5 research outputs found

    A model predictive control-based energy management scheme for hybrid storage system in islanded microgrids

    Get PDF
    Model predictive control (MPC) facilitates online optimal resource scheduling in electrical networks, thermal systems, water networks, process industry to name a few. In electrical systems, the capability of MPC can be used not only to minimise operating costs but also to improve renewable energy utilisation and energy storage system degradation. This work assesses the application of MPC for energy management in an islanded microgrid with PV generation and hybrid storage system composed of battery, supercapacitor and regenerative fuel cell. The objective is to improve the utilisation of renewable generation, the operational efficiency of the microgrid and the reduction in rate of degradation of storage systems. The improvements in energy scheduling, achieved with MPC, are highlighted through comparison with a heuristic based method, like Fuzzy inference. Simulated behaviour of an islanded microgrid with the MPC and fuzzy based energy management schemes will be studied for the same. Apart from this, the study also carries out an analysis of the computational demand resulting from the use of MPC in the energy management stage. It is concluded that, compared to heuristic methods, MPC ensures improved performance in an islanded microgrid.This work was supported in part by the European Union鈥檚 Horizon 2020 Research and Innovation Program under the Marie Sk艂odowska Curie under Grant 675318 (INCITE), in part by the Spanish State Research Agency through the Maria de Maeztu Seal of Excellence to IRI under Grant MDM-2016-0656, and in part by the Spanish National Project DOVELAR (MCIU/AEI/FEDER, UE) under Grant RTI2018-096001-B-C32.Peer ReviewedPostprint (published version

    Voltage H8 control of a vanadium redox flow battery

    Get PDF
    Redox flow batteries are one of the most relevant emerging large-scale energy storage technologies. Developing control methods for them is an open research topic; optimizing their operation is the main objective to be achieved. In this paper, a strategy that is based on regulating the output voltage is proposed. The proposed architecture reduces the number of required sensors. A rigorous design methodology that is based on linear H8 synthesis is introduced. Finally, some simulations are presented in order to analyse the performance of the proposed control system. The results show that the obtained controller guaranties robust stability and performance, thus allowing the battery to operate over a wide range of operating conditions. Attending to the design specifications, the controlled voltage follows the reference with great accuracy and it quickly rejects the effect of sudden current changes.Peer ReviewedPostprint (published version

    Forecast-based Energy Management Systems

    Get PDF
    The high integration of distributed energy resources into the domestic level has led to an increase in the number of consumers becoming prosumers (producer + customer), which creates several challenges for network operators, such as controlling renewable energy sources over-generation. Recently, self-consumption as a new approach is encouraged by several countries to reduce the dependency on the national grid. This work presents two different Energy Management System (EMS) algorithms for a domestic Photovoltaic (PV) system: (a) real-time Fuzzy Logic-based EMS (FL-EMS) and (b) day-ahead Mixed Integer Linear Programming-based EMS (MILP-EMS). Both methods are tested using the data from the Active Office Building (AOB) located in Swansea University, Bay Campus, UK, as a case study to demonstrate the developed EMSs. AOB comprises a PV system and a Li-ion Battery Storage System (BSS) connected to the grid. The MILP-EMS is used to develop a Community Energy Management System (CEMS) to facilitate local energy exchange. CEMS is tested using the data from six houses located in London, UK, to form a community. Each household comprises a PV system and BSS connected to the grid. It is assumed that all six households use an EV and are equipped with a bidirectional charger to facilitate the Vehicle to House (V2H) mode. In addition, two shiftable appliances are considered to shift the demand to the times when PV generation is maximum to maximise community local consumption. MATLAB software is used to code the proposed systems. The FL-EMS exploits day-ahead energy forecast (assumed it is available from a third party) to control the BSS with the aim of reducing the net energy exchange with the grid by enhancing PV self-consumption. The FL-EMS determines the optimal settings for the BSS, taking into consideration the BSS's state of health to maximise its lifetime. The results are compared with recently published works to demonstrate the effectiveness of the proposed method. The proposed FL-EMS saves 18% on total energy costs in six months compared to a similar system that utilises a day-ahead energy forecast. In addition, the method shows a considerable reduction in the net energy exchanged between the AOB and the grid. The main objective of the MILP-EMS is to reduce the net energy exchange with the grid by including a two days-ahead energy forecast in the optimisation process. The proposed method reduces the total operating costs (energy cost + BSS degradation cost) by up to 35% over six months and reduces net energy exchanged with the grid compared to similar energy optimisation technique. The proposed cost function in MILP-EMS shows that it can outperform the performance of alternative cost function that directly reduce the net energy exchange. CEMS uses two days-ahead energy forecast to reduce the net energy exchange with the grid by coordinating the distributed BSSs. The proposed CEMS reduces the total operating costs (energy costs + BSSs degradation costs) of the community by 7.6% when compared to the six houses being operated individually. In addition, the proposed CEMS enhances community self-consumption by reducing the net energy exchange with the grid by 25.3% over four months compared to similar community energy optimisation technique. A further reduction in operating costs is achieved using V2H mode and including shiftable appliances. Results show that introducing the V2H mode reduces both the total operating costs of the community and the net energy exchange with the grid

    Modelo de previs茫o de consumo de energia el茅trica em cen谩rio pand锚mico com uso de intelig锚ncia artificial

    Get PDF
    O trabalho prop玫e um novo modelo estoc谩stico de proje莽茫o de consumo de energia el茅trica, utilizando t茅cnicas de otimiza莽茫o atrav茅s de algoritmo gen茅tico aplicados a uma rede neural recorrente do tipo Long Short Term Memory. Ressalta o efeito das mortes por COVID-19 no consumo de energia, e contempla o efeito aleat贸rio e de atenua莽茫o de um transit贸rio social, o que costumeiramente 茅 simplificado em modelos de proje莽茫o de consumo. O modelo constru铆do 茅 apresentado detalhadamente usando, inicialmente, dados do Rio Grande do Sul e, posteriormente, amplia sua abrang锚ncia em um estudo de caso para o Brasil em cen谩rio pr茅- pandemia em 2019 e em cen谩rio pand锚mico em 2020. Os testes de vari谩veis econ么micas clim谩ticas e sociais s茫o realizados e mostram que as t茅cnicas utilizadas s茫o adequadas 脿 representa莽茫o do problema sob an谩lise.This paper proposes a new stochastic model for projecting electricity consumption, using optimization techniques through genetic algorithms applied to a recurrent neural network of the Long Short Term Memory type. It highlights the effect of COVID-19 deaths on energy consumption, and considers the random and attenuation effect of a social transient, which is usually simplified in consumption projection models. The model built is presented in detail initially using data from Rio Grande do Sul (southern state of Brazil) and later extends its scope in a case study to Brazil in a pre-pandemic scenario in 2019 and in a pandemic scenario in 2020. Tests of economic-climate and social variables are performed and show that the techniques used are adequate to represent the problem under analysis

    Control and management of energy storage systems in microgrids

    Get PDF
    The rate of integration of the renewable energy sources in modern grids have significantly increased in the last decade. These intermittent, non-dispatchable renewable sources, though environment friendly tend to be grid unfriendly. This is precisely due to the issues pertaining to grid congestion, voltage regulation and stability of grids being reported as a result of the incorporation of renewable sources. In this scenario, the use of energy storage systems (ESS ) in electric grids is being widely proposed to overcome these issues. However, integrating energy storage systems alone will not compensate for the issue created by renewable generation. The control and management of the ESS should be done optimally so that their full capabilities are exploited to overcome the issues in the power grids and to ensure their lower cost of investment by prolonging ESS lifetime through minimising degradation. Motivated by this aspect this Ph.D work focusses on developing an efficient, optimal control and management strategy for ESS in a microgrid, especially hybrid ESS. The Ph.D work addresses this issue by proposing a hierarchical control scheme comprising of a lower power management and higher energy management stage with contributions in each stage. In the power management stage this work focusses on improving aspects of real time control of power converters interfacing ESS to grid and the microgrid system as whole. The work proposes control systems with improved dynamic behaviour for power converters based on the reset control framework. In the microgrid control the work presents a primary+secondary control scheme with improved voltage regulation performance under disturbances, using an observer. The real time power splitting strategies among hybrid ESS accounting for the ESS operating efficiencies and degradation mechanisms will also be addressed in the primary+secondary control of power management stage. The design criteria, stability and robustness analysis will be carried out, along with simulation or experimental verifications. In the higher level energy management stage, the contribution of this work involves application of an economic MPC framework for the management of ESS in microgrids. The work specifically addresses the problems of mitigating grid congestion from renewable power feed-in, minimising ESS degradation and maximising self consumption of generated renewable energy using the MPC based energy management system. A survey of the forecasting methods that can be used for MPC will be carried out and a neural network based forecasting unit for time series prediction will be developed. The practical issue of accounting for forecasting error in the decision making of MPC will be addressed and impact of the resulting conservative decision making on the system performance will be analysed. The improvement in performance with the proposed energy management scheme will be demonstrated and quantified.La integraci贸n de las fuentes de energ铆a renovables en las redes modernas ha aumentado significativamente en la 煤ltima d茅cada. Estas fuentes renovables, aunque muy convenientes para el medio ambiente son de naturaleza intermitente, y son no panificables, cosa que genera problemas en la red de distribuci贸n. Esto se debe precisamente a los problemas relacionados con la congesti贸n de la red y la regulaci贸n del voltaje. En este escenario, el uso de sistemas de almacenamiento de energ铆a (ESS) en redes el茅ctricas est谩 siendo ampliamente propuesto para superar estos problemas. Sin embargo, la integraci贸n de sistemas de almacenamiento de energ铆a por s铆 solos no compensar谩 el problema creado por la generaci贸n renovable. El control y la gesti贸n del ESS deben realizarse de manera 贸ptima, de modo que se aprovechen al m谩ximo sus capacidades para superar los problemas en las redes el茅ctricas, garantizar un coste de inversi贸n razonable y prolongar la vida 煤til del ESS minimizando su degradaci贸n. Motivado por esta problem谩tica, esta tesis doctoral se centra en desarrollar una estrategia de control y gesti贸n eficiente para los ESS integrados en una microrred, especialmente cuando se trata de ESS de naturaleza. El trabajo de doctorado propone un esquema de control jer谩rquico compuesto por un control de bajo nivel y una parte de gesti贸n de energ铆a operando a m谩s alto nivel. El trabajo realiza aportaciones en los dos campos. En el control de bajo nivel, este trabajo se centra en mejorar aspectos del control en tiempo real de los convertidores que interconectan el ESS con la red y el sistema de micro red en su conjunto. El trabajo propone sistemas de control con comportamiento din谩mico mejorado para convertidores de potencia desarrollados en el marco del control de tipo reset. En el control de microrred, el trabajo presenta un esquema de control primario y uno secundario con un rendimiento de regulaci贸n de voltaje mejorado bajo perturbaciones, utilizando un observador. Adem谩s, el trabajo plantea estrategias de reparto del flujo de potencia entre los diferentes ESS. Durante el dise帽o de estos algoritmos de control se tienen en cuenta los mecanismos de degradaci贸n de los diferentes ESS. Los algoritmos dise帽ados se validar谩n mediante simulaciones y trabajos experimentales. En el apartado de gesti贸n de energ铆a, la contribuci贸n de este trabajo se centra en la aplicaci贸n del un control predictivo econ贸mico basado en modelo (EMPC) para la gesti贸n de ESS en microrredes. El trabajo aborda espec铆ficamente los problemas de mitigar la congesti贸n de la red a partir de la alimentaci贸n de energ铆a renovable, minimizando la degradaci贸n de ESS y maximizando el autoconsumo de energ铆a renovable generada. Se ha realizado una revisi贸n de los m茅todos de predicci贸n del consumo/generaci贸n que pueden usarse en el marco del EMPC y se ha desarrollado un mecanismo de predicci贸n basado en el uso de las redes neuronales. Se ha abordado el an谩lisis del efecto del error de predicci贸n sobre el EMPC y el impacto que la toma de decisiones conservadoras produce en el rendimiento del sistema. La mejora en el rendimiento del esquema de gesti贸n energ茅tica propuesto se ha cuantificado.La integraci贸 de les fonts d'energia renovables a les xarxes modernes ha augmentat significativament en l鈥櫭簂tima d猫cada. Aquestes fonts renovables, encara que molt convenients per al medi ambient s贸n de naturalesa intermitent, i s贸n no panificables, cosa que genera problemes a la xarxa de distribuci贸. Aix貌 es deu precisament als problemes relacionats amb la congesti贸 de la xarxa i la regulaci贸 de la tensi贸. En aquest escenari, l鈥櫭簊 de sistemes d'emmagatzematge d'energia (ESS) en xarxes el猫ctriques est脿 sent 脿mpliament proposat per superar aquests problemes. No obstant aix貌, la integraci贸 de sistemes d'emmagatzematge d'energia per si sols no compensar脿 el problema creat per la generaci贸 renovable. El control i la gesti贸 de l'ESS s'han de fer de manera _optima, de manera que s'aprofitin al m脿xim les seves capacitats per superar els problemes en les xarxes el猫ctriques, garantir un cost d鈥檌nversi贸 raonable i allargar la vida 煤til de l'ESS minimitzant la seva degradaci贸. Motivat per aquesta problem脿tica, aquesta tesi doctoral es centra a desenvolupar una estrat猫gia de control i gesti贸 eficient per als ESS integrats en una microxarxa, especialment quan es tracta d'ESS de natura h铆brida. El treball de doctorat proposa un esquema de control jer脿rquic compost per un control de baix nivell i una part de gesti贸 d'energia operant a m茅s alt nivell. El treball realitza aportacions en els dos camps. En el control de baix nivell, aquest treball es centra a millorar aspectes del control en temps real dels convertidors que interconnecten el ESS amb la xarxa i el sistema de microxarxa en el seu conjunt. El treball proposa sistemes de control amb comportament din脿mic millorat per a convertidors de pot猫ncia desenvolupats en el marc del control de tipus reset. En el control de micro-xarxa, el treball presenta un esquema de control primari i un de secundari de regulaci贸 de voltatge millorat sota pertorbacions, utilitzant un observador. A m茅s, el treball planteja estrat猫gies de repartiment de el flux de pot猫ncia entre els diferents ESS. Durant el disseny d'aquests algoritmes de control es tenen en compte els mecanismes de degradaci贸 dels diferents ESS. Els algoritmes dissenyats es validaran mitjanant simulacions i treballs experimentals. En l'apartat de gesti贸 d'energia, la contribuci贸 d'aquest treball se centra en l鈥檃plicaci贸 de l'un control predictiu econ貌mic basat en model (EMPC) per a la gesti贸 d'ESS en microxarxes. El treball aborda espec铆ficament els problemes de mitigar la congesti贸 de la xarxa a partir de l鈥檃limentaci贸 d'energia renovable, minimitzant la degradaci贸 d'ESS i maximitzant l'autoconsum d'energia renovable generada. S'ha realitzat una revisi贸 dels m猫todes de predicci贸 del consum/generaci贸 que poden usar-se en el marc de l'EMPC i s'ha desenvolupat un mecanisme de predicci贸 basat en l鈥櫭簊 de les xarxes neuronals. S'ha abordat l鈥檃n脿lisi de l'efecte de l'error de predicci贸 sobre el EMPC i l'impacte que la presa de decisions conservadores produeix en el rendiment de el sistema. La millora en el rendiment de l'esquema de gesti贸 energ猫tica proposat s'ha quantificat
    corecore