]. I conducted an extensive poll in July 1998, personally and by electronic mail.
The result [15] is that for the large majority of people the above statement means that “assuming the
Higgs boson exists, we are 95% confident that the Higgs mass is above that limit, i.e. the Higgs boson
has95% chance(or probability) of being on theupper side, and 5% chanceof being on the lower side”8,
which isnot what theoperational definition of that limit implies [3]. Therefore, following thesuggestion
of Barlow [24], let us “ take a look at what we mean by the term ‘probability’ (and confidence) before
discussing the serious business of confidence levels” . I will do this with some examples, referring to
Refs. [19, 20] for moreextensivediscussionsand further examples.

7For example, during thework for Ref. [8], wewereunable to useonly the ‘ results’ , and had to restart theanalysis from the
detailed piecesof information, which arenot alwaysasdetailed asonewould need. For this reason wewerequiteembarrassed
when, finally, wewereunable to useconsistently the information published by oneof the four LEP experiments.

8Actually, there were those who refused to answer the question because “ it is going to be difficult to answer” , and those
who insisted on repeating the frequentistic lesson on lower limits, but without being able to provide a convincing statement
understandable to a scientific journalist or to a government authority – these were the terms of the question – about the degree
of confidence that theHiggs isheavier than thestated limit. I would like to report the latest reply to thepoll, which arrived just
the day before this workshop: “ I apologize I never got around to answering your mail, which I suppose you can rightly regard
as evidence that theclassical procedures arenot trivial!”
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Fig. 1: A box has with certainty one of these six black and white ball compositions. The content of the box is
inferred by extracting at random aball from thebox then returning it to thebox. How confident areyou initially of
each composition? How does your confidence change after the observation of 1, 5 and 8 consecutive extractions
of ablack ball?

3.1 Var iations on a problem set to Newton

It seems9 that Isaac Newton was asked to solve the following problem. A man condemned to death has
an opportunity of having his life saved and to be freed, depending on theoutcomeof an uncertain event.
The man can choose between three options: A) roll 6 dice, and be free if he gets ‘6’ with one and only
one die; B) roll 12 dice, and be freed if he gets ‘6’ with exactly 2 dice; C) roll 18 dice, and be freed
if he gets ‘6’ in exactly 3 dice. Clearly, he will choose the event about which he is more confident (we
could also say the event which he considers more probable; the event most likely to happen; the event
which he believes mostly; and so on). Most likely the condemned man is not able to solve the problem,
but he certainly will understand Newton’s suggestion to choose , , which gives him the highest chance
to survive. He will also understand the statement that , is about six times more likely than - and thirty
times more likely than . . Thecondemned would perhaps ask Newton to givehim some idea how likely
the event , is. A good answer would be to make a comparison with a box containing 1000 balls, 94 of
which arewhite. Heshould beso confident of surviving asof extracting awhiteball from thebox;10 i.e.
9.4% confident of being freed and 90.6% confident of dying: not really an enviable situation, but better
than choosing . , corresponding to only 3 whiteballs in thebox.

Coming back to the Higgs limit, are we really honestly 95% confident that the value of its mass
is above the limit as we are confident that a neutralino mass is above its 95% C.L. limit, as a given
branching ratio is below its 95% C.L. limit, etc., as we are confident of extracting a white ball from a
box which contains 95 whiteand 5 black balls?

Let us imaginenow amorecomplicated situation, in which you have to make thechoice (imagine
for a moment you are the prisoner, just to be emotionally more involved in this academic exercise11). A
box contains with certainty 5 balls, with a white ball content ranging from 0 to 5, the remaining balls
being black (see Fig. 1, and Ref. [20] for further variations on the problem.). One ball is extracted at
random, shown to you, and then returned to the box. The ball is black. You get freed if you guess
correctly the composition of the box. Moreover you are allowed to ask a question, to which the judges
will reply correctly if thequestion ispertinent and such that their answer doesnot indicatewith certainty
theexact content of thebox.

Having observed a black ball, the only certainty is that /10 is ruled out. As far as the other five
possibilities are concerned, a first idea would be to be more confident about the box composition which
has more black balls ( /12 ), since this composition gives the highest chance of extracting this colour.
Following this reasoning, the confidence in the various box compositions would be proportional to their
black ball content. But it is not difficult to understand that this solution is obtained by assuming that the
compositions are considered a priori equally possible. However, this condition was not stated explicitly

9My sourceof information isRef. [25]. It seemsthat Newton gavethe‘correct answer’ - indeed, in thisstereotyped problem
there is thecorrect answer.

10The reason why any person is able to claim to be more confident of extracting a white ball from the box that contains the
largest fraction of white balls, while for the evaluation of the above events one has to ‘ask Newton’ , does not imply a different
perception of the ‘probability’ in the two classes of events. It is only because the events 3 , 4 and 5 are complex events, the
probability of which is evaluated from the probability of the elementary events (and everybody can figure out what it means
that thesix faces of adieareequally likely) plus somecombinatorics, for which somemathematical education is needed.

11Bruno deFinetti used to say that either probability concerns real events in which weare interested, or it is nothing [26].
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in the formulation of the problem. How was the box prepared? You might think of an initial situation
of six boxes each having a different composition. But you might also think that the balls were picked
at random from a large bag containing a roughly equal proportion of white and black balls. Clearly, the
initial situation changes. In the second case the composition / 2 is initially so unlikely that, even after
having extracted a black ball, it remains not very credible. As eloquently said by Poincaré [27], “an
effect may be produced by the cause 6 or by the cause 7 . The effect has just been observed. We ask
the probability that it is due to the cause 6 . This is an a posteriori probability of cause. But I could not
calculate it, if aconvention moreor less justified did not tell me in advancewhat is thepriori probability
for thecause 6 to come into play. I mean theprobability of thisevent to someonewho had not observed
theeffect.” Theobservation alone is not enough to statehow much one is confident about something.

The proper way to evaluate the level of confidence, which takes into account (with the correct
weighting) experimental evidenceand prior knowledge, is recognized to beBayes’s theorem:12

8:9 /1;�<�=?>A@ 8B9 =C<�/1;+>ED 8GFH9 /:;+>JI (1)

where = is theobserved event (black or white),
8 F 9 / ; > is theinitial (or apriori) probability of / ; (called

often simply ‘prior’ ),
8:9 /1;�<�=?> is thefinal (or ‘posterior’ ) probability, and

8:9 =C<+/:;+> is the ‘ likelihood’ .
The upper plot of Fig. 2 shows the likelihood

8:9
Black <�/ ; > of observing a black ball assuming each

possible composition. The second pair of plots shows the two priors considered in our problem. The
final probabilities are shown next. We see that the two solutions are quite different, as a consequence of
different priors. So a good question to ask the judges would be how the box was prepared. If they say it
was uniform, bet your lifeon / 2 . If they say thefiveballs wereextracted from a largebag, bet on / * .

Perhapsthe judgesmight beso clement asto repeat theextraction (and subsequent reintroduction)
several times. Figure 2 shows what happens if five or eight consecutive black balls are observed. The
evaluation is performed by iterating Eq. (1):

8LKM9 /1;�<�=?>A@ 8B9 = K <�/1;+>ED 8LKON�P'9 /:;+>JQ (2)

If you are convinced13 that the preparation procedure is the binomial one (large bag), you still consider/ P more likely than / 2 , even after five consecutive observations. Only after eight consecutive extrac-
tionsof ablack ball areyou mostly confident about /R2 independently of how much you believein thetwo
preparation procedures (but, obviously, you might imagine – and perhaps even believe in – more fancy
preparation procedures which still give different results). After many extractions we are practically sure
of thebox content, asweshall see in awhile, though wecan never becertain.

Coming back to the limits, imagine now an experiment operated for a very short time at LEP200
and reporting no four-jet events, no deuterons, no zirconium and no Higgscandidates(and you might add
something even more fancy, like events with 100 equally energetic photons, or some organic molecule).
How could the 95% upper limit to the rate of these events be the same? What does it mean that the 95%
upper limit calculated automatically should give us the same confidence for all rates, independently of
what theevents are?

3.2 Confidenceversus evidence

The fact that the same (in a crude statistical sense) observation does not lead to the same assessment of
confidence is rather well understood by physicists: a few pairs of photons clustering in invariant mass
around 135 MeV have a high chance of coming from a S 2 ; more events clustering below 100 MeV are
certainly background (let usconsider awell calibrated detector); apeak in invariant massin anew energy

12SeeRef. [20] for aderivation of Bayes’s theorem based on thebox problem wearedealing with.
13And if you have doubts about the preparation? The probability rules teach us what to do. Calling T (uniform) and4 (binomial) the two preparation procedures, with probabilities UWVXTGY and UWVZ4[Y , we have UWVZ\^] obsYW_`UWVZ\^] obsa�TAYLbUcVdTAYfe:UcVZ\g] obsah4[Y�biUWVZ4[Ykj
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Fig. 2: Confidence in thebox contents as a function of prior and observation (see text).
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domain might be seen as a hint of new physics, and distinguished theorists consider it worth serious
speculation. Thedifferencebetween thethreecases is theprior knowledge(or scientific prejudice). Very
often we share more or less the same prejudices, and consequently we will all agree on the conclusions.
But thissituation is rare in frontier science, and thesameobservation doesnot produce in all researchers
the same confidence. A peak can be taken more or less seriously depending on whether it is expected,
it fits well in the overall theoretical picture, and does not contradict other observations. Therefore it is
important to try to separate experimental evidence from the assessments of confidence. This separation
isdone in aclear and unambiguousway in theBayesian approach. Let us illustrate it by continuing with
thebox example. Takeagain Eq. (1). Considering any two hypotheses /:; and /:l , wehavethefollowing
relation between prior and posterior betting odds:

8:9 / ; <�=?>8:9 /1lm<�=?>1n
8:9 =C<�/ ; >8:9 =C<�/1l�>

Bayes factor

D
8 F 9 / ; >8GF'9 /:l�> Q (3)

This way of rewriting Bayes’s theorem shows how the final odds can be factorized into prior odds and
experimental evidence, the latter expressed in terms of the so-called Bayes factor [28]. The 15 odds
of our example are not independent, and can be expressed with respect to a reference box composition
which has a non-null likelihood. The natural choice to analyse the problem of consecutive black ball
extractions is o 9 /:;�p Black > n

8:9
Black <�/1;+>8:9
Black <�/ 2 > I (4)

which is, in this particular case, numerically identical to
8:9

Black <�/ ; > , since
8:9

Black <+/ 2 > n
q
, and

then it can be read from the top plot of Fig. 2. The function

o
can be seen as a ‘ relative belief updating

ratio’ [10], in the sense that it tells us how the beliefs must be changed after the observation, though it
cannot determine univocally their values. Note that the way the update is done is, instead, univocal and
not subjective, in thesensethat Bayes’stheorem isbased on logic, and rational peoplecannot disagree. It
is also obvious what happens when many consecutive back balls are observed. The iterative application
of Bayes’s theorem [Eq. (2)] leads to the following overall

o
:o 9 /1;�p Black I�r�> n

8:9
Black <+/ ; >8:9
Black <�/R2">

K
Q (5)

For large r all theodds with respect to /12 go to zero, i.e.
8B9 /12s>�tvu .

We have now our logical and mathematical apparatus ready. But before moving to the problem
of interest, let us make some remarks on terminology, on the meaning of subject probability, and on its
interplay with odds in betting and expected frequencies.

3.3 Confidence, betting odds and expected frequencies

I have used on purpose several words and expressions to mean essentially the same thing: likely, proba-
ble, credible, (moreor less) possible, plausible, believable, and their associated nouns; to bemoreor less
confident about, to believe more or less, to trust more or less, something, and their associated nouns; to
prefer to bet on an outcomerather than on another one, to assessbetting odds, and so on. I could also use
expressions involving expected frequenciesof outcomesof apparently similar situations. Theperception
of probability would remain the same, and there would be no ambiguities or paradoxical conclusions. I
refer to Ref. [20] for amoreextended, though still concise, discussion on the terms. I would likeonly to
sketch heresomeof themain points, as asummary of theprevious sections.( Theso-called subjectiveprobability isbased on theacknowledgement that theconcept of probabil-

ity isprimitive, i.e. it ismeant as thedegreeof belief developed by thehuman mind in acondition
of uncertainty, no matter what we call it (confidence, belief, probability, etc) or how we evaluate
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it (symmetry arguments, past frequencies, Bayes’s theorem, quantum mechanics formulae [29],
etc.). Some argue that the use of beliefs is not scientific. I believe, on the other hand, that “ it is
scientific only to say what is more likely and what is less likely” [30].( Theodds in a ‘coherent bet’ (abet such that theperson who assesses itsoddshasno preference in
either direction) can be seen as the normative rule to force people to assess honestly their degrees
of belief ‘ in the most objective way’ (as this expression is usually perceived). This is the way that
Laplace used to report his result about the mass of Saturn: “ it is a bet of 10,000 to 1 that the error
of this result is not 1/100th of its values” (quote reported in Ref. [31]).( Probability statements have to satisfy the basic rules of probability, usually known as axioms.
Indeed, the basic rules can be derived, as theorems, from the operative definition of probability
through acoherent bet. Theprobability rules, based on theaxiomsand on logic’s rules, allows the
probability assessmentsto bepropagated to logically connected events. For example, if oneclaims
to be wMwGx confident about = , oneshould feel also

9 q u"uWyzwMw{>|x confident about = .( The simple, stereotyped cases of regular dice and urns of known composition can be considered
as calibration tools to assess theprobability, in thesense that all rational peoplewill agree.( The probability rules, and in particular Bernoulli’s theorem, relate degrees of belief to expected
frequencies, if weimaginerepeating theexperiment many timesunder exactly thesameconditions
of uncertainty (not necessarily under thesamephysical conditions).( Finally, Bayes’s theorem is the logical tool to update thebeliefs in the light of new information.

As an example, let us imagine the event = , which is considered 95% probable (and, necessarily, the
opposite event = is 5% probable). This belief can be expressed in many different ways, all containing
thesamedegreeof uncertainty:( I am 95% confident about = and 5% confident about = .( Given a box containing 95 white and 5 black balls, I am as confident that = will happen, as that

thecolour of theball will bewhite. I am as confident about = as of extracting ablack ball.( I am ready to placea19:1 bet14 on = , or a1:19 on = .( Considering a large number r of events =
; , even related to different phenomenology and each
having 95% probability, I am highly confident15 that the relative frequency of the events which
will happen will be very close to 95% (the exact assessment of my confidence can be evaluated
using thebinomial distribution). If r is very large, I am practically sure that the relative frequency
will be equal to 95%, but I am never certain, unless r is ‘ infinite’ , but this is no longer a real
problem, in thesenseof thecomment in Footnote11 (“ In the long run weareall dead” [32]).

Is this how our confidence limits from particle searches are perceived? Are we really 5% confident that
the quantity of interest is on the 5% side of the limit? Isn’t it strange that out of the several thousand
limits from searches published in recent decades nothing has ever shown up on the 5% side? In my
opinion, themost embarrassing situation comes from theHiggs boson sector. A 95% C.L. upper limit is
obtained from radiative corrections, while a 95% C.L. limit comes from direct search. Both results are
presented with the same expressions, only ‘upper’ being replaced by ‘ lower’ . But their interpretation is
completely different. In the first case it is easy to show [33] that, using the almost parabolic result of
the } * fit in ~ � 9���� > and uniform prior in ~ � 9���� > , we can really talk about ‘95% confidence that the
mass is below the limit’ , or that ‘ the Higgs mass has equal chance of being on either side of the value

14SeeRef. [20] for comments on decision problems involving subjectively-relevant amounts of money.
15It is in my opinion very important to understand the distinction between the use of this frequency-based expression of

probability and frequentistic approach (see comments in Refs. [20] and [19]) or frequentistic coverage (see Section 8.6 of
Ref. [19]). I am pretty surethat most physicistswho declare to befrequentist do so on thebasisof educational conditioning and
becausethey areaccustomed to assessing beliefs (scientific opinion, or whatever) in termsof expected frequencies. Thecrucial
point which makes the distinction is it to ask oneself if it is sensible to speak about probability of true values, probability of
theories, and so on. There is also a class of sophisticated people who think there are several probabilities. For comments on
this latter attitude, seeSection 8.1 of Ref. [19].
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of minimum } * ’ , and so on, in the sense described in this section. This is not true in the second case.
Who is really 5% confident that the mass is below the limit? How can we be 95% confident that the
mass is above the limit without an upper bound? Non-misleading levels of confidence on the statement������� F

can be assessed only by using the information coming from precision measurement, which
rules out very large (and also very small) values of the Higgs mass (see Refs. [33, 8, 34]. For example,
when we say [33] that the median of the Higgs mass p.d.f. is 150GeV, we mean that, to the best of our
knowledge, we regard the two events

����� qs� u GeV and
����� qs� u GeV as equally likely, like the

two facesof a regular coin. Following Laplace, wecould stateour confidenceclaiming that ‘ isabet of 1
to 1 that

���
is below 150 GeV’ .

4. INFERRING THE INTENSITY OF POISSON PROCESSES AT THE LIMIT OF THE
DETECTOR SENSITIVITY AND IN THE PRESENCE OF BACKGROUND

As a master example of frontier measurement, let us take the same case study as in Ref. [10]. We shall
focus then on the inference of the rate of gravitational wave (g.w.) bursts measured by coincidence
analysis of g.w. antennae.

4.1 Modelling the inferential process

Moving from thebox example to themore interesting physicscaseof g.w. burst isquitestraightforward.
The six hypotheses / ; , playing the role of causes, are now replaced by the infinite values of the rate � .
The two possible outcomes black and white now become the number of candidate events (rE� ). There is
also an extra ingredient which comes into play: a candidate event could come from background rather
than from g.w.’s (likeablack ball that could beextracted by a judge-conjurer from hispocket rather than
from thebox. . . ). Clearly, if weunderstand well theexperimental apparatus, wemust havesome ideaof
the background rate ��� . Otherwise, it is better to study further the performances of the detector, before
trying to infer anything. Anyhow, unavoidable residual uncertainty on � � can be handled consistently
(see later). Let us summarizeour ingredients in terms of Bayesian inference.

( The physical quantity of interest, and with respect to which we are in the state of greatest uncer-
tainty, is theg.w. burst rate � .( We are rather sure about the expected rate of background events ��� (but not about the number of
eventsdue to background which will actually beobserved).( What is certain16 is thenumber r � of coincidences which havebeen observed.( For a given hypothesis � the number of coincidence events which can be observed in the observa-
tion time � is described by a Poisson process having an intensity which is the sum of that due to
background and that due to signal. Therefore the likelihood is

8:9 r � <h�sI+� � > n
� 9 r � <h�sI�� � > n

� N������O�%���+� 9�9 �1��� � >k�?> K��
r���� Q (6)

Bayes’s theorem applied to probability functions and probability density functions (we use the same
symbol for both), written in terms of theuncertain quantities of interest, is

� 9 �B<hrE��I����H>�@ � 9 r��
< �sI����H>ED � F'9 �J>�Q (7)

At this point, it is now clear that if we want to assess our confidence we need to choose some prior. We
shall comeback to thispoint later. Let usseefirst, following thebox problem, how it ispossible to make
aprior-freepresentation of the result.

16Obviously the problem can be complicated at will, considering for example that ¡ � was communicated to us in a way, or
by somebody, which/who is not 100% reliable. A probabilistic theory can include this possibility, but this goes beyond the
purposeof thispaper. Seee.g. Ref. [35] for further information on probabilistic networks.
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4.2 Pr ior-freepresentation of theexper imental evidence

Also in the continuous case we can factorize the prior odds and experimental evidence, and then arrive
at an

o
-function similar to Eq. (4):o 9 �Jp�rE��I+� � > n

� 9 r � < �sI�� � >� 9 r��
< � n usI�� � > Q (8)

The function

o
has nice intuitive interpretations which can be highlighted by rewriting the

o
-function

in the following way [seeEq. (7)]:o 9 �¢p+r��HI�� � > n
� 9 r � < �"I+� � >� 9 rE�
< � n u"I+� � >1n

� 9 �B<hr � I+� � >� FH9 �J>
� 9 � n u£<hr � I�� � >� FH9 � n us> Q (9)o

has the probabilistic interpretation of ‘ relative belief updating ratio’ , or the geometrical interpretation
of ‘shape distortion function’ of the probability density function.

o
goes to 1 for �¤t u , i.e. in the

asymptotic region in which the experimental sensitivity is lost. As long as it is 1, the shape of the p.d.f.
(and thereforetherelativeprobabilitiesin that region) remainsunchanged. In contrast, in thelimit

o
t¥u

(for large � ) the final p.d.f. vanishes, i.e. the beliefs go to zero no matter how strong they were before.
For thePoisson processweareconsidering, the relative

o
-function becomeso 9 �Jp�rE��I�� � I+�?> n � NO�"� q � �

� �
K��
I (10)

with the condition � � � u if rE� � u . The case � � n rE� n u yields

o 9 �J> n � NO� , obtainable starting
directly from Eq. (8) and Eq. (6). Also the case � � t¥¦ has to be evaluated directly from the definition
of

o
and from the likelihood, yielding

o
n
q£§ � . Finally, the case � � n u and r�� � u makes � n u

impossible, thus making the likelihood closed also on the left side (see Section 7.). In this case the
discovery iscertain, though theexact valueof � can bestill rather uncertain. Note, finally, that if r�� n u
the

o
-function does not depend on � � , which might seem a bit surprising at a first sight (I confess that I

havebeen puzzled for yearsabout this result which was formally correct, though not intuitively obvious.
PiaAstonehasfinally shown at this workshop that things must go logically this way [36].)

A numerical example will illustrate the nice features of the

o
-function. Consider � as unit time

(e.g. onemonth), abackground rate � � such that � �©¨ � n
q
, and thefollowing hypothetical observations:rE� n u ; rE� n

q
; rE� n

�
. The resulting

o
-functions areshown in Fig. 3. Theabscissahas been drawn in

alog scaleto makeit clear that several ordersof magnitudeareinvolved. Thesecurvestransmit theresult
of the experiment immediately and intuitively. Whatever one’s beliefs on � were before the data, these
curves show how one must change them. The beliefs one had for rates far above 20 events/month are
killed by theexperimental result. If onebelieved strongly that theratehad to bebelow 0.1 events/month,
the data are irrelevant. The case in which no candidate events have been observed gives the strongest
constraint on the rate. The case of five candidate events over an expected background of one produces a
peak of

o
which corroborates thebeliefsaround 4 events/month only if thereweresizeableprior beliefs

in that region (thequestion of whether g.w. bursts exist at all is discussed in Ref. [10]).

Moreover there are some computational advantages in reporting the

o
-function as a result of a

search experiment: The comparison between different results given by the

o
-function can be perceived

better than if these results were presented in terms of absolute likelihood. Since

o
differs from the

likelihood only by afactor, it can beused directly in Bayes’stheorem, which doesnot depend on constant
factors, whenever probabilistic considerations are needed: The combination of different independent
resultson thesamequantity � can bedonestraightforwardly by multiplying individual

o
functions; note

that a very noisy and/or low-sensitivity data set results in

o
n
q

in the region where the good data sets
yield an

o
-valuevarying from 1 to 0, and then it doesnot affect theresult. Onedoesnot need to decidea

priori if onewants to makea ‘discovery’ or an ‘upper limit’ analysis: the

o
-function represents themost

unbiased way of presenting the results and everyonecan draw their own conclusions.
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Fig. 3: Relative belief updating ratio ª ’s for the Poisson intensity parameter « , in units of events per month eval-
uated from an expected rate of background events «�¬®°¯ event/month and the following numbers of observed
events: 0 (continuous); 1 (dashed); 5 (dotted).

Finally, uncertainty dueto systematic effects(expected background, efficiency, cross-section, etc.)
can be taken into account in the likelihood using the laws of probability [10] (seealso Ref. [37]).

5. SOME EXAMPLES OF

o
-FUNCTION BASED ON REAL DATA

The case study described till now is based on a toy model simulation. To see how the proposed method
provides the experimental evidence in a clear way we show in Figs. 4 and 5

o
-functions based on real

data. The first is a reanalysis of Higgs search data at LEP [8]; the second comes from the search for
contact interactions at HERA madeby ZEUS [38]. Theextension of Eq. (8) to themost general case iso 9²± p data> n

� 9
data < ± >� 9

data < ± ins> I (11)

where
±

ins stands for the asymptotic insensitivity value (0 or ¦ , depending on the physics case) of the
generic quantity

±
. Figures 4 and 5 show clearly what is going on, namely which values are practically

ruled out and which onesare inaccessible to theexperiment. Thesame is true for the result of aneutrino
oscillation experiment reporting a two-dimensional

o
-function [39] (seealso Ref. [9]).

6. SENSITIVITY BOUND VERSUS PROBABILISTIC BOUND

At this point, it is rather evident from Figs. 3, 4 and 5 how we can summarize the result with a single
number which gives an idea of an upper or lower bound. In fact, although the

o
-function represents the

most complete and unbiased way of reporting the result, it might also be convenient to express with just
one number the result of a search which is considered by the researchers to be unfruitful. This number
can be any value chosen by convention in the region where

o
has a transition from 1 to 0. This value

would then delimit (although roughly) the region of the values of the quantity which are definitively
excluded from the region in which the experiment can say nothing. The meaning of this bound is not
that of a probabilistic limit, but of a wall17 which separates the region in which we are, and where we
seenothing, from the the region wecannot see. Wemay takeas theconventional position of thewall the
point where

o 9 ��³�> equals
� u"x ,

� x or
q x of the insensitivity plateau. What is important is not to call

17In most cases it is not a sharp solid wall. A hedge might be more realistic, and indeed more poetic: “ Sempre caro mi fu
quell’ermo colle, / E questa siepe, cheda tanta parte/ Dell’ultimo orizzonteil guardo esclude” (Giacomo Leopardi, L’ Infinito).
The exact position of the hedge doesn’t really matter, if we think that on the other side of the hedge there are infinite orders of
magnitude to which weareblind.
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ℜ

Fig. 4: ª -function reporting results on Higgs direct search from the reanalysis of Ref. [8]. A, D and O stand
for ALEPH, DELPHI and OPAL. Their combined result is indicated by LEṔ . The full combination (LEPµ ) was
obtained by assuming for L3 abehaviour equal to theaverageof theothers experiments.
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Fig. 5: ª -functions reporting resultson search for contact interactions [38]. TheZEUSpaper contains thedetailed
information to obtain thesecurves, as well as those relative to other couplings.
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thisvalueabound at agiven probability level (or at agiven confidencelevel – theperception of theresult
by the user will be the same! [15]). A possible unambiguous name, corresponding to what this number
indeed is, could be ‘standard sensitivity bound’ . As the conventional level, our suggestion is to chooseo
n usQ¹u � [10].

Notethat it doesnot makemuch senseto givethestandard sensitivity bound with many significant
digits. The reason becomes clear by observing Figs. 3–5, in particular Fig. 5. I don’t think that there
will be a single physicist who, judging from the figure, believes that there is a substantial difference
concerning the scale of a postulated contact interaction for º n � q and º n y q . Similarly, looking
at Fig. 3, the observation of 0 events, instead of 1 or 2, should not produce a significant modification
of our opinion about g.w. burst rates. What really matters is the order of magnitude of the bound or,
depending on theproblem, theorder of magnitudeof thedifferencebetween thebound and thekinematic
threshold (see discussion in Sections 9.1.4 and 9.3.5 of Ref. [19]). I have the impression that often the
determination of a limit is considered as important as the determination of the value of a quantity. A
limit should be considered on the same footing as an uncertainty, not as a true value. We can, at least in
principle, improveour measurementsand increase theaccuracy on the truevalue. This reasoning cannot
beapplied to bounds. Sometimes I have the feeling that when sometalk about a ‘95% confidence limit’ ,
they think as if they were ‘95% confident about the limit’ . It seems to me that for this reason some are
disappointed to seeupper limitson theHiggsmassfluctuating, in contrast to lower limitswhich aremore
stableand in constant increasewith theincreasing availableenergy. In fact, assaid above, thesetwo 95%
C.L. limits don’t have the same meaning. It is quite well understood by experts that lower 95% C.L.
limitsare in practice » q usu"x probability limits, and they areused in theoretical speculationsascertainty
bounds (seee.g. Ref. [34]).

I can imagine that at this point there are still those who would like to give limits which sound
probabilistic. I hopethat I haveconvinced them about thecrucial roleof prior, and that it isnot scientific
to give a confidence level which is not a ‘ level of confidence’ . In Ref. [10] you will find a long discus-
sion about role and quantitative effect of priors, about the implications of uniform prior and so-called
Jeffreys’s prior, and about more realistic priors of experts. There, it has also been shown that (some-
what similar to what was said in the previous section) it is possible to choose a prior which provides
practically the same probabilistic result acceptable to all those who share a similar scientific prejudice.
This scientific prejudice is that of the ‘positive attitude of physicists’ [19], according to which rational
and responsible people who have planned, financed and run an experiment, consider they have some
reasonable chance to observe something.18 It is interesting that, no matter how this ‘positive attitude’
is reasonably modelled, the final p.d.f. is, for the case of g.w. bursts (

±
ins n u ), very similar to that

obtained by a uniform distribution. Therefore, a uniform prior could be used to provide some kind of
conventional probabilistic upper limits, which could look acceptable to all those who share that kind of
positive attitude. But, certainly, it is not possible to pretend that these probabilistic conclusions can be
shared by everyone. Note that, however, this idea cannot be applied in a straightforward way in case±

ins n ¦ , as can be easily understood. In this case one can work on a sensible conjugate variable (see
next section) which has theasymptotic insensitivity limit at 0, ashappens, for example, with º%¼'½¾* in the
case of a search for contact interaction, as initially proposed in Refs. [42, 43] and still currently done
(see e.g. Ref. [38]). Reference [42] contains also the basic idea of using a sensitivity bound, though
formulated differently in terms of ‘ resolution power cut-off ’ .

18In somecasesresearchersareawareof having very littlechanceof observing anything, but they pursuetheresearch to refine
instrumentation and analysis tools in view of somepositive results in the future. A typical case isgravitational wavesearch. In
this case it is not scientifically correct to provide probabilistic upper limits from the current detectors, and the honest way to
provide theresult is that described here [40]. However, somecould be tempted to usea frequentistic procedurewhich provided
an ‘objective’ upper limit ‘guaranteed’ to have a 95% coverage. This behaviour is irresponsible since these researchers are
practically sure that the true value is below the limit. Loredo shows in Section 3.2 of Ref. [41] an instructive real-life example
of a 90% C.I. which certainly does not contain the true value (the web site [41] contains several direct comparisons between
frequentistic versus Bayesian results).
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7. OPEN VERSUS CLOSED LIKELIHOOD

Although the extended discussion on priors has been addressed elsewhere [10], Figs. 3, 4 and 5 show
clearly why frontier measurementsarecrucially dependent on priors: thelikelihood only vanisheson one
side (let uscall thesemeasurements ‘open likelihood’ ). In other cases the likelihood goes to zero in both
sides (closed likelihood). Normal routine measurements belong to the second class, and usually they
are characterized by a narrow likelihood, meaning high precision. Most particle physics measurements
belong to theclassof closed priors. I am quiteconvinced that the two classesshould be treated routinely
differently. This does not mean recovering frequentistic ‘flip-flop’ (see Ref. [2] and references therein),
but recognizing thequalitative, not just quantitative, differencebetween the two cases, and treating them
differently.

When the likelihood is closed, the sensitivity on the choice of prior is much reduced, and a prob-
abilistic result can be easily given. The subcase better understood is when the likelihood is very narrow.
Any reasonableprior which models theknowledgeof theexpert interested in the inference ispractically
constant in the narrow range around the maximum of the likelihood. Therefore, we get the same result
obtained by a uniform prior. However, when the likelihood is not so narrow, there could still be some
dependenceon themetric used. Again, thisproblem hasno solution if oneconsiders inferenceasamath-
ematical game [22]. Things are less problematic if one uses physics intuition and experience. The idea
is to use a uniform prior on the quantity which is ‘naturally measured’ by the experiment. This might
look like an arbitrary concept, but is in fact an idea to which experienced physicists are accustomed.
For example, we say that ‘a tracking device measures

q ¼'¿ ’ , ‘ radiative corrections measure ~ ÀsÁ 9|� � > ’ ,
‘a neutrino mass experiment is sensitive to Â * ’ , and so on. We can see that our intuitive idea of ‘ the
quantity really measured’ is related to the quantity which has a linear dependence on the observation(s).
When this is the case, random (Brownian) effects occurring during the process of measurement tend to
produce a roughly Gaussian distribution of observations. In other words, we are dealing with a roughly
Gaussian likelihood. So, away to state thenatural measured quantity is to refer to thequantity for which
the likelihood is roughly Gaussian. This is the reason why weareused do least-squaresfitschoosing the
variable in which the } * isparabolic (i.e. the likelihood isnormal) and then interpret the result asproba-
bility of the true value. In conclusion, having to give a suggestion, I would recommend continuing with
the tradition of considering natural the quantity which gives a roughly normal likelihood. For example,
this was theoriginal motivation to propose º%¼'½ * to report compositeness results [42].

This uniform-prior/Gaussian-likelihood duality goes back to Gauss himself [44]. In fact, he de-
rived his famous distribution to solve an inferential problem using what we call nowadays the Bayesian
approach. Indeed, he assumed a uniform prior for the true value (as Laplace did) and searched for the
analytical form of the likelihood such as to give a posterior p.d.f. with most probable19 value equal to
thearithmetic averageof theobservation. The resulting function was . . . theGaussian.

When there is not an agreement about the natural quantity, one can make a sensitivity analysis of
the result, as in the exercise of Fig. 6, based on Ref. [33]. If one chooses a prior flat in Â � , rather than
in ~ À"Á 9 Â � > , the p.d.f.’s given by the continuous curves change into the dashed ones. Expected value
and standard deviation of the distributions (last digits in parentheses) change as follows. For

9|ÃÅÄ > nu"QÆusÇ"ÈsuHÉ 9�Ê � > , ��� n usQ q u 9�Ë > TeV becomes
���

n usQ q É 9�Ì > TeV, while for
9�ÃÅÄ > n u"QÆusÇ Ë"Ë u 9�Ê � > ��� nu"Q q Ç 9�Ê > TeV becomes

���
n u"Q q"� 9|Ë > TeV. Although this is just an academic exercise, since it is rather

well accepted that radiativecorrectionsmeasure ~ ÀsÁ 9|��� > , Fig. 6 and theabovedigitsshow that theresult
is indeed rather stable: u"Q qs� 9�Ì >1»�usQ q u 9|Ë > and u"Q q"� 9|Ë >1»�usQ q Ç 9�Ê > , though perhaps some numerically-
oriented colleaguewould disagree.

If acase is really controversial, onecan still show the likelihood. But it is important to understand
that a likelihood isnot yet theprobabilistic result wephysicistswant. If only the likelihood ispublished,

19Note that also speaking about the most probable value is close to our intuition, although all values have zero probability.
Seecomments in Section 4.1.2 of Ref. [19].
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Fig. 6: Sensitivity analysisexercisefrom theindirect Higgsmassdetermination of Ref. [33]. Solid linesand dashed
lines areobtained with priors uniform in ÎÐÏ�ÑOÒZÓÅÔÖÕ and Ó×Ô , respectively.

the risk it is too high that it will beconsidered anyway and somehow asaprobabilistic result, ashappens
now in practice. For this reason, I think that, at least in the rather simplecaseof closed likelihood, those
who perform the research should take their responsibility and assess expected value and standard devi-
ation that they really believe, plus other information in the case of a strongly non-Gaussian distribution
[8, 33, 37]. I do not think that, in most applications, this subjective ingredient is more relevant than the
many other subjective choices made during the experimental activity and that we accept anyhow. In my
opinion, adhering strictly to thepoint of view that oneshould refrain totally from giving probabilistic re-
sults because of the idealistic principle of avoiding the contribution of personal priors will halt research.
We always rely on somebody else’s priors and consult experts. Only a perfect idiot has no prior, and he
is not thebest person to consult.

8. OVERALL CONSISTENCY OF DATA

One of the reasons for confusion with confidence levels is that the symbol ‘C.L.’ is used not only in
conjunction with confidence intervals, but isalso associated with resultsof fits, in thesenseof statistical
significance (see e.g. Ref. [4]). As I have commented elsewhere [15, 19], the problems coming from
the misinterpretation of confidence levels are much more severe than what happens when considering
confidence intervalsprobabilistic intervals. Sentences like “since thefit to thedatayieldsa1% C.L., the
theory has a 1% chance of being correct” are rather frequent. Here I would like to touch on some points
which I consider important.

Take the } * , certainly the most used test variable in particle physics. As most people know from
the theory, and some from having had bad experiences in practice, the }Ø* is not what statisticians call a
‘sufficient statistics’ . This is the reason why, if we see a discrepancy in the data, but the } * doesn’t say
so, other pieces of magic are tried, like changing the region in which the }Ø* is applied, or using a ‘ run
test’ , Kolmogorov test, and so on20 (but, “ if I have to draw conclusions from a test with aRussian name,
it isbetter I redo theexperiments” , somebody oncesaid). My recommendation is to alwaysgivealook at
the data, since the eye of the expert is in most simple (i.e. low-dimensional) cases better than automatic
tests (it is also not amystery that tests aredonewith thehope they will provewhat onesees. . . ).

I think that } * , as other variables, can be used cum grano salis21 to spot a possible problem of the
experiment, or hints of new physics, which one certainly has to investigate. What is important is to be
careful before drawing conclusions only from the crude result of the test. I also find it important to start
calling things by their name in our community too and call ‘P-value’ the number resulting from the test,

20Everybody has experienced endless discussionson what I call all-together Ù�Ú -ology, to decide if there is someeffect.
21SeeSection 8.8 of Ref. [19] for adiscussion about why frequentistic tests ‘often work’ .
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as is currently done in modern books on statistics (see e.g. Ref. [45]). It is recognized by statisticians
that P-values also tend to be misunderstood [18, 46], but at least they have a more precise meaning [47]
than our ubiquitous C.L.’s.

Thenext step iswhat to do when, no matter how, onehasstrong doubtsabout someanomaly. Good
experimentalistsknow their job well: check everything possible, calibrate thecomponents, makespecial
runs and Monte Carlo studies, or even repeat the experiment, if possible. It is also well understood that
it is not easy to decide when to stop making studies and applying corrections. The risk of influencing a
result is always present. I don’t think there is any general advice that can be given. Good results come
from well-trained (prior knowledge!) honest physicists (and who arenot particularly unlucky. . . ).

A different problem iswhat to do when wehave to usesomeoneelse’s results, about which wedo
not have insideknowledge, for examplewhen wemakeglobal fits. Also in thiscase I mistrust automatic
prescriptions [4]. In my opinion, when thedatapointsappear somewhat inconsistent with each other (no
matter how one has formed this opinion) one has to try to model one’s scepticism. Also in this case,
the Bayesian approach offers valid help [48, 49]. In fact, since one can assign probability to every piece
of information which is not considered certain, it is possible to build a so-called probabilistic network
[35], or Bayesian network, to model the problem and find the most likely solution, given well-stated
assumptions. A first application of this reasoning in particle physics data (though the problem was too
trivial to build up a probabilistic network representation) is given in Ref. [50], based on an improved
version of Ref. [49].

9. CONCLUSION

So, what is the problem? In my opinion the root of the problem is the frequentistic intrusion into the
natural approach initially followed by ‘classical’ physicists and mathematicians (Laplace, Gauss, etc.)
to solve inferential problems. As a consequence, we have been taught to make inferences using statis-
tical methods which were not conceived for that purpose, as insightfully illustrated by a professional
statistician at theworkshop [51]. It isamatter of fact that the resultsof thesemethodsarenever intuitive
(though weforcethe‘correct’ interpretation using our intuition [15]), and fail any timetheproblem isnot
trivial. The problem of the limits in ‘difficult cases’ is particularly evident, because these methods fail
[52]. But I would like to remember that also in simpler routine problems, like uncertainty propagation
and treatment of systematic effects, conventional statisticsdo not provideconsistent methods, but only a
prescription which wearesupposed to obey.

What is the solution? As well expressed in Ref. [53], sometimes we cannot solve a problem
because we are not able to make a real change, and we are trapped in a kind of logical maze made by
many solutions, which are not the solution. Reference [53] talks explicitly of non-solutions forming a
kind of group structure. We rotate inside the group, but we cannot solve the problem until we break
out of the group. I consider the many attempts to solve the problem of the confidence limit inside the
frequentistic framework asjust someof thepossiblegroup rotations. Thereforetheonly possiblesolution
I see is to get rid of frequentistic intrusion in the natural physicist’s probabilistic reasoning. This way
out, which takes us back to the ‘classicals’ , is offered by the statistical theory called Bayesian, a bad
name that gives the impression of a religious sect to which we have to become converted (but physicists
will never be Bayesian, as they are not Fermian or Einsteinian [15] – why should they be Neymanian or
Fisherian?). I consider thenameBayesian to be temporary and just in contrast to ‘conventional’ .

I imagine, and haveexperienced, much resistanceto thischangedueto educational, psychological
and cultural reasons (not forgetting the sociological ones, usually the hardest ones to remove). For
example, agood cultural reason is that weconsider, in good faith, astatistical theory on thesamefooting
as a physical theory. We are used to a well-established physical theory being better than the previous
one. This is not the case of the so-called classical statistical theory, and this is the reason why an
increasing number of statisticians and scientists [18] have restarted from the basic ideas of 200 years
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ago, complemented by modern ideas and computing capability [35, 26, 21, 31, 41, 54]. Also in physics
things are moving, and there are many now who oscillate between the two approaches, saying that both
have good and bad features. The reason I am rather radical is because I do not think we, as physicists,
should care only about numbers, but also about their meaning: 25 is not approximatively equal to 26, if
25 is a mass in kilograms and 26 a length in metres. In the Bayesian approach I am confident of what
numbers mean at every step, and how to go further.

I also understand that sometimes thingsarenot so obviousor so highly intersubjective, asan anti-
Bayesian joke says: “ there is one obvious possible way to do things, it’s just that they can’t agree on
it.” I don’t consider this a problem. In general, it is just due to our human condition when faced with
the unknown and to the fact that (fortunately!) we do not have an identical status of information. But
sometimes the reason ismore trivial, that iswehavenot worked together enough on common problems.
Anyway, given the choice between a set of prescriptions which gives an exact (‘objective’ ) value of
something which hasno meaning, and a framework which givesarough valueof something which hasa
precisemeaning, I haveno doubt which to choose.

Coming, finally, to the specific topic of the workshop, things become quite easy, once we have
understood why an objectiveinferencecannot exist, but an ‘objective’ (i.e. logical) inferential framework
does.( In the case of open likelihood, priors become crucial. The likelihood (or the

o
-function) should

always be reported, and a non-probabilistic sensitivity bound should be given to summarize the
negative search with just a number. A conventional probabilistic result can be provided using a
uniform prior in the most natural quantity. Reporting the results with the

o
-function satisfies the

desiderataexpressed in this paper.( In thecaseof closed likelihood, auniformprior in thenatural quantity providesprobabilistic results
which can beeasily shared by theexperts of thefield.

As a final remark, I would like to recommend calling things by their name, if this name has a precise
meaning. In particular: sensitivity bound if it is just a sensitivity bound, without probabilistic meaning;
and such and such per cent probabilistic limit, if it really expresses the confidence of the person(s) who
assesses it. As a consequence, I would propose not to talk any longer about ‘confidence interval’ and
‘confidence level’ , and to abandon the abbreviation ‘C.L.’ . So, although it might look paradoxical, I
think that thesolution to theproblem of confidence limits begins with removing theexpression itself.
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Discussion after talk of Giulio D’Agostini. Chairman: Matts Roos

Gary Feldman

You said that the

o
function containsall the information, but there’sonepieceof information that

it doesn’t contain and that’s the goodness of fit. Could you comment on how goodness of fit should be
included in theseconsiderations.

D’Agostini

In which sense?

Feldman

In thesenseof whether thehypothesis is likely to have led to thesedata. In other wordsonecould
have a peak in

o
, but the probability that the hypothesis leads to that data is very small. If you have a

terriblechi-squared for example. How do you propose to include that?

D’Agostini

Then, it is possible that you have to extend a little bit the problem. Obviously in the case I have
discussed, I assumethat you trust the information, you put in, i.e. expected background and so on. If you
don’t trust the information, you have to make a more complex ‘network of probabilities’ . For example,
you might include some mistrust on the input quantities on which the result depends. For example, I
havedonearecent paper on how to combinedatabased on asceptical combination (unfortunately it will
never be published because the referee says that I show a level of knowledge in statistics which is well
below the average of the readers of Physical Review). If you go around and look at the present activity
of statisticians, mathematicians, and so on, you will see that there is a lot of work which they are doing
in this direction, I mean Bayesian networks, also called probabilistic networks. We cannot simply stick
with our old booksof statistics, hoping to find asolution there.

Günter Zech

Giulio, you explained why the Bayesian way is so nice, but in the end, what you did is only
parametrizing the likelihood function. Bayesian ideas do not really enter.

D’Agostini

Not really so. TheBayesian way tellsuswhich ingredientsmust beused in the inferenceand how
to factorize priors and likelihood. The Bayes factor is well-known and well used in Bayesian literature.
When thepriors vary so much from oneperson to theother, peoplesay ‘ just publish Bayes factors’ .

Zech

If you publish your

o
valuewhich is the likelihood ratio thereareno priors entering.

D’Agostini

What is theproblem? Isn’t that what wewant?
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Zech

As long as you don’t introducepriors there is no problem. You don’t need Bayes’s theorem.

D’Agostini

Bayes’s theorem is just a tool in the most general probabilistic framework based on subjective
probability. Bayesian’s theory, asI seeit, doesn’t say that I haveto apply Bayes’ theorem every time. For
example, once I was invited to a conference by a mathematical statistician, but under the condition that
I should not just make one of the many ‘boring exercises’ prior-likelihood-posterior. Anyhow, coming
to our specific subject, I think that removing the confusing concept of confidence limits is already the
beginning of thesolution to theproblem. If you just call thelimit obtained from the

o
function sensitivity

bound you mean exactly what it is. For example, if I measure with a design ruler and I try to measure
objects in the micron or sub-micron scale, you tell me that this is not possible. I have reached the
sensitivity bound of the instrument, and we all agree. But how can I say to be 95% confident that the
sizeof theobject isbelow acertain limit? My confidencedependsalso on what I try to measure. For the
moment I just say I don’t know, it could beany order of magnitudebelow.

John Conway

You pointed out that in all these new particle search results that have been put out over the years,
you’resurprised that there is nothing on the5% side. Why areyou surprised by that?

D’Agostini

Because if you say you have 5% confidence - as far as I understood the coverage, then in 5% of
the cases something should appear there in the 5% side. I don’t think that this is what will come out if
weanalyse thePDG over the last 20 years.

Conway

The statement, when we make the 95% confidence level limit is that if there is no new particle,
then in 5% of thecases wewould havegotten ...

D’Agostini

I said it from thebeginning, I don’t care if you stick to acertain definition of confidencelimits that
it is so narrow that you cannot match it with our intuition – for me confidence is confidence, probability
is probability, otherwisewecontinue to confuseeach other.

Glen Cowan

To get back to thisquestion that Günter Zech brought up, perhapsit isjust aquestion of vocabulary,
but I don’t think classical statisticians would disagree with publishing the likelihood function. That’s
completely consistent with the idea of summarizing the result of the experiment. The point is that when
you go one step further to give a confidence limit you are compactifying that information of a function
down to asinglenumber or maybetwo numbers. When you do that in thecontext of aclassical procedure
for a confidence limit, that interval that you produce has certain well-defined properties and it’s the
propertiesof those intervals that I think weshould focuson. If you, for example, take thepoint at whicho

falls to 0.05 that’s fine too, but I then want to ask what are the properties of that interval. What is its
coverage?
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D’Agostini

Coverage has no meaning for me. You start by assuming that coverage is a good procedure; for
me coverage is nothing. For me what matters is that you state how much you believe that a true value is
in a certain interval (or, alternatively, where you lose sensitivity). I have shown in my talk that you can
express thisbelief rephrasing in termsof expected relative frequency if you would repeat theexperiment
in similar conditions. But this is just away to expresshow weareconfident, in thesenseof how much we
believe, something. Note also that, when Neyman invented coverage, he was not thinking of inferential
problems. Even Fisher referred to Neyman’s method as ‘ that technological and commercial apparatus’ .
So why would you stick to Neyman, if we have Laplace, Gauss etc. in the other side? [laughter] I don’t
understand. To answer the specific question about the ‘standard sensitivity bound’ , the idea is exactly to
refrain from giving aconfidence level in such a frontier case.

Peter Clifford

Just a technical point on statistical notation. TheBayes factor in statistical literature isnot exactly
what you described. It’s a term you use to describe ratios of integrated posterior distributions in model
choice, so I think you may not quitebeusing theword as it isconventionally used in statistical literature.
Bayes factors are used for model choice. So you compute the posterior distribution in model one and
model two, you want to compare the two models, you integrateover theparameters.

D’Agostini

I am not sure I havegot your point. Bayesfactor isdefined astheratio of likelihoods. This iswhat
I do. Perhapsyou mean that, when I apply it to agravitational waverate, I take the ratio of pdf’s, instead
of finiteprobabilities, but I don’t think there is any problem.

Clifford

Oneof the reasons westatisticians were invited was to get aconcordancebetween physical usage
of vocabulary and statistical conventions.

D’Agostini

I can just say that apaper (“Overcoming prior anxiety” ) containing such an expression referred too
has been refereed (after being invited) by statisticians (among them Jose Bernardo, who is supposed

to know well this subject) and the paper has been accepted without any comment about my use of the
expression Bayes factor.

Noteadded in proof: In order to resolve theabovequestion, wehaveasked Professor Bernardo to com-
ment on this discussion. We include below his very informative response, as well as a further comment
by Peter Clifford.

JoseBernardo (Univ. of Valencia, Spain)

I havereceived and read thecopy you sent meof D’Agostini’spresentation at theCERN Workshop
on ConfidenceLimits, and ensuing discussion.
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His use of the term ‘Bayes Factor’ for the expression so marked in his equation (9) is indeed
consistent with standard practice. As he says, the Bayes factor is the factor which serves to update from
prior to posterior odds, and thus encapsulates what data have to say about this specific question. In very
simpleproblems this issimply a likelihood ratio, but with complex alternatives (as in model choice) it is
the ratio of two integrated likelihoods and thus the computation of the Bayes factors generally requires
thespecification of prior distributions.

His specific proposal, to use a particular value of the Bayes factor with respect to an arbitrary
reference value, is very much the same as quoting the likelihood itself (as indicated by his equation
13), and is therefore open to the same criticisms. As he points out in the discussion, if you want to
expressaconfidencestatement in thesensewhich scientistswould generally like, that is to state that ‘ the
probability of the unknown value of interest to be within 6 and 7 , given available data, is ¿ ’ (which is
certainly not the sense implied by a frequentist confidence interval) you do need priors. This may be
‘objectively’ done (objectively in the sense that one only uses the probability model, although of course
any model assumption is in itself a subjective judgement) using a reference prior for the quantity of
interest (which is related to his hint in the last paragraph of thepaper).

If you are interested in anon technical discussion of these issues, you may look at Bernardo, J. M.
(1997), “Non-informative priors do not exist” , J. Statist. Plann. Inf. 65, 159–189 (with discussion) and
references therein.

For detailed definitions and discussion of reference priors and/or Bayes factors, you may want to
havea look at Bernardo J. M. and Smith A. F. M., “Bayesian Theory” , Wiley, 1994 (Sections5.4 and 6.1
respectively).

Clifford

I agree that the Bayes factor reduces to the likelihood ratio if you are testing one value of the
parameter against another. However, in most hypothesistesting situationsyou want to compareaspecific
value (or range of values) against a range of values. For example test

±
n u against

±`� u . In this case
thedenominator of theBayesfactor is theintegral of thelikelihood with respect to theprior on thevalues±ù� u . This is just aspecial caseof model choice.

My point about useof the term ‘Bayes factor’ was to warn people that they will find the term used
in waysother than just asimple likelihood ratio if they look in theBayesian literature. I wasobjecting to
giving something agrand titlewhen it is really just thesimpleand standard likelihood ratio. It reminded
me of the classic scam that advertises a ‘portable sewing machine’ for a low price, but which turns out
to beaneedle.
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