3,113 research outputs found

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed

    Compositional Vector Space Models for Knowledge Base Completion

    Full text link
    Knowledge base (KB) completion adds new facts to a KB by making inferences from existing facts, for example by inferring with high likelihood nationality(X,Y) from bornIn(X,Y). Most previous methods infer simple one-hop relational synonyms like this, or use as evidence a multi-hop relational path treated as an atomic feature, like bornIn(X,Z) -> containedIn(Z,Y). This paper presents an approach that reasons about conjunctions of multi-hop relations non-atomically, composing the implications of a path using a recursive neural network (RNN) that takes as inputs vector embeddings of the binary relation in the path. Not only does this allow us to generalize to paths unseen at training time, but also, with a single high-capacity RNN, to predict new relation types not seen when the compositional model was trained (zero-shot learning). We assemble a new dataset of over 52M relational triples, and show that our method improves over a traditional classifier by 11%, and a method leveraging pre-trained embeddings by 7%.Comment: The 53rd Annual Meeting of the Association for Computational Linguistics and The 7th International Joint Conference of the Asian Federation of Natural Language Processing, 201

    Learning Sentence-internal Temporal Relations

    Get PDF
    In this paper we propose a data intensive approach for inferring sentence-internal temporal relations. Temporal inference is relevant for practical NLP applications which either extract or synthesize temporal information (e.g., summarisation, question answering). Our method bypasses the need for manual coding by exploiting the presence of markers like after", which overtly signal a temporal relation. We first show that models trained on main and subordinate clauses connected with a temporal marker achieve good performance on a pseudo-disambiguation task simulating temporal inference (during testing the temporal marker is treated as unseen and the models must select the right marker from a set of possible candidates). Secondly, we assess whether the proposed approach holds promise for the semi-automatic creation of temporal annotations. Specifically, we use a model trained on noisy and approximate data (i.e., main and subordinate clauses) to predict intra-sentential relations present in TimeBank, a corpus annotated rich temporal information. Our experiments compare and contrast several probabilistic models differing in their feature space, linguistic assumptions and data requirements. We evaluate performance against gold standard corpora and also against human subjects

    Representation and Analysis of Multi-Modal, Nonuniform Time Series Data: An Application to Survival Prognosis of Oncology Patients in an Outpatient Setting

    Get PDF
    The representation of nonuniform, multi-modal, time-limited time series data is complex and explored through the use of discrete representation, dimensionality reduction with segmentation based techniques, and with behavioral representation approaches. These explorations are done with a focus on an outpatient oncology setting with the classification and regression analysis being used for length of survival prognosis. Each decision of representation and analysis is not independent, with implications of each decision in method for how the data is represented and then which analysis technique is used. One unique aspect of the work is the use of outpatient clinical data for patients, which was explored initially through discrete sampling and behavioral representation. The length of survival was evaluated with both classification and regression methods initially. The first conclusion determined that including more discrete samples in the model showed no statistical benefit and the addition of behavioral approaches did improve the prognostic accuracy. From this result, the adaption of Piecewise Aggregate Approximation was made to accommodate the multi-modal time series data of the outpatient clinical data, and evaluated with the regression methodologies. This representation approach demonstrated promise due to the simplicity but had decreased performance in the length of survival prognosis compared with behavioral representation and discrete samples approach. A solution was a new representation approach made which incorporates a genetic algorithm to select the window boundaries of the Piecewise Aggregate Approximation method. This selection is based on the fraction of the Piecewise Aggregate Approximation windows that contain values other than zero. The new representation improved the performance in some cases by a 20% reduction in median relative error

    Interval Temporal Random Forests with an Application to COVID-19 Diagnosis

    Get PDF
    Symbolic learning is the logic-based approach to machine learning. The mission of symbolic learning is to provide algorithms and methodologies to extract logical information from data and express it in an interpretable way. In the context of temporal data, interval temporal logic has been recently proposed as a suitable tool for symbolic learning, specifically via the design of an interval temporal logic decision tree extraction algorithm. Building on it, we study here its natural generalization to interval temporal random forests, mimicking the corresponding schema at the propositional level. Interval temporal random forests turn out to be a very performing multivariate time series classification method, which, despite the introduction of a functional component, are still logically interpretable to some extent. We apply this method to the problem of diagnosing COVID-19 based on the time series that emerge from cough and breath recording of positive versus negative subjects. Our experiment show that our models achieve very high accuracies and sensitivities, often superior to those achieved by classical methods on the same data. Although other recent approaches to the same problem (based on different and more numerous data) show even better statistical results, our solution is the first logic-based, interpretable, and explainable one
    • ā€¦
    corecore