
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2016 

Representation and Analysis of Multi-Modal, Nonuniform Time Representation and Analysis of Multi-Modal, Nonuniform Time 

Series Data: An Application to Survival Prognosis of Oncology Series Data: An Application to Survival Prognosis of Oncology 

Patients in an Outpatient Setting Patients in an Outpatient Setting 

Jennifer Winikus 
Michigan Technological University, jawiniku@mtu.edu 

Copyright 2016 Jennifer Winikus 

Recommended Citation Recommended Citation 
Winikus, Jennifer, "Representation and Analysis of Multi-Modal, Nonuniform Time Series Data: An 
Application to Survival Prognosis of Oncology Patients in an Outpatient Setting", Open Access 
Dissertation, Michigan Technological University, 2016. 
https://digitalcommons.mtu.edu/etdr/305 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Artificial Intelligence and Robotics Commons, Numerical Analysis and Scientific Computing 
Commons, and the Other Computer Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.mtu.edu%2Fetdr%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.mtu.edu%2Fetdr%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.mtu.edu%2Fetdr%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.mtu.edu%2Fetdr%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages


REPRESENTATION AND ANALYSIS OF MULTI-MODAL, NONUNIFORM

TIME SERIES DATA:

AN APPLICATION TO SURVIVAL PROGNOSIS OF ONCOLOGY PATIENTS

IN AN OUTPATIENT SETTING

By

Jennifer Winikus

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2016

© 2016 Jennifer Winikus





This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Engineering.

Department of Electrical and Computer Engineering

Dissertation Co-advisor: Dr. Laura E. Brown

Dissertation Co-advisor: Dr. Timothy C. Havens

Committee Member: Dr. Nilufer Onder

Committee Member: Dr. Jinshan Tang

Department Chair: Dr. Daniel Fuhrmann





Dedication

To those who were lost along the way. A special thanks to Dr. Jalal Baghdadchi who

inspired my interest to pursue graduate school beyond Alfred University along with

the interest in genetic algorithms, and to Dr. Glen Archer who while at Michigan

Technological University helped shape the education into a career that I love and

makes a difference.





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and Relevant Work . . . . . . . . . . . . . . . . . . . . 10

2.1 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Time Series Data Representation . . . . . . . . . . . . . . . 12

2.1.2 Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Fourier Transformation . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Piecewise Aggregate Approximation . . . . . . . . . . . . . . 22

2.1.4.1 Symbolic Aggregate Approximation . . . . . . . . . 23

vii



2.1.5 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.6 Temporal Abstraction . . . . . . . . . . . . . . . . . . . . . 27

2.2 Common Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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Abstract

The representation of nonuniform, multi-modal, time-limited time series data is com-

plex and explored through the use of discrete representation, dimensionality reduction

with segmentation based techniques, and with behavioral representation approaches.

These explorations are done with a focus on an outpatient oncology setting with the

classification and regression analysis being used for length of survival prognosis. Each

decision of representation and analysis is not independent, with implications of each

decision in method for how the data is represented and then which analysis tech-

nique is used. One unique aspect of the work is the use of outpatient clinical data

for patients, which was explored initially through discrete sampling and behavioral

representation. The length of survival was evaluated with both classification and

regression methods initially. The first conclusion determined that including more dis-

crete samples in the model showed no statistical benefit and the addition of behavioral

approaches did improve the prognostic accuracy.

From this result, the adaption of Piecewise Aggregate Approximation was made to

accommodate the multi-modal time series data of the outpatient clinical data, and

evaluated with the regression methodologies. This representation approach demon-

strated promise due to the simplicity but had decreased performance in the length

of survival prognosis compared with behavioral representation and discrete samples

xxix



approach. A solution was a new representation approach made which incorporates a

genetic algorithm to select the window boundaries of the Piecewise Aggregate Approx-

imation method. This selection is based on the fraction of the Piecewise Aggregate

Approximation windows that contain values other than zero. The new representation

improved the performance in some cases by a 20% reduction in median relative error.

xxx



Chapter 1

Introduction

Data is gathered, represented, and used in many different ways everyday. The ap-

proaches to representation and how they are used is not independent, and can be

complicated by features of the process in which the data is gathered. The work looks

at the representation and analysis in the application of outpatient oncology prognosis.

With every passing second, measurements and observations are being collected in

many different applications around the world. As the observations are recorded, not

all of them are being made with uniform frequency. One area where nonuniform ob-

servation is prevalent is outpatient medicine. In outpatient medicine, there is nonuni-

formity in the observations across time, type (e.g., patient’s weight, height, blood

tests, etc.), number (how many observations are made), and patients in a population.
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Over all the observations, while a patient is alive, the values are realistically continu-

ous but are taken as discrete observations. The observations are limited to a starting

observation time and then either a time corresponding to the ending of care being

received or death, making the data time-limited. Based on these properties the data

set which exists in the domain of outpatient medical care is multi-modal, nonuniform,

time-limited time series.

Medical data is often used to makes decisions and predictions, such as oncology sur-

vival prognosis or prescribe medications to treat simple ailments of low iron. The

individual challenges of data representation and prognosis problem class (e.g, re-

gression, binary classification, multi-class classification) are not independent of each

other, with influences to prognostic accuracy resulting from modification to either

aspect. The nature of oncology prognosis with outpatient medical data provides the

foundation scenario for the research to be conducted. With this scenario it can be

decomposed into two components: the representation of the data, and the methods

and type of prognosis. In this work, prognosis will be considered as a classification

problem and then regression problem.

In general, the data set of focus is a set of independent samples, with each sample

consisting of observations for multiple types of measurement made over time. Each

observation is representative of an attribute (also known as feature or of a sensor

entity); with the observation properties (e.g., mode, measurement approaches, etc.)
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independent from all other attributes. Observations are presented initially based on

the attribute it belongs to, with one of three mode types considered: categorical,

numerical valued, or time series. Categorical observations are when a qualitative

observation is needed as a measurement (e.g., the gender association or if a patient is

still alive). Numerical valued data can be viewed as a measurement over a specified

duration, e.g., number of treatments in a given period or the amount of radiation

exposure. When the mode considered is time series, the observations are made with

respect to time (e.g., the collection of vitals or results of blood tests). For each of

the attributes, the mode is held consistent in type but independent with respect to

the number of observations for all other attributes and samples. This independence

is one aspect of nonuniformity considered.

For any observation in the medical domain there are two additional time consider-

ations. The first consideration is that the maximum time duration is limited. For

many areas, there is a limit to how much history is known and then the observation

time will end at some point (e.g., from leaving the care of the physician or dying).

Within the entire collection of observations, since there are multiple attributes, the

duration for each also can display nonuniform behavior which must be addressed in

the representation of the data set. While the observations are time-limited, there

is the second consideration in the determination of how much of the observed time

should be incorporated when determining a prognosis, more time does not necessarily

produce better results [6].
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The distribution of observations over time within the attribute may vary substan-

tially, there could be periods with more or less observations relative to the rest of

the time series. Clusters of observations with scattered observations elsewhere that

does not have any similarity to a traditional sampling distribution can be observed.

Potentially the absence of observations may extend to an entire attribute. The cases

on zero observation presents one of the challenges in the representation approach to

be utilized.

To consider representing similar data, especially with time series data, dimensional-

ity reduction has been used [7]. Some methods to represent the data with a reduced

dimensionality include rule based [8, 9, 10], interpolation sampling [11], and artificial

neural networks [12]. Other approaches to achieve dimensionality reduction to repre-

sent the data take a piecewise approach, splitting the duration of the observation time

which is to be considered into a piecewise set. In the piecewise methods, the segments

(or windows, or frames) are mostly done with uniform widths [13, 14], but some work

has considered adaptive widths [15] or placement of the segment endpoints with ge-

netic algorithms [16]. Methodologies of uniform segment sizes are not appropriate

when nonuniform data duration distribution is present due in part to large fitting

errors. Once the segments are created how to represent the data as values should

be considered; methods such as aggregate [17], linear [7, 16], constant value [7], and

symbolic [18, 19] are available.
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Work with Piecewise Aggregate Approximation (PAA) started with the standard

approach based on using the window size being fixed, as well as the width being

determined from a single sample duration. The adaption of PAA to the data through

the incorporation of genetic algorithms was done. This approach chose to focus on

the fraction of the segments which contained values after conversion to PAA. This is

different from the other literature approach with genetic algorithms and PAA that had

a nonuniform sample distribution but a uniform number of samples when determining

the boundaries [16], in addition the approach varied in the fitness function did not

consider the representation outcome.

While some of the representation approaches have worked with nonuniformity, ad-

dressing data which has all multi-modal, nonuniform, time-limited time series prop-

erties has not been found thus far in the literature. The consideration of all the data

properties is a core piece to the work that will be explored (either as the direct focus

or as part of the data set used).

With every decision made in how the data is represented, the technique to determine

a prognosis may be impacted. For example, in a Bayesian Network (BN), a larger

domain of each input variable implies additional computation and a larger conditional

probability table for each variable. Methods like Support Vector Machines (SVMs)

utilize a mapping to feature space as part of the process. This implies how the data

is represented and selection of the mapping function, the kernel, makes a difference
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in the resulting classification.

An overarching idea recognized with this problem was to develop generalized quan-

tifications for multi-modal, nonuniform, time-limited time series data. In explor-

ing the literature, the quantification of data with Shannon’s theorem being at the

core [20, 21, 22]. Recent work has focused on different aspects of communication

or the quantity of observations, such as the number of reviews for videos of an on-

line site [23]. Slightly more quantity information is possible in other cases, such as

Facebook being able to know the number of users and the number of friends (con-

nections between users) [23]. The further extension of research done is tied to the

storage of the large amounts of data physically [24]. Compressive and sparse sampling

look at the quantity of data from the perspective of reconstruction necessities [25].

Comparisons have been observed at high level results, embedded in the optimization

problems [16, 26, 27, 28], or through distances for similarity metrics [29, 30, 31].

In the chapters to follow relevant general background is first presented (Chapter 2)

and work with further background will be presented when applicable in later chapters.

The consideration of clinical samples extracted from the patient data and behavioral

representation (Chapter 3) with classification and regression (Chapter 4) was then

explored. Representing the patient data through PAA and evaluating with regression

(Chapter 5) is then followed by the modification of the segmentation using genetic

6



algorithms based on the fit (Chapter 6). The recognition of the way to describe fit er-

ror with PAA and a segmentation approach are key novel contributions. Adaptations

to work with multi-modal, nonuniform, time-limited time series data for classification

and regression are also novel adaptations which have been made.
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1.1 Contributions

Through the dissertation the following contributions were made:

† Development and application of discrete sampling approach combined with a

simple behavioral representation approach on a multi-modal, nonuniform, time-

limited time series data set evaluated with Bayesian Networks, Näıve Bayes,

and Support Vector Machines. See Chapter 3. Presented in part at IEEE’s

Electro/Information Technology Conference 2016 and published in the proceed-

ings [4].

† Development and application of discrete sampling approach combined with a

simple behavioral representation approach on a multi-modal, nonuniform, time-

limited time series data set evaluated with Linear and Quadratic Regression,

Gaussian Process Regression and Support Vector Regression. See Chapter 4.

Published in Advances in Science, Technology, and Engineering Systems Journal

special edition issue on Recent Advances in Electrical and Electronics Engineer-

ing [32].

† Adaptation of Piecewise Aggregate Approximation to a multi-modal, nonuni-

form, time-limited time series data set and evaluated with regression. See Chap-

ter 5.
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† Development of a genetic algorithm approach based on sparseness feedback

to improve the application of Piecewise Aggregate Approximation on a multi-

modal, nonuniform, time-limited time series with a focus on the performance in

the evaluation of with regression analysis. See Chapter 6.
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Chapter 2

Background and Relevant Work

For many applications the decisions made on how to represent data and the choice in

evaluation technique impacts the performance objective. From Shannon, in classical

sampling theory, through to the utilization of Support Vectors Machines, developed

by Vapnik, these foundations contribute to the core background which is needed to

pursue techniques to accommodate multi-modal, nonuniform, time-limited time series

data. This section presents the background and relevant work on data representation

and learning methods used and expanded upon in this work.
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2.1 Data Representation

Data representation is critical to the utilization of observations and measurements

that are collected in any application. In general, there are two main types of data,

quantitative and qualitative, each of which have subtypes. Quantitative data, some-

times referred to as numeric data, deals with numbers or objective measures, e.g.,

height, weight, etc.; quantitative data is separated into discrete, or continuous data.

Qualitative data includes data that comes from classifying or categorization; the

three main types of qualitative data are binary, nominal, and ordinal data. There

exist other alternative ways to describe types of data, e.g., in statistics the levels of

measurement (nominal, ordinal, interval, and ratio) may be used. In addition to the

type of data, another consideration is whether the data is aggregated. That is, is

the data collected consisting of a single point, e.g., a patient’s date of birth, or is it

collected in a series, e.g., a patient’s weight measured at each visit.

This work focuses on the application of outpatient medical data for analysis, where

the raw observations and measurements can be described as binary observations,

numerical observations, or time series. Binary data within the scenario of oncology,

can be used with attributes such as life status (alive or dead) or a single event occurred

(being born would be such an event).
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Numeric value data is used to represent a quantity. Quantities can be observed either

as a single measurement (such as, the age when death occurs) or an attribute which is

time invariant (for example, the number of blood transfusions over a time). Numerical

value data may be discrete, but can also be transformed to discrete. The numerical

values across a population can be assigned to a limited set of discrete values using

a rule based approach (values V1 through V2 become group G1 and V2 through V3

become group G2 for example) or through unsupervised learning techniques based on

the data from a collection of samples.

The final observation type is time series. Background on the properties of time series

data and representation approaches will be presented in the section to follow.

2.1.1 Time Series Data Representation

When observations are taken with respect to time, it is considered to be a time

series. Time series values can form communication signals that are being transmitted,

observations of a patients weight at different times, or the time of sunset each day.

A time series, S, is a set of m discrete observations with each observation observed

at a point in time, t, from some signal. The time series is defined by,

S(t) = {s0, s1, ..., sm−1}, (2.1)
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with time t ∈ R and t = {t0, t1, ..., tm−1}. The observations are ordered with respect

to time. The time between observations does not need to be uniform; an example of

a nonuniform time series is seen in Fig. 2.1.

Time, t
0 1 2 3 4 5 6 7 8

Am
pl

itu
de

0.5

1

1.5

2

2.5

3

Figure 2.1: A nonuniform time series data sample. The x-axis represents
time and the y-axis represents the amplitude of the observations.

Given a second time series, R = {r0, r1, ..., rmR−1}, the times of observations in R

can be different from S, like the two time series shown in Fig. 2.2. With the two

time series, the nonuniform duration can be seen with the locations of endpoints

of [tn,first, tn,last], where n is the reference to the time series. From the difference

between those endpoints the duration is calculated and equals ∆ tn. In this example,

the starting times for both R and S are at a similar time, but the ending time for R

is earlier then S. This duration relationship can then be described ∆ tS > ∆ tR.
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Figure 2.2: Two nonuniform time series with different durations as noted
with the corresponding time points noted on the figure. Time series S is
represented by the diamond marker and R by the circle marker.

Some examples of applications which have data that takes the form of a time series

are fluid dynamics [33], electromagnetics [34], image reconstruction [35, 36], power

systems [37], and motion and position monitoring [38].

Time series are comprised of observations, this makes the series able to be considered

as a sample [39].

Samples can be multi-modal; for the time series sample, S, each observation repre-

sented would then have two indexing properties: the observation instance and the

attribute series that the observation belongs to. Each attribute representing a time

series is a dimension, resulting in k time series, and thus the number of k dimensions.
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This modifies the notation to:

S =



s0,0 s0,1 s0,2 . . . s0,m0−1

s1,0 s1,1 s1,1 . . . s1,m1−1

...
...

...
. . .

...

sk−1,1 sk−1,2 sk−1,3 . . . sk−1,mk−1


. (2.2)

To allow for nonuniformity in the number of observations for each attribute, the

number of observations, m, is independently defined for each attribute, k, creating

the vector,

m = {m0,m1, ...,mk−1}. (2.3)

Each of the k attributes also should be assumed to be independent of the other k− 1

attributes in values and the times when the observations are made. In Fig. 2.3, a

multi-model time series is presented with three attributes.

The observations for the time series modes thus far have been based on discrete

observations made at a point in time, time series can also be used to represent other

types of data. In image processing, the pixels and their respective color can be

translated to a continuous time series [40]. For hand writing analysis, the height of

the top of the characters form the time series [41]; making the time series essentially a

tracing. In similarity recognition, the features of the shape can be extracted to form
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Figure 2.3: A multi-modal time series with three attributes.

a time series [42].

A large amount of research has been done on many approaches to represent time

series, as displayed in Fig. 2.4 [1]. There is a division in representation approaches

based on if the techniques are adaptive to the data or if they are a single rule format

(for example, Discrete Fourier Transform (DFT) is presented as non-adaptive because

the transform is a fixed formula applied to the data series with no variation based on

the data). Formally, two definitions can be established.

Definition 1 Data Adaptive representations: a common rule or approach for all

data representation is chosen with the objective to minimizes the global reconstruction

error [43].
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Definition 2 Non-Data Adaptive representations: representation is based on an ap-

proximation from local properties of the data [43].

Figure 2.4: Taxonomy of different methods of representing time series
data [1], see Appendix E.1 for copyright details.

Within any methods of data collection and data representation, missing data may

be observed and methods to handle it must be implemented. For a sample with

multiple time-series attributes, there is potential for a sample to lack the necessary

observations. The missing observation can be all of the data for an attribute. If

using a uniform sampling grid to describe the data, the sample can be missing an

observation at one of the points which should be sampled.

Missing data and observations can take on the term of censored data when it is the

result of the data for an event not being observed. In medical field data, there are

three reasons for the data being censored: an event does not occur before the end of

the study, an individual withdraws from further observations, or does not follow up

(reasons include an individual’s death [44]). Specifics on the outpatient oncology data
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set to be used in the research are presented in Section 3.1.1, with the representation

approaches discussed in Sections 3.1.2.1- 3.1.3.2, 5.3, 6.3, and 6.4.

2.1.2 Sampling Theory

When given a time series, the approach of what observations to consider for evalua-

tion is often based on sampling theory. As previously defined a time series, S, is a

collection of discrete observations made for an attribute that is continuous, making

the original source of S known as the signal. The series S should consist of sufficient

observations to describe the original signal. The determination of how often observa-

tions are needed and the methods regarding the relationship between the signal and

series follow sampling theory. When data is uniform, selecting observations from the

data can be done by following Shannon’s Theorem [21]. In Shannon’s Theorem, the

frequency of observations to be able to represent the signal must be at minimum twice

the frequency of the fastest feature. The frequency of the fastest feature is known as

the Nyquist Frequency, this is used to properly select a sampling frequency Ω. From

observations of S at the uniform intervals of nπ
Ω

(units are typically nanoseconds,

microseconds, milliseconds, or seconds) samples can be takes to recreate the original

signal Ŝ.

With the spacing between samples described, the Whittaker-Kotel’nikov-Shannon
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(WSK) sampling theory is formed. In the WSK Theorem, the ability to acquire

uniformly spaced observations from S is needed. When there is no value obtainable

at the desired time point additional considerations must be made. One approach to

obtain uniformly spaced observations is interpolation. Using surrounding observations

interpolation estimates the missing information needed to estimate an observation at

that point of time. There are several interpolation approaches, often requiring a

function to describe the signal to estimate the observation at the desired time point.

An alternative to interpolation is gridding. There are three steps in most gridding

approaches: (i) the establishment of pre-weights, (ii) performing the convolution of

the time series with the gridding kernel (which is often determined to have properties

such as being shift-invariant and utilizes the Fourier Transform, FT) and (iii) then the

inverse Fourier transform (IFT, background is presented in section 2.1.3) is performed

to construct the new uniformly distributed set of observations [35]. The gridding

kernel properties share the same principles as those used in Support Vector Machines

(see section 2.3.3.1 for more background on kernels).

With the convolution’s ability to resolve the non-continuous behavior of a sample,

taking the integral or summation is a task which may still be very complex or difficult.

One of the properties of convolution which simplifies the computation is the utilization

of a transform. The Laplace Transform of a convolution results in the product of the

Laplace Transform of each function individually [45]. This convolution property also
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is applicable to the FT.

Using Shannon’s Theory to determine what observations to consider, and WSK or

gridding to reconstruct the original signal is a foundation in the pursuit of time series

representation and in applications of kernels. Further explanation of WSK can be

found in Appendix A.1.

2.1.3 Fourier Transformation

One of the tools used in sampling theory is the use of the Fourier Transform (FT).

Additionally transforms are a representation approach for time series. In general,

the FT takes a function or vector (in the discrete case) in the time domain and then

transforms mathematically to the frequency domain through integration.

For the discrete form, the integral is replaced with a summation. The FT is then

known as the Discrete Time Fourier Transform (DTFT) [46]. Moving from the time

domain to the frequency domain has its benefits, primarily the inclusion of a periodic

function that makes a sample that can be uniformly sampled possible (gridding).

Once the function is periodic, the return of the sample to the time domain is needed

to allow for the results to be used, this is done using the Inverse Fourier Transform

(IFT) or Inverse Discrete Fourier Transform (IDFT).

20



DFT is used to reduce dimensionality by considering only a subset of coefficients and

then normalized allows for invariance to rotation and starting points [47]. Methods

of representation of time series based on FT have been applied in applications such

as fluid dynamics [33], electromagnetics [34], image reconstruction [35, 36]. In image

recognition, such as finding similar images from a query in a database, filtering tech-

niques can be used to account for variations which don’t factor into the decisions,

such as the orientation of a shape [42, 47].

An extension of the computation of the DFT is the Fast Fourier Transform (FFT)

which performs the transform quicker then a traditional FT. Outside of the traditional

FT, FFT, and DFT, there are a series of nonuniform Fourier Transform (NUFFT,

as they most commonly utilize the FFT as the basis) which exist. There are three

primary types: type 1 one is when the transform is used for an original system which

is irregular to achieve a regular grid, type two takes a uniformly sampled system and

produced an irregular grid, and then type three takes one irregular grid and turns it

into another irregular grid [34].

In addition to FTs, there are other transform methods which can be used. Other

transforms include the z-transform [48], discrete cosine transform [48], the FFT [48],

discrete Hilbert Transform [48], Walsh Transform [37], and wavelet transform [49].

In many applications the utilization of the transform lies with the coefficient not with

the signal recreation. The lower or initial coefficients are found and maintained to be
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used in the evaluation and higher frequency coefficients are disregarded [50].

Additional detail details on Fourier Transformation are included in Appendix A.1.1.

2.1.4 Piecewise Aggregate Approximation

Segmentation representation is used to simplify the data available by dimensionality

reduction or compression sampling. In the methods based on segmentation, the time

series is broken down to c segments. The regions within the segments are then rep-

resented through some approach, such as linear, cubic or aggregate methods [7]. The

aggregate technique is known as Piecewise Aggregate Approximation (PAA) [17].

The segment window (also referred to as window, segment, frame or piece) represents

a slice of the information of some duration (or width). In general, a window is

summarized with a vector of features describing the behavior of that region [51].

For each of the c windows for a time series, n, ln is the window width, that can be

defined relative to the duration of the sample,

ln =
∆ tn
c
. (2.4)

The placement of the segments are determined by split points which are traditionally
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places with equal spacing across the duration ∆ tn.

Nonuniform data presents PAA with the situation that a window or many windows,

even adjacent, may not contain any observations of the signal. To mediate this com-

plication, one approach is to utilize the neighboring windows that have observations

and use the PAA values from those windows as the two values to compute the average.

The computed average will become the value of the window in place of missing ob-

servations. This interpolation approach is not going to create an accurate behavioral

representation depending on the distribution of observations and the window size.

In one recent work, the determination of the segment boundary placements has been

considered with genetic algorithms for samples that are discrete and equal count of

observations through the entire population to then be applied to the entire popula-

tion [16]. Working with electrocardiogram data, a evolutionary computation approach

was used to determine the placement of segment boundaries through an optimization

problem. This is an University of California Riverside (UCR) data set, which is a clas-

sification time series time set that is a single mode time series of uniform length [52].

2.1.4.1 Symbolic Aggregate Approximation

Symbolic aggregate approximation (SAX) [19] is an extension of PAA, when the

value based assignments in the segments are transformed to symbolic assignments.
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Figure 2.5: A visual representation of break-point assignment to trans-
form PAA to SAX [2]. © 2012 P. Montalto, M. Aliotta, A. Cannata, C.
Cassisi, and A. Pulvirenti. Adapted from ”Advances in Data Mining Knowl-
edge Discovery and Applications”, under CC by 3.0 license. Available from:
doi.org/10.5772/49941.

Symbolic assignment approaches utilize symbols (such as an alphabet) in place of

values.

There are three primary steps to implementing SAX. The normalization of the values

to have a zero mean and standard deviation of one is performed to prepare the data.

Once the representation has been shifted in preparation then the creation of the

windows is conducted. These windows are of length ln and should be uniform in

length. With these windows the normalized information is then represented with

PAA. The final step of SAX is the conversion of the discretization of the window’s by

mapping to discrete symbols [53].

For a time series S of m observations (making the series length equal m), with a set

of v discrete values to be assigned the SAX of S can be determined over an aggregate
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length segment, lagg. The term lagg corresponds to the aggregate value for the segment

l, that combining all l makes a new series. This first step is of determining lagg is the

application of Piecewise Aggregate Approximation. Once the regions are represented

in the aggregate form, symbolic assignments are made from an alphabet set. The

breakpoints assigned provide regions of values that correspond to each letter in the

alphabet set used for the symbolic representation assignments.

Fig. 2.5 summarizes the process with the Gaussian distribution on the left covering

the entire set of values that is used to take the PAA on the middle plot to assign the

symbolic alphabet. This results in the SAX plot on the right.

As the segments are represented symbolically, definitions of distance between symbols

need to be defined to determine similarity when using distance calculations between

time series. A look-up table developed to use distance definitions when calculating

distances [18].

With SAX, the representation is appropriate when there are not substantial changes

in amplitude within a segment. When large amplitude variations occur, the aggregate

value determined may not adequately represent the behavior of the segment, with ex-

treme values potentially shifting the symbolic assignment. The extreme points may

also be lost in the process. One work proposed the extension of SAX as a triple tuple,

that the maximum, minimum, and mean are considered in the representation. This

provides more information about the behavior in the representation [14]. The cost of
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the additional information is the increases the dimensionality needed for representa-

tion.

With SAX there have been many expansions considered to improve the performance.

Expansions have predominately focused on the application or the look up table com-

ponent or break point boundaries for symbolic assignment [14, 54]. These expansions

in some cases utilize other methods including genetic algorithms. A genetic algorithm

can be used to create a look-up table for break point placement hat will be used for

the the discretization step to assign symbols [18].

2.1.5 Distances

In data representation (and many machine learning or data mining) techniques, there

is often a similarity consideration that is done using a distance calculation. To calcu-

late the distance between two points (or points on lines), Euclidean Distance is often

used. For two points, x1 and x2, then the Euclidean Distance, d(x1, x2) is calculated

by [55],

d (x1, x2) =
√
x2

1 + x2
2. (2.5)

This can then be generalized to the Minkowski Distance, or as the Lp norm [51],

Lp(xr, xs) =

(∑
k

|xr,k − xs,k|p
)1/p

, (2.6)
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where k is a the number of elements being compared. For a pair of points, k = 1.

For a pair of signals, k is the number of elements in the set of vectors describing the

signals.

With the generalized Minkowski Distance equation, the Euclidean Distance is the case

where p = 2. Another common distance utilized is Manhattan Distance [51], which

is when p = 1. The maximum distance is defined with L∞ [56]. Distance calculations

are often used in determination of similarities between two points or signals [31, 57].

Additional similarity and distance metrics include Jaccard Distance [58], Hamming

Distance [59], cosine angle distance [60], and Mahalanobis Distance [55, 61].

When there is a time shift or scaling variance between the time series being compared,

similarities can be obscured. To improve the recognition of similarity in these cases,

a method developed in the 1970’s for speech recognition known as dynamic time

warping (DTW) can be used [56, 62]. Details on DTW is explained in Appendix A.2.

2.1.6 Temporal Abstraction

An alternative dimensionality reduction technique that is applicable to time series is

temporal abstraction. Temporal abstractions can be based on value based or trend

based information [63], producing a high level qualitative representation [64]. Overall

the idea is to reduce the information available down to behaviors over intervals and
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use inference to supplement the missing information. One of the key features to make

the work possible is the description of the data with a zero-point time stamp, which

may in reality may not be a real world value of zero. Meaning the zero point may be

an age or time [65].

For each variable or mode there are two parts to the representation; the interval

and the value. The interval is the start and end time points for the region that

will be assigned values, for example [b1, e1] being the first interval. To create the

segmentation intervals, one method is sliding windows. Sliding windows starts with

smaller windows intervals and increases the width until an error is reached [64]. Time

intervals can also be predefined and then merged when the abstraction of adjacent

regions are the same [65]. In predefined interval systems it is possible for regions

without observations to occur, in those cases interpolation or use of a persistence

function based on surrounding information can be used [65].

The value takes on an assignment from an alphabet relative to what is being repre-

sented. In the case of trend abstraction decreasing (D), steady (S), and increasing

(I) are used [64]. Similarly for value based abstraction using percentile based lab

values can be used to assign values such as high (H) or low (L), with as many classes

as desired [64]. Overall the state, gradient, and rate can be used to describe the

abstraction value [65]. For each variable the set of observations becomes simplified

to < v1[b1, e1], ..., vn[bn, en] >, when there are n intervals [64].
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The most common usage of temporal abstraction is through combining with Allen’s

Temporal Relations [65]. This is how to describe relationships between the intervals;

such as before, during or after. For example a case may be that the patient exhibits

increasing hemoglobin while the weight is stable in an temporal abstraction with

Allen’s temporal relations used.

Pattern matching is a common application which also makes use of temporal ab-

straction. This would then take the pattern of interval behaviors and relationships

to match their patterns with known patterns symbolic of outcomes [64]. Patterns

play a large role with this representation approach, with the consideration of mining

minimal predictive temporal patterns, this is analogous to feature selection [63] and

necessary to avoid undesirable classification results.

2.2 Common Data Sets

One of the things that sets the work being approached apart from much of the litera-

ture is the use of multi-modal, nonuniform, time-limited time series data. In many of

the referenced papers, the data sets come from the University of California reposito-

ries hosted at University of California Riverside (UCR) [52] or University of California

Irvine (UCI) [66].
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The UCR data sets are all time series sets, however they are all uniform in length

and observed at regular observational rates with no missing observations. In addition

the UCR set objective is classification. One other difference with these sets is that

preprocessing or z-normalization has already been done [52]. One last difference to

emphasize is that these sets are all single mode. As on August 2016, there were 85

different types of single mode time series data sets within this archive.

The UCI repository has a much more vast set of information. In the closest sets

to the work being done, the sampling is performed at a known frequency making

traditional interpolation a practical solution. There is no set which was found in

those repositories that approaches the degree of complexity of the data set being

used in this dissertation.
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2.3 Classification

One of the fundamental areas of machine learning is the process of classification [67],

the objective of predicting a qualitative output [68]. Some examples where classifi-

cation is applicable in the oncology domains includes the determination of prognosis,

forecasting, and population descriptions (such as demographic highlights of regions).

In this section, some machine learning techniques which are applicable to classification

will be presented.

In general, the classification problem is defined as given a sample and a set of labels

(two or more options), assign a label to the sample. For example, a sample, x, contains

n values. The class label of y is one of the options such that y ∈ Y. The classification

problem aims to use the values of x to select y from Y using a classification technique.

Binary classification is where the outcome of classification being one of only two

options in Y. Multi-class classification is when there are more then two possible

class labels which can be selected as the classified outcome, more then two options in

Y. Some methods such as NB are capable of multi-class classification other methods

require combinations of binary classifications.

Two approaches for multi-class classification using binary classifiers are One-versus-

One or One-versus-All, in both the class with the highest accuracy is the label selected.
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One-versus-One approach performs binary classification between two classes at a time

and looks at all the pairwise combinations. When there are k classes, then there will

be a total of k (k − 1) /2 classifier evaluations conducted. In One-versus-All approach

to classification, each class is represented as an individual classifier against the union

of the other classes in a binary classifier approach. This is done for each class, so for

k classes there will be k classifier evaluations run [69, 70].

Some variations of supervised learning classification methods studied in this work

include Näıve Bayes, Bayesian Networks, and Support Vector Machines.

2.3.1 Näıve Bayes

One model which can be used in supervised learning for classification is Näıve Bayes

(NB). A NB model can be represented as a Bayesian Network, where each attribute is

incorporated in the network as a node. In this model, it is assumed that all attributes

are conditionally independent of each other given the class label [51]. The NB network

is configured as the example in Fig. 2.6 with a central node connected to all the other

nodes. The central node is the node of interest, representing what is class variable,

Y . The result of the NB is the assignment of a classification label to Y .

Consider a classification data set, D = {(xk, yk)}, k = 1, . . . , n, consisting of input

samples, x = (x1, x2, . . . , xm), drawn from the variables, X1, X2, . . . , Xm, and a class
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Figure 2.6: Example of a NB network, this one is an example of the network
used in the preliminary work with the oncology prognosis data set.

label, yk ∈ Y. The Bayesian classifier looks to compute the posterior probability,

P (yk | X1, X2, . . . , Xm), for all k values of y and select the class that maximizes this

probability. Using Bayes Rules,

P (yk | X1, X2, . . . , Xm) =
P (X1, X2, . . . , Xm | yk)P (yk)

P (X1, X2, . . . , Xm)
. (2.7)

The NB classifier makes use of the strong assumption of conditional independence

among the variables given the class, resulting in the following modification of the

calculation of the posterior probability,

P (yk | X1, X2, . . . , Xm) =

∏
i P (Xi | yk)P (yk)

P (X1, X2, . . . , Xm)
. (2.8)

The denominator of the fraction is that same for all classes, yk, therefore the proba-

bility is proportional total,

P (yk | X1, X2, . . . , Xm) ∝
∏
i

P (Xi | yk)P (yk). (2.9)
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The training of the NB model involves estimating the probabilities above from the

data set. New data samples can be evaluated using the learned likelihood probabili-

ties. The class is determined as the one with the highest probability resulting from

the evaluation. This calculation can be used to select the best class from Y, where

|Y| = d, calculate,

y = arg max
yi∈{y0...yd−1}

P (Y = yi | X = x). (2.10)

2.3.2 Bayesian Networks

Bayesian Networks (BNs) are one method that is used for classification, relying on

inference to determine the assignment of class. In a BN, the network is represented

through a directed acyclic graph (DAG). The DAG represents the properties of con-

ditional independence between variables [71, 72].

Each node is representing an attribute or variable, that is connected to one or more

other nodes if it has any influence on the probability of that node. The edges on

the DAG connect the nodes as a graphical representation of the influences within the

network. For all BN, the Markov condition holds that is, for each node/variable it is

conditionally independent of all it’s non-decedents given the set of it’s parents [73].

The result of the BN is a graphical representation of probabilistic relationships which
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Figure 2.7: A DAG to visualize a BN.

can be used for inference [73]. Each node has a related conditional probability func-

tion, which describes the probability of each of the values in the domain for the

random variable. The classification of the variable is then made by the Maximum a

Posteriori (MAP) as done with NB, only additional considerations must be made to

account for the additional nodes connected in the network.

The use of BN requires algorithms or domain expertise to learn the network. The

problem of learning the structure of a BN has the designation of NP Hard [71].

An example of a DAG representing a BN is seen in Fig. 2.7. Once the network

structure has been determined then the conditional probability tables for each node

of the network can be estimated from data or domain knowledge.

After the learning occurs and the BN has been fully specified (network structure and

conditional probability tables), then new samples may be evaluated to determine the

label. The label being selected using the same approach as with NB, selecting the

35



label with the highest probability (MAP).

There are many different tools available for the learning and evaluation of BN [74].

In my research, a graphical based tool, GeNIe was used that was developed by the

University of Pittsburgh. GeNIe (Graphical Network Interface) is software pack-

age [75, 76] that learns the parameters of the network through Expectation Max-

imization (EM) within the built-in functions. The test data is evaluated on the

trained network in GeNIe, where the length of survival category with the maximum

probability is selected, then analyzed with the mean and standard deviation across

the folds.
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2.3.3 Support Vector Machines

Pioneered by Vapnik, support vectors have been used for both pattern classification

and regression. Support Vector Regression (SVR) is the approach applicable for

function estimation (explained further in Section 2.4.1). Support Vector Machines

(SVM) is the method utilized with classification [77].

The SVM process begins with a sample of data, S = {(xk, yk)}, k = 1, . . . , l, consisting

of input samples x = (x1, x2, . . . , xm), and a class label y ∈ {−1,+1}. The goal of

the SVM is to find a linear hyperplane to separate to two classes of samples, where

the hyperplane is defined as,

f(x) = sign(w · x + b). (2.11)

The optimal separating hyperplane is selected to maximize the margin ρ between

the two classes of data. In Fig. 2.8, a separating hyperplane is showed with the

margin that it creates between the two classes. The support vectors are data samples

(vectors) which are located on the parallel hyperplanes used to calculate the margin

distance. Specifically, a support vector, xi is when in x at instance i, yi(w ·xi+b) = 1,

with yi being the label for instance i [78].
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Figure 2.8: Two classes (y=+1 and y=-1) which an SVM hyperplane is
placed in a manor that is linearly separable. The support vectors are the
points which are colored and are used to determine the placement of the
hyperplane [3].

Many extensions are available that take this base concept or the SVM problem and

develop it in two different aspects: space transformation and optimization modifica-

tion.

Space transformation is an approach that can be known as the kernel trick [51],

transforming the space which the evaluations are considered from input space to a

higher dimension feature space. The transformation is done using kernels, K(x, xi),

where x is the input vector [78, 79]. Use of the kernel trick allows for non-linearly

separable data in input space, to be separated by the linear hyperplane in the feature

space [78]. When the mapping produces a complete feature space, that space is known

as a Hilbert Space [80].
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The optimization modification is made through the incorporation of additional pa-

rameters. The slack variable, ξ, is used to modify the approach to a soft margin

classifier [78]. The role ξ plays in the optimization is to provide misclassification

penalty component, in conjunction with an explicit cost parameter, C.

The optimization problem accounting for the slack variable, cost variable, and the

kernel trick is now developed with the bounding constraints for the sample instances

(xi, yi) with i ∈ {1, ..., l}, and yi is the label with values {−1, 1}. The slack and cost

variables must both be greater then zero [78, 81, 82],

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi,

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi.

(2.12)

In this equation, φ is the function that allows the mapping to a higher dimensional

space.

Alternative approaches to view the optimization problem lend itself to the ability to

consider different parameters and even make the problem easier to solve [83]. One

method is that of the dual problem formulation is done through Wolfe Principle and
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Karush-Kuhn Tucker principle [82, 83, 84, 85],

h(x) = sgn(< w · x > +b)

= sgn(
l∑

j=1

αjyj < xj · x > +b)

= sgn(
l∑

j=1

αjyj < xj · x > +b).

(2.13)

In this dual representation the α parameter (the Lagrange Multipliers) is not zero

only for the support vectors. This creates a sparse vector when evaluating the SVM.

Additionally variations on SVM can be made, in a semi-supervised learning environ-

ment the ε-loss function is used as an influencing parameter to the optimization to

bound the errors in the margin developed [86]. There is the ν-SVM which incorporates

a ν parameter to assist in the tuning of the parameters [85].

Similar to the SVM classification problem is support vector regression, where value

outcomes are determined. Forecasting of time series is very similar to classification of

an expected future outcome and have used SVMs for evaluation methods [87, 88]. For

multi-class classification, SVMs often use either the One-versus-One or One-versus-All

approaches.
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2.3.3.1 Kernel Functions

The kernel function takes many forms and is used in many applications (such as

gridding). Kernels are used in SVMs to evaluate the data in a higher dimension

without performing explicit mapping. The kernel function is a covariance [89], that

is defined by [83, 87],

K(x, z) = 〈φ(x), φ(z)〉. (2.14)

For kernels to be of a valid form, it is desired that the Mercer conditions are satisfied.

Mercer’s theorem is formally defined as:

Theorem 1 To guarantee that a continuously symmetric function K(u,v) in L2 has

an expansion: K(u,v) =
∑∞

k=1 akzk(u)zk(v) with positive coefficients ak > 0 (i.e.

K(u,v) describes an inner product in some feature space), it is necessary and suf-

ficient that the condition
∫
C

∫
C
K(u,v)g(u)g(v)dudv ≥ 0 be valid for all g ∈ L2(C)

where C is a compact subset of Rn. The expanse property means that for the function

K(u,v) the right hand side converges absolutely and uniformly [82].

To confirm the kernel, K(x, z), satisfies the Mercer condition there are two properties

we look at. First is the commutative property, which the order the mapping of the
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vectors x and z are when the inner product are invariant. The expression,

〈φ (x) · φ (z)〉 = 〈φ (z) · φ (x)〉, (2.15)

demonstrates this property [87].

The second condition to the Mercer conditions is that the kernel needs to be a positive

semi-definite (PSD) type [83]. A PSD association is given to a system in which all

the eigenvalues are non-negative. This implies ∀α, αTQα ≥ 0.

The positive consideration can be expressed as
∫
X×X K(x, z)f(x)f(z)dxdz ≥ 0∀f ∈

L2(X), that the subsets must also be positive [83].

Additionally we look to the satisfaction of Cauchy-Schwarz inequality,

K(x, z) = 〈φ (x) · φ (z)〉2 ≤‖ φ (x) ‖2‖ φ (z) ‖2 . (2.16)

The Cauchy-Schwarz inequality is then simplified to the condition,

K (x, z) = 〈φ (x) · φ (x)〉〈φ (z) · φ (z)〉 = K (x,x)K (z, z) . (2.17)

The satisfaction of Cauchy-Schwarz inequality is analogous to the satisfaction of the
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triangle inequality. This relationship provides a bounding to the results along with a

set of substitutions available.

Figure 2.9: The mapping from input space to feature space, allowing for
a hyperplane to linearly separate the circles and diamonds when separation
was not initially possible in input space.

Following the semi-definite positive matrix and Mercer’s rules, there are many com-

monly used kernel functions for SVMs. Some of these kernels are presented in Ta-

ble 2.1.

Table 2.1
Common kernels used with SVM [5].

Kernel Name Kernel

Linear K (x,y) = xTy + c

Polynomials: For some positive integer d K (x,y) = (1 + 〈x,y〉)d

RBF/Gaussian K (x,y) = exp
(
〈(xy),(xy)〉

(2σ2)

)
Sigmoid K (x,y) = tanh

(
αxTy + c

)
Cauchy K (x,y) = 1

1+
||x−y||2
σ2

Wave K (x,y) = θ
|x−y|sin

‖x−y‖
θ
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With kernels that follow Mercer’s rules, if combined the resulting kernel is still a

Mercer Kernel [90]. Some approaches of developing a new kernel based on combining

two known Mercer Kernels (the positive and semi-definite conditions are met) [83].

For example, kernels K1 and K2 can be used to develop a new kernel K3 in two

ways:

K3(x, z) = K1(x, z) +K2(x, z)

K3(x, z) = K1(x, z)K2(x, z)

(2.18)

One further alternative to combine kernels beyond arithmetic is to use multiple ker-

nels. A single kernel can replaced with a mixture of kernels [91]. In this approach

the inputs x and z of K(x, z) are divided into subsets to correspond to each of the

kernels. Each of the kernels are weighted, ηj, j = 0, ...,m− 1 with m kernels, and

has the constraint of
∑m−1

j=0 ηj.
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2.4 Regression

The problem of regression is a supervised learning technique that aims to develop a

model to map an input x to an output f(x), predicting a quantitative output [68].

The assigned output is a prediction of a continuous quantity or numerical value. Opti-

mization of the fit of the model is done through the minimization of error. Depending

on the complexity of the model, techniques like simulated annealing and genetic al-

gorithms may be used for the optimization process or simple analytical analysis [91].

One example of regression is a linear regression model which takes the form,

f(x) = wx + w0, (2.19)

where x is the input and w is the weight that fits the model, that for a linear model

is the slope. The parameter w0 is the offset or bias parameter to adjust the fit. The

parameters in this case are chosen based on the minimization of the error when fitting

with the training set. One way that the parameters can be selected is through the

maximum likelihood estimation [91].

Other polynomial functions are very common techniques for regression, including

higher order. For example, the quadratic regression approach is one order higher
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then the linear regression approach. It takes the form as follows,

f(x) = wx2 + zx + b. (2.20)

The process of regression can be modified to select coefficients to improve model

performance in an approach known as stepwise regression. Through the process of

determining the coefficients are added and removed from the model with the intention

to improve the fit [92]. The approach trades off forward selection and backward

elimination, until all possible variables are attempted to be added [93]. Stopping

criterion, such as partial sum of squares or t-tests, can be used to stop the process of

adding or deleting more variables. [93, 94]

Regression can be implemented with many approaches beyond polynomials; including

kernel machines, support vector machines, and Gaussian Processes.

2.4.1 Support Vector Regression

Support vector regression (SVR) is a kernel based regression approach. The regression

is a set of linear functions,

f(x, α) = (w,x) + b, (2.21)
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that is aimed at minimizing the loss function ε, and where α is the Lagrange multiplier.

The support vectors are represented through the term x, and during the fit process

variables w and b are determined, such that w corresponds to the weight and b is

the offset or bias. To allow for the spread in values, a slack variable, ξi is used. The

objective is then to minimize the function [79],

Φ(w, ξ∗, ξ) =
1

2
(w ·w) + C

( l∑
i=1

ξ∗i +
l∑

i=1

ξi

)
, (2.22)

when there are l samples. To support this boundary, the slack variable ξi must be

greater then or equal to zero. In the evaluation, the constraint is used to relate the

loss and slack variables to the function [79],

yi − (w · xi)− b ≤ ε+ ξi, i = 1, ..., l. (2.23)

The SVR approach can be extended to allow for the application of kernels which

satisfy Mercer’s condition to be used [79]. Some examples of kernels include linear

and radial basis functions.

2.4.2 Gaussian Processes

Just with standard regression approaches, the aim is for the model to be learned from

a set of inputs with known outcomes. With a Gaussian Process (GP) the inputs are
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treated as a set of random variables (RV) are incorporated with a covariance function

to determine a probabilistic outcome and the regression value [95]. A RV is a variable

whose value is measurable [84].

The GP model is defined through the mean function and covariance function, based on

the collection of RVs that have a joint probability distribution that is both consistent

and Gaussian. In the model, a kernel based covariance function describes the fit

behavior. This approach is based on Bayesian theory, the posterior is computed to

determine the regression outcome [96].

For a set of training data with n samples, D = {(xk, yk)}, k = 1, . . . , n, in which yk

is a value and xk drawn from the variables X1, X2, . . . , Xm, are also known as the

RVs in the GP. The outcomes are then summarized to, Y = (y(x1), y(x2), ...) with a

Gaussian distribution with the probability distribution calculated by [97],

P(Y |C, {xi}) =
1

Z
exp(−1

2
(Y − µ)TC−1(Y − µ)), (2.24)

with µ being the mean vector and C being the covariance matrix. The variable Z is

a latent/hidden variable. By assuming a zero mean, hence µ = 0, this distribution

can be used to predict the outcome, y of an input x with the training set D,

P(y|D,x) =
1√
2πσ

exp(−(y − y∗)2

2σ2
). (2.25)
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Such that,

y∗ = k(x)TC−1
n (y1, ..., yn), (2.26)

is formed that Cn is the covariance matrix trained from the n training samples and,

k(x) = (C(x1,x), ..., C(xn,x)), (2.27)

is the covariance matrix between the sample inputs and the input being evaluated to

determine the regression result. The variance term, σ, incorporates the covariance

function applied to the input,

σ = C(x,x)− k(x)TC−1
n k(x). (2.28)

The covariance function can be switched with a kernel function to add smoothing,

periodicity, or generality to the behavior [97]. This method in general allows for the

merger of the kernel trick with Bayes rule to compute the regression outcome [95].
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2.5 Genetic Algorithms

Genetic Algorithms (GAs) are a common approach to optimization based on the

biological idea of genetic evolution. The approach owes its roots to the work done

by Fraser, Bremermann, Reed, and Holland [98]. The more popular canonical GA

approach used proposed by Holland [98]. The driving operators are selection (aka

survival of the fittest) and recombination [98].

The functional parameters within GAs include the fitness function, population pa-

rameters, and stopping conditions. There can also be bounding constraints. In the

GA, the representation approach in the chromosomes is also a key parameter, some

approaches limiting genetic operator functions that can be used in creating new gen-

erations.

The fitness function is the optimization function used in the selection of the best

chromosome. It can be used via minimization [99] or maximization [100].

The population parameters describe how the population of chromosomes exists and

changes from generation to generation. The chromosome can be represented in many

ways. In general the structure is a string of length l, making it an l-tuple [101].

The l terms are known as genes and each gene is taken from a set of values known as

alleles [102]. The values of the alleles can be encoded in binary, floating point or other
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approaches. In any representation the chromosomes represent the characteristics of

the individual [98].

The parameters for the GA implementation include the maximum size of the popula-

tion and genetic operators. Genetic operators include mutation, crossover, inversion,

dominance modifications, translation, and deletion [101]. Mutation rate describes

the random changes that would occur. An example of mutation is seen in Fig. 2.10.

Mutation changes the values of an individual to introduce new characteristics into

the population [98].

Figure 2.10: Mutation of a chromosome with the 1st, 4th, and 7th bits
mutated.

Crossover can be generated from one of three different approaches: asexual, sexual,

and multi-recombination [98]. The approach of the creation of the new generation

based on crossover in these approaches is varied based on the number of parents used.

In asexual, a single parent is used, while sexual uses two parents, as seen in Fig. 2.11.

The multi-recombination approach uses more then two parents.

Using linear constraints to maintain the monotonic increasing functionality of the

segments requires the crossover and mutation functions to be selected to maintain a

feasible population to maintain those bounds.
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Figure 2.11: Crossover with two parents with the split point in the middle
between the 3rd and 4th bit of the chromosome.

The overall process for a GA is as follows [102]:

Algorithm 1 Genetic Algorithm

1: procedure GA
2: Initialize a population of N individuals
3: Evaluate the fitness of the individuals
4: while stopping conditions not met do
5: Select individuals for reproduction probabilistically based on fitness
6: Generate new individuals with crossover and mutation operators
7: Evaluate the fitness of the new individuals
8: Create next generation

The process continues until some stopping condition is met. Stopping criteria include

an optima being locate or the maximum number of generations have occurred [102].

Genetic algorithms have been used in applications like optimizing the alphabet bound-

ary placement for SAX [18, 54] and segmenting electrocardiogram (ECG) signals [16].

GA extends from the string/vector representation to become the basis of genetic

programming when using tree representation [98]. Resource constrained scheduling

problems have made used of GAs to optimize schedules [89]. The management of
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groundwater resources has also benefited from the use of GAs with considerations

into the pumping of water and the costs [103], so has the design of composite mate-

rials [104].

2.6 Oncology Domain Research

In the domain of oncology prognosis there has been a large amount of research using

machine learning techniques [105] and statistical approaches [106]. Some common

machine learning techniques used are BN [107], SVM [10, 86, 108, 109], artificial

neural networks (ANN) [12, 109, 110], and decision trees (DT) [109, 111]. Com-

monly, statistical approaches are considered with oncology such as Cox Proportional

Hazard [8, 112, 113, 114], Kaplan Meier [113, 115], and logistic regression [112, 114].

With the large amount of research that has been done in the oncology domain there

are surveys [105, 116, 117] which establish machine learning and statistical approaches

and features considered in the prognosis. In one survey [105], ANN, SVM, DT, semi-

supervised learning (SSL), and BN approaches are created with accuracies greater

then 70%. With the work presented it has a large number of limitations. These

limitations include the number of categorical classifications, the patient populations

size (only 4/18 used sets with more then 1000 patients, 6/18 had less then 100 patients

considered with one only using a sample size of 31), and the limited data types, only
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9/18 of the presented papers consider clinical data.

While the approaches in evaluation of oncology vary, so can the types of cancers and

features available. Breast cancer often is the type in many studies [118]. Within the

domain there are different types of data features such as clinical, genomic, images

and demographic. Some studies look at features in different ways. One approach

developed was to average the results of four different classifiers, one for each clinical,

genomic, images and demographic data. These classifiers were implemented with

techniques of ANN, BN, DT, NB, random forest (RF), and SVM [106]. Another

study examined the SEER data set of 162,500 records using demographics and tumor

data to comprise 16 features [109], this was evaluated for a 5 year binary classification

with ANN (65%), SVM (51%) and SSL (71%).

Going beyond binary classification, one of the ways to accomplish multi-class clas-

sification is using an ensemble approach. Such an approach was done in a study of

survival analysis with multiple classes of classification. There were multiple models

developed to classify binary survival of 6 months (87% accurate), 1 year (80% accu-

rate), 2 years (76% accurate), and greater then 2 years with the model being yes or

no to that patient surviving beyond the classification time point [119]. Those models

were based on 400 SVMs with linear kernels that then comprised an ensemble to de-

termine survival. The survival result was an average of the SVM results. Instead of

an ensemble approach a four class classification approach was done with the popular
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Wisconsin Breast Cancer data set and using ANN [12].

With the time series data in oncology there is a probability for missing data or

censored data. The managing of censored data has also been considered [120, 121].

Data can be censored for three reasons: (i) event of interest does not occur during

the observation period of the study, (ii) the individual is lost prior to follow up, or

(iii) the individual withdraws from the study [44].

Another common approach to considering prognosis is score or index based. One

common method is the Nottingham Prognostic Index (NPI) that considers the tumor

characteristics like the histological stage, lymph node stage, and tumor size [122].

Similarly in preparation for palliative care there is the Palliative prognostic index

scale which considers other medical features, such as edema and delirium, that is

used in the assessment of survival time with intervals of less then 3 weeks, between

3 and 6 weeks, and greater then 6 weeks [123]. In these cases a numerical value for a

score is achieved based on the presence (or value) for a feature. In the scored which

consider clinical values, the observations may be considered in real time or through

summary approaches [124].
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Chapter 3

Discrete Prognosis Using Bayesian

Networks, Näıve Bayes and

Support Vector Machines

Discrete, non-binary prognosis is explored using three classification techniques:

Bayesian Networks, Näıve Bayes, and Support Vector Machines. The representa-

tion of the clinical data is considered through discrete interpretation and behavioral

representation.

The Bayesian Network and Näıve Bayes results were presented in part at IEEE’s Elec-

tro/Information Technology Conference 2016 and published in the proceedings [4].
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3.1 Discrete Representation

The overall approach used for the discrete representation analysis is seen in Fig. 3.1.

The baseline representation focused on discrete categorical representation and behav-

ioral descriptors for two different data sets (see Section 3.1.1). For the classifier, four

different approaches were considered to establish baselines for comparison: majority

classifier, Bayesian Network (BN), Näıve Bayes (NB), and Support Vector Machines

(SVM).

Figure 3.1: General process of each experiment.

For the classification approach, the core method which is used as the benchmark is

the majority classifier. The utilization of BNs for classification was conducted as

an expansive baseline with both two sets. The NB and SVM implementation was

explored with one data set.
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3.1.1 Data

Two data set, DS1 and DS2, comprised of nonuniform, multi-modal, time-limited

time series samples were used. These data sets came from a private outpatient clinic

and were provided by EMOL Health of Clawson, MI.

There were two types of observations available in the data sets: clinical and treat-

ments. The observations for clinical data were for Albumin (ALB), Hemoglobin

(HGB), and Weight (WT). Treatments observed included the administration dates

for chemotherapy and two erythropoietins in both of the data sets; additionally DS1

contained observations of blood transfusion treatments.

The duration of data collection varies between patients depending on the number

of visits. Observations are recorded over a maximum duration of two years. The

determination of age at time of death was confirmed with the Social Security Death

Index. For the two data sets used, the data set characteristics are described in

Table 3.1. An example of the nonuniformity in observations of clinical data and

administration of treatments is in Fig. 3.2.
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Figure 3.2: A sample from the data set, the treatments are shown along
with a single difference trend. The vertical lines show administered treat-
ments: solid (cyan) - erythropoietin, dashed (black) - blood transfusion, and
dot-dashed (red) - chemotherapy. The brown line show the one difference
trend (1 Diff). © 2016 IEEE [4].

3.1.2 Data Pre-Processing

The first step in preprocessing is the determination of a reference point for prediction

of length of survival (LOS) for each sample. For any patient, the observations of

each clinical attribute (ALB, HGB, WT) can have different final observation times,

allowing for potential bias in selecting a LOS reference point or extrapolation errors

in representing samples. In Fig 3.3 it shows the selection of the time t, the final

observation over all types that ceases being measured first.
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Table 3.1
Data Set Characteristics.

Properties DS1 DS2
Patients, num. 1311 1922
Weight (WT) obs., num. 10,653 17,317
Albumin (ALB) obs. num. 5,547 9,545
Hemoglobin (HGB) obs., num. 17,481 27,895
Treatments, num. 3,411 3,440a

Age at death (yrs), mean 71.61 71.56
Age (yrs), min/mean/max 21.7 / 71.2 / 98.2 21.7 / 71.0 / 98.2
Obs./patient, min/mean/max 1 / 28.3 / 178 1 / 30.5 / 239
LOS from final obs. (days), mean 139 306
a. No blood transfusion data included.
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Figure 3.3: The solid (black) lines indicated where samples were estimated
with a spacing of 7 days; two reference time points, t and t∗, are marked.
The dotted (yellow) and dot-dashed (brown) lines show two difference trends
(2 Diff). © 2016 IEEE [4].

To calculate the reference time point t∗, it is selected at random from a range about

t for a patient. Two reference points are created to avoid bias, t∗1 and t∗2 are selected

at random from a range about t, with t∗1 ∈ [t− 15, t+ 5] selected from the range of
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15 days further from death to 5 days closer to death and t∗2 ∈ [t− 28, t+ 14]. Only

one reference point, t∗1 or t∗2 is used at a time for a given analysis.

From this data, discrete groupings for DS1 and DS2 follow medical based classifica-

tion. Behavioral considerations of difference trends and splines will also be used (see

Sections 3.1.3.3 and 3.1.3.4).

3.1.2.1 Data Set Reduction

In outpatient settings, the observations are made at nonuniform intervals. In the

extreme, some clinical observations may be completely absent for a patient. The

problem of missing data can be addressed by censoring. Typically, there are three

causes for censoring: (i) an event of interest does not occur before the end of the

study, (ii) an individual is lost to follow up, and (iii) an individual withdraws from

the study [44].

In efforts to manage incomplete, absent or censored data for patients, filtering and

cleaning techniques are used. Some approaches to cleaning the data sets can reduce

the amount of patients by up to 50% [125]. To handle the occurrences of incomplete

observations for patients in our study, two approaches are used. In the first approach,

the input variables representing the patient’s information are set to a specified cate-

gory when there is no observation or realistic value for that observation available. In
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the second approach, the patients who did not have at minimum one value for each

of the clinical observation type were removed from the data set.

3.1.3 Data Representation

For the data sets, with the exception of chemotherapy, the clinical observations were

made as a time series. The erythropoietin and blood transfusion observations are

represented as a event occurrence count, taking the form of a single value which is

then discretized. Several methods of representation of each patient’s information are

considered: numerical (treatments), sampling (see Section 3.1.3.1), and two different

behavioral approaches (difference trends and splines, see Section 3.1.3.2).

All values will be discretized for evaluation. The discrete categories of the clinical ob-

servations are based on the general medical knowledge. Often clinical data has normal

limits that may be dependent on gender; for this analysis, gender is unknown there-

fore, the maximum and minimum values across genders is used in the discretization.

The numeric occurrences (number of treatments) are grouped into four categories.

Patient age is discretized to achieve a uniform distribution across categories. Values

of the boundaries are presented in Table 3.2.

For all input types, there is an invalid category. This discrete category is used when

unrealistic values are found. It is also applied when the sample information does not
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exist; a situation that may occur when there is no data at all or if the data requested

is outside of the window of the patient’s observed history.

Table 3.2
Discrete Input Categories. © 2016 IEEE [4].

Information Type Units Discrete Categories†
Albumin g/dL 0-3.4,3.4-5.4, >5.4
(ALB1, ALB2, ALB3)
Hemoglobin g/dL 0-12, 12-17, 17-100
(HGB1, HGB2, HGB3)
Weight lbs 0-116, 116-157,
(WT1, WT2, WT3) 157-188, 188-471
Chemotherapy Treatment binary value significant
(Chemo) of if chemotherapy

was given to the patient
Blood Transfusion number of 0, 1-4, 5-9, >9
(Tcnt) treatments
Age at time t years <59.4, 59.4-76.6,
(age) 76.6-82.2, >87.2,
Erythropoietin number of 0, 1-4,
(Aranesp and Procrit) treatments 5-9, >10,
(Acnt and Pcnt)
Difference Trend Stable (< ± 0.1 g/dl, 2 lbs),
(WTtr1, WTtr2, Increasing,
ALBtr1, ALBtr2, Decreasing
HGBtr1, HGBtr2)
Splines <-0.5*st.dev.,
(WTstr1, WTstr2, -0.5*st.dev. - 0.5*st.dev.,
ALBstr1, ALBstr2, >0.5*st.dev.,
HGBstr1, HGBstr2)
Length of Survival days 0-21, 21-56,
(LOS) 56-168, >168

†All variables have classification categories for unrealistic
and lack of observations.
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3.1.3.1 Sampling Methods

Sampling occurs either from taking a value which exists or interpolating to find a

value. Interpolation is used to extract all samples to create an uniform approach

regardless of the presence of a sample or not at that specific time point. The first

sample is taken at t∗, with successive samples taken at an interval of either 7 or 14

days. In Fig 3.3 three samples are shown with vertical lines at 7 day intervals.

3.1.3.2 Behavior Representations

The data of a patient is observed over time. As the data is time series, regardless of

the nonuniform nature, there is an ability to describe behaviors of the data either over

the entire series of specified sub-series. Two behavioral considerations are extracted

from the data, difference trends and splines.

3.1.3.3 Difference Trends

Using the time point t∗ as the first time point, the second time point is back 90 days.

With these two time points the values at those times are estimated and then the
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difference is determined.

trend = Vt∗ − Vt∗−90. (3.1)

From this value the classification of the behavior is defined as stable, increasing, or

decreasing. The stable range specification is <0.1±g/dl for HGB and ALB, then <2

lbs for WT. This can be visualized on Fig 3.2. The threshold used to discretize the

difference trend are estimated from the data set to result in an approximately uniform

distribution of samples across the three behaviors.

A second variation considered is two behavioral trends, using the midpoint of the

single trend (back 45 days from t∗). A two difference trend example is shown in

Fig. 3.4. The trend is calculated for each segment. The trend descriptions follow a

similar logic to work above for stable, increasing, and decreasing in each of the two

sub-series [126].

3.1.3.4 Splines

Splines are used to describe the behavior of the observations. A two-piece second

order spline is used to fit the entire observation period for ALB, HGB, and WT

observations for a patient (unlike the difference trend which has a recent specified

period of considerations); see Fig. 3.5. The splines’ slope coefficient is used as the

input to predict LOS.
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Figure 3.4: Two difference trends with the knot points shown. The first
trend is the brown dot-dash line from t∗ back 45 days and the second trend
segment is the yellow dotted line for t∗ − 45 days to t∗ − 90 days.

3.1.3.5 Summary of Data Representations

There are multiple ways discussed to represent the patient observations: clinical data

samples, difference trends, splines. Different combinations of representations will be

considered in the evaluation, and the options available are summarized in Table 3.2.

For example, the number of clinical data samples considered varies from zero to three.

The number of difference trends included in the evaluation is zero to two. The spline

information is either included or not.
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Figure 3.5: Example of the fitting of splines for a sample with the nonuni-
form, multi-modal, time-limited time series property, the orange and green
lines illustrate the two-piece splines.

3.2 Experimental Design

For any particular data set, DS1 or DS2, and its representation approach, then four

classification methods were considered for predicting LOS: the majority classifier,

Bayesian networks, Näıve Bayes, and SVMs. The data was split to training and test

sets with a ten-fold cross validation approach. A t-test was utilized to confirm there

is a statistical difference for LOS prediction, producing a p-value. When the p-value

is less then 0.05 the difference can be seen as statistically significant.
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3.2.1 Majority Classifier

A majority classifier was used as the baseline in this evaluation. The first component

of this approach is the determination of the number of patients in the training set

that have the specified length of survival (LOS) class, yi where yi ∈ Y, this is done

for all classes. The majority class i is selected to be the class yi with the largest

proportion of the training data. This class label yi is then used as the predicted LOS

for the test set.

3.2.2 Bayesian Network Development

The network structure for BN initially includes all data representations available in

the analysis, shown in Fig. 3.6. Depending on what combination of representations

(number of occurrences, samples, differences, and splines) that are being considered

the network structure is modified to fit those variables. The change in the repre-

sentations considered is used for testing the impact on the LOS prediction. For all

networks not involving the full combination of representations, any variables excluded

require removing the associated nodes and all incident edges in the network, then re-

connecting the broken paths. An example of a network that does not involve the

direct clinical observations through sampling or spline behavior is Fig. 3.7, that also
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Figure 3.6: Full Network. © 2016 IEEE [4].

happens to be the configuration with the best accuracy observed during evaluations.

Within each fold of the cross-validation, the parameters of the network are learned

through Expectation Maximization (EM) within the built-in functions of the GeNIe

software package [75, 76]. The test data is evaluated on the trained network in GeNIe,

where the LOS category with the maximum probability is selected, then analyzed with

the mean and standard deviation across the folds.
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Figure 3.7: Network configuration with best accuracy.

Figure 3.8: Network configuration with worst accuracy.

3.2.3 NB and SVM Classifiers

Näıve Bayes, as discussed in 2.3.1, and SVMs, discussed in 2.3.3, were modeled and

evaluated in Matlab. There are methods which exist for the parameter selection such
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as nested cross validation, particle swarm optimization [127] or sequential minimiza-

tion optimization [128]. The approach chosen is to utilize a nested cross validation to

select the parameters. For the parameter selection of the SVM RBF Kernel, five differ-

ent options were selected for σ and four for C based on literature [129, 130, 131, 132].

The selected parameters for RBF to consider are σ = {0.001, 0.01, 0.1, 1, 2} and

C = {0.1, 1, 10, 100}. For the linear kernel, the same cost parameters are consid-

ered.

3.3 Results

The results are presented for the two data sets for the BN, DS1 and DS2, with

conclusions and comparisons to follow. NB and SVM were evaluated with only DS1.

Since a doctor’s prediction of LOS is not available for this study, a majority classifier

was used as the baseline; that is, the LOS category that had the most patients in the

training set was selected as the predicted LOS for all patients in the test set.

3.3.1 DS1 Results from Evaluation with Bayesian Networks

Initially, the results on DS1 focused on a representation with one difference trend

and the spline information included; the clinical data samples spacing considered was
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7 or 14 days with the number of clinical data samples going from 0 to 3 and both

time reference points examined, t∗1 and t∗2. The results are seen in Table 3.3, which

shows that the BN prediction of LOS outpaces the majority classifier in all cases

(p-values <0.05). When comparing the performance between the predictions using

t∗1 and t∗2 there is no statistical difference (p-values of 0.36-0.64), but t∗2 results in

higher accuracies in all cases. Therefore, t∗2 will be the LOS reference point method

presented in further examinations. Also, when samples are included the accuracy is

reduced, but beyond the first sample, the number of samples included does not show

any effect on the accuracy.

When examining the effect of the number of clinical data samples to include, there

is no difference in the accuracy between 1, 2, or 3 samples (all of the pairwise com-

parison have a p-value of 1.000). The difference between having 0 or 1 clinical data

samples included in the evaluation is ≈ 5% greater for no samples. This difference is

statistically significant (p-value of 0.002).

In Table 3.4, the LOS prediction results with the inclusion (or not) of spline and

Diffs variables are compared for t∗1 and t∗2 respectively. In general, the conclusion

drawn from these results are similar (with p-values >0.2), and that the inclusion of

clinical data samples has a negative impact on the prediction results. The inclusion

of any trend or spline information improves the accuracy of LOS prediction over the

majority classifier. When examining the inclusion of spline information, for both t∗1
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Table 3.3
DS1 LOS Prediction Accuracy (Acc.) using Bayesian Networks

with 1 Diffs and spline information included.

Num of Spacing Acc. (%) - p-value
Samples (days) t∗1 p-value‡ t∗2 p-value‡

0 7 35.7±3.2 <0.001 37.1±2.3 <0.001
1 7 31.4±3.9 0.012 32.1±4.5 0.045
2 7 31.4±3.9 0.012 32.1±4.5 0.045
3 7 31.4±3.9 0.012 32.1±4.5 0.045
0 14 35.7±3.3 <0.001 37.1±2.3 <0.001
1 14 31.4±3.9 0.012 32.1±4.5 0.045
2 14 31.4±3.9 0.012 32.1±4.5 0.045
3 14 31.4±3.9 0.012 32.1±4.5 0.045

‡Comparison with the majority classifier produced the p-value.

Table 3.4
DS1 LOS Prediction Accuracy (Acc.) using Bayesian

Networks†.

Num of Num of Acc. (%) Acc. (%)
Samples Diffs Spline p-value‡ No Spline p-value‡

0 0 33.9±4.4 <0.001 Maj. Class —-
0 1 35.7±3.0 <0.001 35.7±3.3 <0.001
0 2 35.5±5.9 0.0019 35.5±5.9 0.0019
1 0 34.2±4.2 <0.001 34.8±3.3 <0.001
1 1 29.7±2.1 0.003 31.4±3.9 0.005
1 2 32.3±4.6 0.007 32.3±4.6 0.007

0 0 36.3±3.7 <0.001 Maj. Class —-
0 1 37.1±2.3 <0.001 37.1±2.3 <0.001
0 2 33.5±1.7 <0.001 33.5±1.7 <0.001
1 0 34.6±1.6 <0.001 33.9±3.3 <0.001
1 1 32.1±4.5 0.045 32.1±4.5 0.045
1 2 32.6±3.0 0.002 32.7±3.0 0.002

† Reference point t∗1 results are presented above the triple line and t∗2 below.
‡Comparison with the majority classifier produced the p-value.

and t∗2, with the case when there are no clinical observations included, there is no

difference observed. The remaining combinations have a slight difference in accuracy,

but they are not statistically significant in most cases, the few cases of difference are
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Table 3.5
DS1 LOS Prediction Accuracy (Acc.) using Bayesian Networks

Cases of statistical differences.

DS t∗ Constants Condition Varied p-value
1 1 1 Sample no Spline 0 vs 1 Diffs 0.005
1 2 0 Sample, 1 vs 2 Diffs <0.001

Spline and no Spline
2 1 1 Sample, no Spline 0 vs 1 Sample 0.047
2 1 0 Sample, no Spline 0 vs 2 Diffs 0.013
2 1 1 Sample, Spline 0 vs 1 Diffs 0.024
2 1 1 Sample, Spline 0 vs 2 Diffs 0.049
2 1 1 Sample, no Spline 0 vs 2 Diffs <0.001

presenting in Table 3.5. Comparing the possible combinations of factors in the BN

there were only three cases which had differences that could be considered statistically

different. When there is one sample on t∗1 between the no trend and 1 trend (p-value

0.005), the case between 1 and 2 trends with splines (p-value 0.07), then between the

1 or 2 trends independent of spline presence with no samples for t∗2 (p-value <0.001).

While the influence of difference trends over the majority has been shown, the impact

of the different number of trends is less significant. Comparing the accuracies between

the 0, 1, and 2 difference trends, the accuracy is within 4%. For the case of no

samples, the highest accuracy was observed with one difference trend. The result is

statistically significant over the model with 2 difference trends (p-value <0.001). The

results comparing 0 and 2 difference trends is also significant (p-value 0.013). The

higher accuracy of one difference trend compared to none, is not significant (p-value

0.517).
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Table 3.6
DS1 LOS Performance Analysis using Bayesian Networks†.

Model Overall Longer Shorter
Accuracy (%) Prediction(%) Prediction(%)

Spline, 1 Diffs 35.70 27.38 36.92
Spline Only 33.87 28.14 37.99
1 Diffs Only 35.70 27.38 36.92

Spline,1 Diffs 37.07 27.15 35.77
Spline Only 36.31 30.21 33.48
1 Diffs Only 37.07 27.15 35.77

†Above the triple line is based on reference point t∗1 and below on t∗2.

Overall, the highest accuracy is when there is no clinical data samples, a 1 Diffs and

no spline for both t∗1 and t∗2, with accuracies of 35.7±3.3 and 37.1±2.3 respectively

and both with p-value <0.001 compared to majority classifier.

In Table 3.6, the percentage of patients whose LOS is classified correctly, predicting

a longer LOS than the actual, and predicting a shorter LOS are shown for three

models. These models are the cases where there is only the splines and 1 Diffs, the

splines only and then the 1 Diffs only; no clinical data samples were considered in

these models. For the incorrect classifications, they tend to be pessimistic, predicting

a shorter LOS. Also, the predictions are typically only off by one category, e.g. a

sample with a LOS of 21-56 days, would be incorrectly classified as less than 21 days.

In an objective view, if an error is to be made the family of a terminal patient would

typically prefer the longer survival.
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3.3.2 Reduced DS1 Evaluation with Bayesian Networks

There is a known bias in the evaluation of the data sets due to missing observations

occurring for some patients. Filtering of the data removes patients who do not have at

least one observation of each type of clinical measurements (ALB, HGB, and WT). For

example, a patient who has never had their weight recorded would be removed from

consideration. When these patients were removed in DS1, the 10-fold cross validation

test sets dropped from 131 to 63 patients, a the population saw a reduction of 52%

(48% of the population is retained, 639 patients).

The reduce set has folds created as done for the full DS1, however the distribution of

patients into folds are different to maintain uniform behaviors between folds (instead

of to the larger set). For the reduced set, the majority classification has an accuracy

of 30.8±0.7. Overall, the results are often on par with the majority classifier. In

terms of the behavior, or identification of which data representations lead to accurate

LOS predictions, the results are similar to the non-reduced data set. For example,

clinical data samples does not improving the accuracy, inclusion of spline information

does not affect the performance, and the predicted outcome maintains the tendency

for shorter LOS when not correct. A change from the full data set is that having

one difference trend does not improve performance compared to no difference trends

included. Using the reduced set, the best model had an accuracy of 32.7±3.7 which is
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not significantly better than the majority classifier (p-value 0.174). The performance

of the BN models on the reduced data sets is overall lower compared to the full data

set. This is not an unexpected result, in part due to smaller patient population sizes

greatly affecting the BN learning algorithms, specifically the conditional probability

table (CPT) estimates.

Bias is an expected factor when dealing with data sets which contain incomplete and

missing records for patients. In order to see the impact of these situations, patients

who do not contain at least one observation of each type of clinical measurements

(ALB, HGB, and WT) are filtered. For example, a patient who has never had their

WT recorded would be removed from consideration. When these patients were re-

moved in DS1, the 10-fold cross validation test sets dropped from 131 to 63 patients,

a the population saw a reduction of 52% (48% of the population is retained, 639

patients). Reduction of population does effect the EM learning, which leads towards

lower accuracies.

Overall, the results are often on par with the majority classifier for the filtered set. In

terms of the behavior, or identification of which data representations lead to accurate

LOS predictions, the results are similar to the non-reduced data set. For example,

clinical data samples does not improving the accuracy, inclusion of spline information

does not affect the performance, and the predicted outcome maintains the tendency

for shorter LOS when not correct. A change from the full data set is that having 1
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Diffs does not improve performance compared to no Diffs included. The performance

of the BN models on the reduced data sets is overall lower compared to the full data

set. This is not an unexpected result, in part due to smaller patient population sizes

greatly affecting the BN learning algorithms, specifically the CPT estimates.

3.3.3 DS2 Evaluation with Bayesian Networks

The second data set, DS2, is analyzed to confirm or validate the behaviors seen in

DS1. Once again, the majority classifier is used as a baseline; for this data set the

majority classifier has an accuracy of 43.7±0.2 for t∗1 and t∗2. Note, this value is much

larger than that of DS1.

The trend behaviors were examined just as was done with DS1. The accuracies in

Table 3.7, show the best performance occurring when the network includes only the

spline data (47.0±1.5 - t∗1 and 47.9±1.8 - t∗2). The inclusion and increasing number

of Diffs decreases the prediction accuracy for both t∗1 and t∗2.

The lowest performing network is the same as in DS1, when the network contains 2

Diffs; this behavior is independent of the inclusion of splines and clinical data samples.

For t∗1 and t∗2, beyond the comparison with the majority classifier there are few cases

when compared that have statistical difference. The cases are presenting in Table 3.5

78



Table 3.7
DS2 LOS Prediction Accuracy (Acc.) using Bayesian

Networks†.

Num of Num of Acc. (%) Acc. (%)
Samples Diffs Spline p-value‡ No Spline p-value‡

0 0 47.0±1.5 <0.001 Maj. Class —-
0 1 46.0±2.1 0.006 46.0±2.1 0.006
0 2 43.9±2.3 0.739 43.9±2.3 0.739
1 0 43.6±4.2 0.984 47.5± 3.5 0.007
1 1 41.8±3.7 0.123 41.8±3.7 0.123
1 2 39.8±3.3 0.004 39.8±3.3 0.004

0 0 47.9±1.8 <0.001 Maj. Class —-
0 1 45.6±1.7 0.007 45.6±1.7 0.007
0 2 44.3±1.6 0.266 44.3±1.6 0.266
1 0 45.6±2.8 0.062 44.9±1.0 0.007
1 1 43.1±2.9 0.562 43.1±2.9 0.562
1 2 39.7±3.1 0.003 39.7±3.1 0.003

†The LOS reference point t∗1 is above the triple line and t∗2 is below.
‡Comparison with the majority classifier produced the p-value.

for t∗1, t∗2 has statistical differences observed for all of the combinations with p-values

<0.025, except for when there is 1 sample between 0 and 1 Diffs.

For t∗1 beyond comparison with the majority classifier, the only occurrences of sta-

tistical difference when comparing models results in comparison are with one sample

no difference trend (p-value 0.047), zero samples and 0 vs 2 difference trends (p-

value 0.013), for 1 sample there are statistical differences for 0 vs 1 difference and a

spline (p-value 0.024), 0 vs 2 trend with spline (p-value 0.049), and most significantly

different between 0 and 2 trends with no spline (<0.001).

The statistical differences between combinations on t∗2 are p-values <0.018 for com-

binations of 0 samples comparing different trend inclusion, for both cases of splines
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consideration. With one sample considered all combinations excluding 0 versus 1

difference trends with a spline has p-values <0.025.

Prognostic tendencies were looked at on the same three conditions that were done on

DS1. These models are the cases where the BN contains with the splines and one dif-

ference trend included, only the splines, and then 1 Diffs only; no clinical data samples

were considered in these models. The higher overall accuracies reduces the potential

for longer and shorter LOS predictions. In Table 3.8, the models are presented for

their prediction distribution. The likely outcome when the prognosis is incorrect is a

shorter LOS (consistent with DS1); this is supported by the shorter category being the

incorrect outcome more then twice as frequent as the longer prediction. This is not

unexpected due to LOS distribution having so many patients with LOS of longer then

168 days. The short prediction is consistent with the DS1 behavior, which suggest

the bias from the data set distribution is not the only influence on this tendency.

Table 3.8
DS2 LOS Performance Analysis using Bayesian Networks†.

Model Overall Longer Shorter
Accuracy (%) Predicted(%) Predicted(%)

Spline,1 Diffs 46.04 16.03 37.93
Spline Only 46.99 11.36 41.65
1 Diffs Only 46.04 16.03 37.93

Spline, 1 Diffs 45.63 17.23 37.14
Spline Only 47.93 9.90 42.17
1 Diffs Only 45.63 17.23 37.14

†Above the triple line is based on reference point t∗1 and below on t∗2.
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3.3.4 Evaluation with Näıve Bayes

Utilization of the established representation used with the BNs was considered with

NB. The general trends of performance remained the same as with the BN and are

shown in Table 3.9 for the NB evaluation.

Table 3.9
DS1 LOS Prediction Accuracy (Acc.) using Näıve Bayes†.

Num of Num of Acc. (%) Acc. (%)

Samples Diffs Spline p-value‡ No Spline p-value‡

0 0 28.7±3.7 0.610 Maj. Class —-

0 1 33.0 ±2.6 <0.001 35.0 ±4.1 0.001

0 2 32.4 ±4.6 0.014 36.2 ±4.5 <0.001

1 0 32.9±3.2 <0.001 34.0±3.6 <0.001

1 1 33.4±2.9 <0.001 36.8±3.8 <0.001

1 2 32.9±3.2 <0.001 34.0 ±3.6 <0.001

0 0 32.0±3.8 0.011 Maj. Class —-

0 1 33.5±5.2 0.015 35.9±5.2 0.002

0 2 32.1±4.6 0.039 32.9±5.2 0.032

1 0 33.0±4.1 0.005 35.3±2.9 <0.001

1 1 37.9±3.8 <0.001 36.4±4.3 <0.001

1 2 31.9±4.0 0.028 34.1±3.1 <0.001

†Reference point t∗1 results are presented above the triple line and t∗2 below.

‡Comparison with the majority classifier produced the p-value.

81



3.3.5 Evaluation with Support Vector Machines

Rounding out the discrete LOS classification approaches, two different kernels were

used with support vector machines (SVMs): linear and RBF. The overall trend of

benefits from including behavioral representation continued as seen with the linear

kernel in Table 3.10 and the RBF in Table 3.11.

Table 3.10
DS1 LOS Prediction Accuracy (Acc.) using SVM- Linear†.

Num of Num of Acc. (%) Acc. (%)

Samples Diffs Spline p-value‡ No Spline p-value‡

0 0 37.4±2.5 <0.001 Maj. Class —-

0 1 37.6±2.7 <0.001 34.4±2.8 <0.001

0 2 39.1±3.3 <0.001 36.00±2.6 <0.001

1 0 37.7±2.7 <0.001 34.25±3.2 <0.001

1 1 39.1±4.3 <0.001 35.47±3.1 <0.001

1 2 38.7±3.0 <0.001 35.77±2.6 <0.001

0 0 35.8±3.0 <0.001 Maj. Class —-

0 1 36.4±4.2 <0.001 33.9±3.1 <0.001

0 2 38.1±3.1 <0.001 35.5±3.3 <0.001

1 0 38.1±3.1 <0.001 34.9±2.1 <0.001

1 1 38.1±3.6 <0.001 35.8±3.1 <0.001

1 2 38.4±3.8 <0.001 36.2±2.0 <0.001

†Reference point t∗1 results are presented above the triple line and t∗2 below.

‡Comparison with the majority classifier produced the p-value.

The impact on the number of samples considered is seen in Table 3.13 for the linear

kernel and Table 3.12 for the RBF.
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Table 3.11
DS1 LOS Prediction Accuracy (Acc.) using SVM- RBF†.

Num of Num of Acc. (%) Acc. (%)

Samples Diffs Spline p-value‡ No Spline p-value‡

0 0 36.2±3.7 <0.001 Maj. Class —-

0 1 33.6±2.5 <0.001 34.1±3.7 <0.001

0 2 34.3±3.1 <0.001 33.9±4.6 <0.001

1 0 34.5±4.1 <0.001 34.6±4.2 <0.001

1 1 32.7±3.3 <0.001 33.3±4.2 <0.001

1 2 33.6±3.5 <0.001 34.1±3.5 <0.001

0 0 35.2±3.2 <0.001 Maj. Class —-

0 1 34.3±3.9 <0.001 35.3±3.1 <0.001

0 2 34.3±2.5 <0.001 35.0±3.3 <0.001

1 0 34.3±1.9 <0.001 33.3±2.2 <0.001

1 1 33.0±1.8 <0.001 34.7±3.0 <0.001

1 2 33.0±1.8 <0.001 34.7±3.0 <0.001

†Reference point t∗1 results are presented above the triple line and t∗2 below.

‡Comparison with the majority classifier produced the p-value.
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Table 3.12
DS1 LOS Prediction Accuracy (Acc.) using SVM with RBF

Kernel†.

# of Diffs Splines # Samples %Acc.
7day 14

1 no 0 34.1±3.7 34.1±3.7
1 no 1 33.3±4.2 34.0±4.1
1 no 2 33.3±4.2 33.3±4.4
1 no 3 34.2±3.8 33.0±4.1
1 yes 0 33.6±2.5 33.6±2.5
1 yes 1 32.7±3.3 32.7±3.3
1 yes 2 33.0±3.3 32.9±3.3
1 yes 3 32.6±2.8 32.7±3.3

1 no 0 35.3±3.1 35.3±3.1
1 no 1 34.7±3.0 35.6±3.8
1 no 2 35.5±3.1 35.4±3.3
1 no 3 35.0±2.8 35.1±3.2
1 yes 0 34.3±3.9 34.3±3.8
1 yes 1 33.0±1.7 33.3±3.8
1 yes 2 33.6±4.0 33.6±4.5
1 yes 3 33.3±4.2 33.4±4.5

†Reference point t∗1 results are presented above the triple line and t∗2 below.
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Table 3.13
DS1 LOS Prediction Accuracy (Acc.) using SVM with Linear

Kernel†.

# of Diffs Splines # Samples Acc. (%)
7 Days 14 Days

1 no 0 34.4±2.8 34.4±2.8
1 no 1 35.5±3.1 35.5±3.0
1 no 2 37.2±2.8 37.8±2.3
1 no 3 37.8±2.6 37.8±2.9
1 yes 0 37.6±2.7 37.6±2.7
1 yes 1 39.1±4.3 39.1±4.3
1 yes 2 38.5±4.2 39.6±3.7
1 yes 3 37.3±4.1 39.7±3.5

1 no 0 33.9±3.1 33.9±3.1
1 no 1 35.8±3.1 35.8±3.1
1 no 2 37.4±4.1 36.9±3.8
1 no 3 37.3±4.1 36.8±3.8
1 yes 0 36.4±4.2 36.4±4.2
1 yes 1 38.1±3.6 38.1±3.6
1 yes 2 37.3±3.2 37.8±4.0
1 yes 3 38.1±3.4 37.5±3.9

†Reference point t∗1 results are presented above the triple line and t∗2 below.
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3.4 Summary

Through the evaluations the establishment of baselines to be considered as bench-

marks to compare with in future work has been conducted. In Table 3.14 the summary

results are presented.

The improvement of accuracy observed with the BN, NB, and SVM compared with

the majority classifier allows for the consideration of more behavioral aspects, this

considers behavioral representation as solution to nonuniform data. With this con-

clusion, other approaches to behavioral representation should be considered this can

take a form closer to the original data as planned with the Piecewise Aggregate

Approximation (PAA) work or look at modeling events with methods like temporal

abstraction [63, 126, 133].

The performance trends were different from the BN with the NB due to the best

performing configurations having clinical samples, this suggests that more consider-

ations be made to incorporating the clinical observations, this supports the decision

to explore PAA.

There is no comparative analysis made to work in the literature due to the uniqueness

of the data set and the focus being on the representation with the impact determined

by the length of survival classification analysis.
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Table 3.14
Summary of important results.

Method Representation Parameters Acc. (%)
Maj. Classifier t∗1, DS1 28.6±0.4
Maj. Classifier t∗2, DS1 27.4±0.2
Maj. Classifier t∗1, DS2 43.7±0.2
Maj. Classifier t∗2, DS2 43.7±0.2

BN t∗1, DS1, No Samples, 1 Diffs† 35.7±3.3
BN t∗2, DS1, No Samples, 1 Diffs† 37.1±2.3
BN t∗1, DS2, 1 Sample, No Diffs, No Splines 47.5±3.5
BN t∗2, DS2, No Samples, No Diffs, Splines 47.9±1.8

NB t∗1, DS1, 7 day, 3 Samples, Diffs, Splines 37.5±3.9
NB t∗1, DS1, 14 day, 3 Samples, 1 Diffs, Splines 38.2±3.3
NB t∗2, DS1, 7 day, 3 Samples, 1 Diffs, Splines 37.9±3.8
NB t∗2, DS1, 14 day, 3 samples, 1 Diffs, Splines 38.2±3.3

SVM-Linear t∗1, DS1, 7day, No Samples, Diffs, Splines 39.1±4.5
SVM-Linear t∗1, DS1, 14 day, 3 Samples, 1 Diffs, Splines 39.7±4.3
SVM-Linear t∗2, DS1, 7 day, 3 Samples, Diffs, Splines 38.7±4.2
SVM-Linear t∗2, DS1, 14 day, 2 Samples, 1 Diffs, Splines 38.8±4.2
SVM-RBF t∗1, DS1, 7 day, 0 Samples, No Diffs, Splines 36.2±4.6
SVM-RBF t∗1, DS1, 14 day, 2 Samples, No Diffs, No Splines 36.5±4.6
SVM-RBF t∗2, DS1, 7 day, 2 Samples, 1 Diffs, No Splines 35.5±4.2
SVM-RBF t∗2, DS1, 14 day, 0 Samples, No Diffs, Splines 35.8±4.5

† For both Spline and No Spline included.
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Chapter 4

Regression Analysis with

Behavioral Representation

The work in this chapter is published in part in Advances in Science, Technology, and

Engineering Systems Journal special edition issue on Recent Advances in Electrical

and Electronics Engineering [32].

The limitations of discrete length of survival (LOS) prognostic classification are in

the finite number of classes representing the different LOS categories. Rather then

be restricted to the classes, the next logical phase is regression analysis to be able

to create a more detailed prognosis of survival. The format of the representation of
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the input variables to the models was maintained from the discrete category explo-

ration with the exception that values were not discretized prior to analysis they were

standardized.

4.1 Methodology of Evaluation Techniques

Regression has numerous techniques available for consideration. The methods selected

for this analysis were Linear Regression (Linear), Quadratic Regression (Quadratic),

Gaussian Process (GP) with a constant basis, and Support Vector Regression (SVR)

using the radial basis function (SVR-RBF) and linear (SVR-lin) kernels.

4.2 Experimental Design

The data was sampled and interpreted as in Section 3.1, but in place of the discretiza-

tion for the clinical samples a zero mean, unit variance standardization was used. The

combination of zero to six samples were considered in the evaluation. The behavioral

representations considered are splines and both one difference trend (1 Diffs) and two

difference trends (2 Diffs). The treatments (blood transfusion, chemotherapy and

erythropoietins) are also considered as inputs.
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Cross validation was used with all methods and nested cross validation for SVR

parameter selection. The cost parameters available for both the linear and the radial

basis function (RBF) kernels were C = {0.1, 1, 10, 50, 100, 500}. The sigma values of

the RBF considered the values σ = {0.1, 1, 2, 5, 10}. For statistical verification, the

t-test was used to produce p-values.

The evaluation of the regression models used two approaches, the absolute and the rel-

ative error. Absolute error is measured in the days, and relative error is a percentage

with 1 being 100%.

The data set will be evaluated on in full and reduced form to see the impact of missing

observations on the performance. The reduction of the data set population will be

done to remove patients with clinical data types that lack observations entirely. This

approach is explained in further detail when it was established in previous work (see

Section 3.1.2.1).

4.3 Results

In the evaluation many different models were evaluated with the 5 different regression

approaches. Starting out the comparison, complete patient population data set was

utilized and compared against the reduced population data set (see Table 4.1 for the

90



complete version and Table 4.2). Additional results from the models not presented

here can be found in Appendix C.

Table 4.1
One sample with t∗2 and 14 day sample spacing and complete

data.

# of Diffs Splines Median Relative Error
SVR-lin SVR-RBF Linear Quadratic GP

0 0 0.737 0.791 1.030 1.025 1.058
0 1 0.729 0.810 0.889 1.013 0.993
1 0 0.737 0.8135 1.022 1.053 1.081
1 1 0.734 0.837 0.896 1.146 0.977
2 0 0.715 0.813 0.980 0.982 1.064
2 1 0.727 0.824 0.888 1.115 1.015

In comparing the benefit of the Diffs and splines, one sample was considered in Ta-

ble 4.2 for each of the regression methods. The complete data set showed relative

errors with the SVR approaches between 72 and 84%, with the quadratic regression

exceeding 100% error. The best preforming regression models noted in Table 4.1

occurred with the one sample, two Diffs and no splines for all regression approaches

except for the Gaussian Process that performed best with one Diffs and splines.

With the outpatient setting, there are patients which lacked observations of some

clinical sample types entirely. This approach used is the same as outlined in Sec-

tion 3.1.2.1. By removing those patients the data set became less sparse since there

was less regions to be filled in with zeros, the results in turn improved.

The same analysis can be done for the reduced data set. The best performance was
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observed with one trend and no splines with the SVR having a linear kernel. The worst

performance was consistently observed with the quadratic regression. The SVR with

the RBF kernel performed the best with no Diffs or splines, followed by the condition

of one trend and independent of splines. The linear regression best performed with

the splines and one or no Diffs. The Gaussian Process best performed with the splines

and no Diffs. In summary, this shows the presence of some temporal representation

in conjunction with a sample to have the best results. It also favors the SVR methods

and linear regression in the evaluation.

Table 4.2
One sample with t∗2 and 14 day sample spacing and reduced data.

# of Diffs Splines Median Relative Error
SVR-lin SVR-RBF Linear Quadratic GP

0 0 0.636 0.819 0.881 0.958 0.874
0 1 0.649 0.844 0.800 1.064 0.870
1 0 0.619 0.834 0.8845 0.9796 0.874
1 1 0.634 0.834 0.803 1.182 0.879
2 0 0.720 0.868 0.866 0.979 0.878
2 1 0.665 0.877 0.818 1.330 0.893

Looking at both the complete (Table 4.1) and reduced data (Table 4.2 set perfor-

mances. The relative error differences between zero samples and more samples shows

a greater fluctuation in the performance. When there are no Diffs or splines there

is up to 1.55% difference in relative error, with the best case having 2 samples. The

performance overall is improved with some samples and Diffs and splines. The best

being with no Diffs, with the splines and zero or one samples. These results are seen

in Appendix C. The only difference observed was with the reduced set the error was
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Table 4.3
Median Relative Error for t∗2 for data representations of 1
Diffs, splines, and various number of clinical samples from

reduced data set with 14 day sample spacing.

Median Relative Error
Samples SVR-lin SVR-RBF Linear Quadratic GP
0 0.658 0.778 0.838 1.011 0.860
1 0.634 0.834 0.800 1.182 0.879
2 0.631 0.828 0.830 1.257 0.928
3 0.631 0.880 0.811 1.425 0.933
4 0.655 0.817 0.834 1.686 0.900
5 0.630 0.794 0.850 2.303 0.923

lower, which is a desirable result, so the results presented in the chapter will be for

the reduced data set.

With the reduced data set, the benefit of the amount of samples used is looked at

in Table 4.3. The best performance occurred with zero or one sample with one Diffs

and splines included in the model. In the reduced data set cases (all combinations

of Diffs and splines) evaluated with the linear regression there is less than five days

difference in the median error between no samples and five samples. The numerical

difference in performance as the number of samples increased decreased in some of

the methods, but the only case which exhibited a statistical significant performance

shift was quadratic with a p-value of 0.05 from 1 to 3 samples and smaller after that.

The behavior of the regression does vary in performance based on the inclusion of the

behavioral representation approaches not just the number of samples included. This

is seen in Fig. 4.1 with the best performing evaluation technique (SVR with linear
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Figure 4.1: SVR linear with reduced data of t∗1 relative error in the different
evaluation approaches as a function of the number of samples.

kernel) along with the reiteration of the trend that the median relative error increases

with the number of samples included in the evaluation. It is important to note the

y-axis here, with the inclusion of the behavioral representation, the median relative

error is improved, for example splines and 2 Diffs in the worst combination of samples

included performs better then the best of no splines and 1 Diffs.

4.4 Summary

The best performance in this approach is consistent with the observations in the

discrete LOS implementation that the performance is improved with the inclusion of

behavioral representation while additional samples is not necessarily beneficial, the

p-values were greater than 0.1 in most cases. The best models are seen in Table 4.4 all
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of which are done with the reduced data set, supporting the reduction in sparseness

in the data. One exception is in quadratic, the model with no splines and no Diffs

showed a statistically significant improvement to the model with 2 Diffs and splines

with a p-value of 0.014.

There is no comparative analysis made to work in the literature due to the uniqueness

of the data set and the focus being on the representation with the impact determined

by the length of survival regression analysis.

Table 4.4
Best performing regression models using reduced data†.

Evaluation Features Median Absolute Median Relative
Method Included Error (Days) Error
Linear Reg. 3 Samples, 7 day, 51.19 0.765

2 Diffs, Splines
Quad Reg. 1 Sample 14 day, 53.05 0.800

No Diffs, No Splines
GP 0 Samples, 52.81 0.822

2 Diffs, Splines
SVR-Linear 1 Sample, 7 day, 32.48 0.629

2 Diffs, Splines
SVR-RBF 0 Samples, 31.48 0.640

2 Diffs, Splines

Linear Reg. 1 Sample, 14 day, 50.27 0.800
No Diffs, Splines

Quad Reg. 0 Samples, 56.05 0.889
No Diffs, Splines

GP 1 Sample, 7 Day, 53.37 0.852
No Diffs, Splines

SVR-Linear 1 Sample, 31.35 0.619
1 Diffs, No Splines

SVR- RBF 0 Samples, 41.60 0.752
1 Diffs, Splines

†Above the triple line is t∗1 and below is t∗2.
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Chapter 5

Piecewise Aggregate

Approximation Fit

The dimensionality reduction method of piecewise aggregate approximation (PAA)

is used to represent the time series modes as the input for regression approach of

LOS determination. The background was introduced in Chapter 2.1.4. In the PAA

approach, the considerations to the multi-modal and nonuniform nature will be ad-

dressed. Multiple ways of describing the fit were deliberated with methods taking

into account the error in each segment and with respect to the number of samples in

each segment.

The analysis of the performance of the standard PAA was then implemented with a
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10-fold cross validation approach. The width of the segments for the time series were

allowed to be determined for each time series as independent parameter; meaning

ALB, HGB, and WT durations were allowed to have independent control of the

segment width as if they were single mode observations, like PAA is intended. The

starting point of t∗ was still used for LOS consistency.

Portage, a high performance computing cluster at Michigan Technological University,

was used in obtaining results presented in this chapter.

5.1 PAA Literature Review

In the literature, PAA has been used extensively with similarity searches, clustering,

indexing, and queries [15, 17, 31]. The descriptions on fit behaviors have come in to

play with the comparison of a series in queries; these searches are of similar length

or when different, the approaches of time warping can be used [17]. Alternatively,

truncation or zero-padding can be used [31]. There is nothing addressing the fit of

the representation though, especially for non-uniform series.

The extensions of data adaptive methods like SAX [134] consider fit focusing on the

similarity and queries based methods, not how well the data is being represented to

be used in additional analysis.
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5.2 Base Adaption of PAA

In expanding the representation, the first phase is to implement a version of PAA as

close as possible to the standard form. To implement PAA with the data set used in

this research there are several considerations that need to be made and adaptions as

a result. To adapt PAA the following issues must be considered:

1. Multiple modes per sample

2. Non-uniform number of observations

3. Non-uniform distribution of the observations

4. Between samples the number of observations vary

Traditionally, PAA takes the time series X =< x1, ..., xN > and then creates a new

time series to represent it with reduced dimensionality of size n. In this approach

each segment is uniform. The creation of each new segment, x̄i takes the form [31]:

x̄i =
n

N

N
n
i∑

j=N
n

(i−1)+1

xj, (5.1)

where i is the ith segment in the new series being created and j is the index for

the observations in the original time series X with the starting point from where the

previous segment ended.
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To address issue 1 relating to the data set, each of the modes will be treated inde-

pendently in creating the reduced dimensionality representation. As approached in

[31], when doing similarity searches of different lengths padding sequences of shorter

lengths with zeros is an accepted practice, as such this will be used as a starting

point. The zero padding is visualized in Fig. 5.1. It is expected that this is not opti-

mal due to the complexity of the nonuniform durations of observations. For the data

set there is a maximum of two years of observations, so to adapt PAA to non-uniform

lengths I will consider a uniform time of the maximum duration of the full two years

of observation. Since the setting is non-uniform in the observational frequency as

presented in issue 3 the duration of time between the first and last observation for

each sample will be considered. Future extensions to consider the different durations

of the observations for the different patients and their respective clinical observations

could include using the mean duration of observation.

5.3 Experimental Design

As traditional PAA uses uniform segment sizes, this implementation will consider 4

different quantities of segment windows considered: 4, 8, 12, and 24. The duration

of the segment window is two years divided by the maximum number of windows

considered. For example, 12 segment windows has a duration of 60 days per window.

Standardization will be applied as seen in Fig. 5.2. From this base number of window
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segments, the number of windows included will be varied. For example, if there were

four windows, there would be four models evaluated, one with only the most recent

window, one with half the possible windows, one with three of the four windows and

finally with all four windows included. The best number of windows was the window

combination that performed the best.

Initial evaluation of PAA was done with the complete patient data set with the excep-

tion of one patient who was removed due to large errors in their clinical observations.

The data was also standardized.

The regression will be done with linear and quadratic models along with Gaussian

Processes having constant basis and a SVR with a linear kernel. A 10 fold cross

validation approach will be used, with nested cross validation used to select the cost

parameter for the linear kernel with options of C = {0.1, 1, 10, 50, 100, 500}.

The metrics for evaluation are absolute and relative error looked at from both the

mean and median perspectives. The t-test was used to compare against other methods

for statistical significance.
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Figure 5.1: The regions of the ALB circled demonstrates zero padding,
that the value zero is assigned to the region since no observations exist.

5.4 Results

In the linear regression model, Table 5.1, the best models with t∗1 were consistently

occurring with only one segment included, in fact many of the models which performed

the best had only 1 or 2 window segments included with only a few exceptions.

Of the models evaluated, the quadratic regression had the highest error. In Table 5.2,

the error occurring extends beyond the numerical behavior to the standard deviation

occurring with the absolute error. These values are higher then the other methods.

With only one exception, the quadratic regression does perform best with only one
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Figure 5.2: PAA applied to the clinical data from Figure 5.1 that has been
standardized first. Standardization allows for a the multiple types of clinical
data to become comparable in comparing fit error.

Table 5.1
PAA evaluated with linear regression using t∗1 above the triple

line and t∗2 below.

Base # of # Best Absolute Median Relative
Windows Windows Error (Days) Error
4 1 73.11±84.3 0.798
8 1 73.00±84.5 0.792
12 1 72.75±84.2 0.785
24 1 72.31±84.0 0.787

4 2 73.42±84.8 0.900
8 6 74.19±84.4 0.853
12 5 72.97±85.1 0.844
24 1 72.39±84.2 0.868

window considered.

The GP evaluation also had a similar level of error to the linear regression evaluation
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Table 5.2
PAA evaluated with quadratic regression using t∗1 above the

triple line and t∗2 below.

Base # of # Best Absolute Median Relative
Windows Windows Error (Days) Error
4 1 76.09±86.3 0.839
8 1 77.30±87.1 0.896
12 1 76.75±86.0 0.841
24 2 79.19±86.1 0.887

4 1 76.87±87.8 0.941
8 1 76.99±89.1 0.931
12 1 76.35±88.3 0.916
24 1 76.95±85.5 0.934

approach, see Table 5.3, but was not as high and did not have as much variance as

the quadratic repression.

Table 5.3
PAA evaluated with Gaussian Process regression using t∗1 above

the triple line and t∗2 below.

Base # of # Best Absolute Median Relative
Windows Windows Error Error
4 1 73.64±84.2 0.843
8 1 73.68±84.1 0.847
12 1 73.30±83.8 0.845
24 2 73.13±83.6 0.836

4 2 73.68±84.8 0.937
8 1 73.32±84.4 0.908
12 2 73.28±84.1 0.902
24 2 73.02±83.9 0.894

The last of the methods considered was the SVR with the linear kernel, which resulted

in lower median relative error and absolute error but higher standard deviations as

seen in Table 5.4. The number of windows included out of the number available

continued to be a small fraction.
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Table 5.4
PAA evaluated with SVR with a linear kernel using t∗1 above

the triple line and t∗2 below.

Base # of # Best Absolute Median Relative
Windows Windows Error Error
4 3 64.85±98.3 0.656
8 1 64.59±98.5 0.659
12 1 64.13±98.3 0.648
24 4 63.99±98.0 0.639

4 2 64.47±99.4 0.651
8 1 64.18±99.5 0.644
12 5 64.19±98.8 0.657
24 2 64.23±98.6 0.667
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From the number of windows included to get the best performance in the analysis,

the sparseness of the matrices and the fit of the PAA was considered. In Fig. 5.3, it is

clear that when there is a base of 24 windows, the fraction of the inputs that contain

non-zero information is higher than with less windows considered. The 18th window

the fraction of input information falls to 50% for both t∗1 and t∗2.
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Figure 5.3: The sparseness of the PAA data representation through the
fraction of non-zero inputs for the patients with a base of 24 window segments
as a function of the number of windows included in the analysis.
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5.4.1 Reduced Data Set

As previously applied with the BN evaluation approach, data set reduction was con-

sidered (see Section 3.1.2.1). The sparseness factor was observed, and it was deter-

mined relevant to apply reduction to this approach. The methodology which was

previously established removed all patients which were missing one or more of the

clinical observations. This same reduction approach will be used as a pre-processing

step to reduce the sparseness of the PAA.

After reducing the data the attention the number of windows considered was looked

at again. The number of window segments included out of the possible available

does has an effect on performance. In Fig. 5.4, the linear regression, GP, and SVR

evaluation methodologies were considered through their median relative errors against

the number of windows considered in the evaluation model. With the blue plot

representing the GP, there is stability observed, however the linear and SVR exhibit

upward trends that as more windows are added into the model the error is increasing.

The results of the evaluations compared with the best regression models using the

clinical samples, difference trends and splines are shown in Table 5.5. In this com-

parison, the PAA method was not numerically an improvement over the previous

approach. While the values are not better, there is not a statistical difference for
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Figure 5.4: The median relative error versus the number of windows for
GP (circle marker), linear regression (square marker), and SVR (diamond
marker) evaluation methods.

most window segment considerations. The p-values reach as high as 0.66 and as low

as 0.12 when the GP evaluation compares the best regression against the possible

representations for the window inclusions. The SVR with linear kernel was a more

diverse case with some windows of p-values <0.001 and others as high as 0.97.
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Table 5.5
Best performing regression models using reduced data set†.

Evaluation Method Regression Features
Included

Median Relative Error

Regression PAA
Linear Regression 3 Samples, 7 day, 2 Diffs,

Splines
0.765 0.785

Quad Regression 1 Sample 14 day, No
Diffs, No Splines

0.800 0.839

Gaussian Proc. 0 Samples, 2 Diffs,
Splines

0.822 0.836

SVR- Linear 1 Sample, 7 day, 2 Diffs,
Splines

0.629 0.639

Linear Regression 1 Sample, 14 day, No
Diffs, Splines

0.800 0.844

Quad Regression 0 Samples, No Diffs,
Splines

0.889 0.916

Gaussian Proc. 1 Sample, 7 Day, No
Diffs, Splines

0.852 0.894

SVR- Linear 1 Sample, 1 Diffs, No
Splines

0.619 0.644

†Above the triple line is t∗1 and blow is t∗2.
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Figure 5.5: Median relative error versus the amount of non-zero inputs to
the model for 1-24 windows.

One of the relationships with this representation and the evaluation performance is the

sparseness, which is interpreted through what fraction of the input segments are non-

zero. This relationship is visualized in the Fig. 5.5. With the relations between the

fraction non-zero and the performance, the linear (Fig. 5.5(a)) and SVR (Fig. 5.5(b))

display the clearest correlations that as the fraction of non-zero inputs increases,

meaning more of the inputs contain values, the median relative error decreases in a

trend approaching a linear behavior.
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Box Plot of Median Relative Error for SVR for PAA

Figure 5.6: Boxplot of the median relative error for the SVR evaluation
with 1-24 windows.

The box plots for the evaluations are representative of how the median relative error

for each fold is distributed, shown in Figs. 5.6 - 5.8. This is an important performance

factor since there is a large distribution in error occurring. One of the primary char-

acteristics seen with the GP in Fig. 5.8 is the stability that occurs starting around the

12th window that the data is not changing any further when more of the segments are

considered do not contain much more clinical information to effect the performance.

The other methods are not as stable, they in turn displays the broader impact from

the higher level of sparseness occurring in the representation with the higher window

count.
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Figure 5.7: Boxplot of the median relative error for the linear regression
evaluation with 1-24 windows.
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Figure 5.8: Boxplot of the median relative error for the GP regression
evaluation with 1-24 windows.
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One of the issues encountered was the high error in the quadratic regression. This

was occurring due to rank deficit during the evaluation process, that there wasn’t

sufficient differential in the values to create a fit appropriate. Part of the reason

for this behavior is explained with the fraction non-zero input. After the amount

of information that is not zero drops below about 65% it becomes unable to fit the

data and handle all the zeros. One of the solutions looked at was stepwise quadratic

regression, which drops terms of the quadratic function during the fit if they are

unable to be determined rather then letting the rank deficit take over the model.

This approach did help some in the 4 and 8 segment versions, in the 12 segment

version it took a month to evaluate and after the inclusion of the 8th window the

performance began to deteriorate again. Even in the best cases it did not approach

the performance of the SVR and with the amount of time to evaluate, this is an

infeasible evaluation method.

5.5 Summary

There are two key take aways: impact the expansion of data adaptive segmentation

methodology. The first is the high degree of sparseness with the 24 window versions,

this warrants no need for more then 12 windows to be considered. The other consid-

eration is the high variability and substantially worse performance of the quadratic

regression compared to the other methodologies. Overall the idea of more data does
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not mean better performance reappears as it did in previous chapters, this is sup-

ported with Table 5.6, that only a few of the windows available need to be included

to obtain the best possible results.

Table 5.6
Best Performing Models. All the best models were with t∗1.

Method Num of Win Absolute Median Relative
/Base Wins Error Error

Linear 1/12 72.75±84.2 0.7854
Quadratic 1/4 76.09±86.3 0.8388
GP 2/24 79.19±86.1 0.8355
SVR 4/24 63.99±98.0 0.6388

While the results of the PAA were not an improvement upon the regression, there

is not a statistical difference, with the exception of the quadratic regression case.

This method has the benefit of dimensionality reduction simpler then the clinical

sample extraction, difference trends and splines used with the previous regression

methodology.

There is no comparative analysis made to work in the literature due to the uniqueness

of the data set and the focus being on the representation with the impact determined

by the length of survival regression analysis. Literature focus with this representation

approach is on similarity search and indexing, which is not comparable.
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Chapter 6

Piecewise Aggregate

Approximation Segmentation

The adaptation of piecewise aggregate approximation (PAA) to the data using the

fit is the challenge that is approached based on the fit parameter developed. This

is unique based on the previous data adaptive modifications of PAA being focused

on the magnitude of the data post segmentation. Consideration of segmentation

approaches will also be established but face difficulty in the nonuniform multi-modal

nature of the data set being used.

Portage, a high performance computing cluster at Michigan Technological University,

was used in obtaining results presented in this chapter.
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6.1 Data Adaptive PAA

To extend PAA, adapting to the data is the logical approach. In the literature this has

been approached through the modification of the breakpoints of symbolic aggregate

approximation (SAX) using differential evolution and genetic algorithms [18, 54].

Another approach has been to adapt the representation to contain more information,

for example instead of just the SAX symbolic assignment three values: min, max and

aggregate values can be used [14].

The adaptive piecewise constant approximation (APCA) at first appearance seems

to give the same result of an adaptive PAA. This approach depends on the time se-

ries undergoing the Haar Discrete Wavelet Transform to get the coefficients for the

segment boundaries [135]. This is not something that is challenged when applied to

non-uniform time series just as other transforms encounter like the DFT. It also does

not natively have the ability to manage multiple time series of information when con-

sidering the segment boundary placements. The solution to the distribution problem

that was presented was to use minimum bounding rectangles to represent regions of

data using rectangle feature points rather then all the points in the segment [135].
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6.2 Segmentation of Time Series

Other considerations can be made for window segmentation approaches that are done

to time series since that is a similar problem.

To start segmentation is defined as the problem given a time series T produce the

best representation with K segments that each of the segments does not exceed the

maximum error specified and neither does the combined error across all the segments.

Traditionally done with one of three approaches: top down, bottom up or sliding

window [136]. It can also be done online as the data is collected or offline (or in a

batch format with all the data collected) [137].

If the problem of segmentation has known segmentation results, the Beeferman seg-

mentation metric is what would be used to describe the accuracy of the segment

placement [138]. This metric is based on the error between the placement of the

observation in the segmented series and where it should be placed based on the true

segmentation. If the segmentation is not known, least squares is a common error

metric used [137]. Segmentation also suffers from the problem of loosing information

about behavioral changes, that it is possible for the behaviors (such as if the slope

is increasing or decreasing) to change multiple times in a single segment depending

on the placement [139]. This issue lead to the development of a clustering based
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constraint approach that limits the amount of behavior changes in in a segment [140].

An evolutionary approach using genetic algorithms allows for the chromosomes to be

comprised of the segment endpoints to recognize the significant points, recognizing

that significant points are lost by using uniform segment widths [141]. This approach

has also makes use of a distance metric that is slightly modified to consider the dis-

tance between significant points via their amplitudes and temporal distances in the

fitness function. With the lack of homogeneity across data makes segmentation diffi-

cult, another approach that is possible is to represent the chromosomes as a floating

point value [16] and combine this with a rule based system to aim for homogeneous

behavior within segments.

Segmentation can also be augmented with information to tell how much data was

in an region prior to dimensionality reduction being applied. One case was when

applying APCA to describe how much data was in each segment [50].

6.3 Methodology

To create an adaptive segmentation, the basis is optimization, this will be done

through the utilization of genetic algorithms (GA). Different from the traditional

segmentation problem there are three time series that are considered at one time
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instead of one. Also different, instead of a user specified error condition the aim is

to use an optimization function which initially combines the fit error and the per-

formance initially, and later on the fraction of non-zero window segments. With the

optimization a function is necessary, this is based on the fit error. Fit error as shown

in the previous chapter is complicated by the sparseness and nonuniformity of the

time series data.

Given there are three time series for each patient, the segmentation boundaries need

to occur at the same locations across all series. With the varying lengths of the data

observations, zero padding of the shorter series will be done but the lengths of the

shorter series will need to be considered as options for where to place the segments.

Evaluation will be conducted with linear regression, Gaussian Process with a con-

stant basis, and support vector regression (SVR) with a linear regression. The cross

validation, parameters, and standardization for the window segments are the same

approach which were used with the standard PAA (see Chapter 5).

6.3.1 Optimization

A standard formation of the optimization function is comprised of a loss component

and a cost component with a weight parameter λ. The loss feature represents the
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incorporation of the error from the evaluation and the cost is from the fit of the PAA,

f = loss+ λcost. (6.1)

This optimization function process is visualized in Fig. 6.1. For the cost parameter

in the optimization function, the basis is the Euclidean Distance with a consideration

on the number of observations. Part of the reasoning for the decision for the use

of Euclidean Distance is the commonality of the approach. Typical distance metric

used in the comparison of series include the magnitude of the difference or the square

of the difference [142]. Euclidean Distance is an extension on the squared approach

taking the square root following the square.

For the optimization, the function is based on the euclidean distance of the fit of the

PAA for the segments to the points that exist for each of the three time series.

The distance, PAAd, is calculated based on the summation of Euclidean distances in

each segment for each point,

PAAd =

seg∑
i=1

√∑ki
j=1(PAAi − xj)2

ki
, (6.2)

where, seg is the number of segments, and ki is the number of samples in segment

i. This considers the nonuniformity of the samples, since the error distance in each
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segment is then divided by the number of clinical samples in that segment for the

patient. This helps avoid the bias from forming if the PAA is fit to one sample or

fifty.

Since the objective is to determine the LOS performance, the relative error will play

a role in the optimization. To avoid the different durations playing a large role in the

performance, the maximum duration observation of two years will be used and zero

padding will be used to account for when it is beyond the observation period. As it was

observed in the PAA exploration, the zero padding does have a substantial negative

impact on the relative and absolute error when predominate, to avoid this impact the

performance is considered in two components for the loss term: one segment and half

segments considered in the evaluation.

The final evaluation on the test set once the segmentation is determined will consid-

ered all possible segment inclusions from 1 segment through to the maximum number

possible. This is done as a consideration to the duration which should be considered

and the impact of zero padding in the data adaptive approach.

The general approach is seen in Fig. 6.1 and an expanded representation of the fitness

function used in this first approach is seen in Appendix D.2.
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Figure 6.1: Validation methodology for PAA-GA.

6.3.2 GA Parameters

The chromosomes represent the number of segments -1 split points as a vector. With

the number of window segments equal to 4, 8, and 12. The 24 window version was
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not done in this experiment due to the performance observed in the standard PAA

application (see Chapter 5).

The other parameters to consider for the GA include the crossover rate {0.3, 0.5, 0.7},

crossover ratio {1.2, 1.4, 1.6}, and the mutation rate {0.2, 0.4, 0.6}. Population size of

50 with a maximum of 100 generations was used. A minimum window size of 7 days

was used.

6.3.3 Evaluation of Initial Fitness Function Version

During the evaluation with the linear regression there was rank deficit warning oc-

curring, this is to be expected. With the large number of zeros present to start and

the zero padding this occurs with the larger number of segments. There is a known

bias [143] with zero padding that occurs. For this reason the fitness function consid-

ered the single segment evaluation, which did not experience rank deficit warnings in

evaluation.

During the evaluation the computational time for the SVR approach is unfeasible due

to the high volume of nested cross validation within each of the GA individuals and

each iteration.
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6.4 A Practical Optimization Function

While the theory to include the performance is sound, it is not practical. The results

from the GP and linear regression show promise from a factor in the consideration

of the performance still. Based on the non-adaptive approach there is a fairly clear

correlation with the median relative error and the fraction of the non-zero inputs to

the model, which was seen in Fig. 5.5(b) for the SVR to have nearly a linear trend

with a couple outliers where the relative error was lower sooner.

The linear regression leveled off after a while in the observation. The worst performing

of the standard PAA approach also exhibited the behavior that the higher the level

of non-zero input the better performance, be it after a cut off. The GP was the only

approach to not support this logic directly with a more uniform behavior. The best

performing model with the PAA was the least successful in the first fitness function

model that was used due to the computationally intensive nature.

Due to the reasonable computation time to compute the PAA, the fraction non-

zero input will replace the performance factor, creating the method PAA-GA. This

produces the fitness function,

f = d+ λ(nonzero1 + nonzero2). (6.3)
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There are two non-zero factors, one (nonzero1) to incorporate the sparseness for one

of the windows and the other (nonzero2) for half of the available windows. This

was done since the number of windows included in the PAA experiment effected

performance and had varying levels of sparseness.

6.5 Results

The incorporation of the fitness function based on the fraction non-zero representation

is computationally more efficient then the first approach. It was a noticeable obser-

vation of days to weeks less to get results of the SVR computation back compared to

the original fitness function.

To determine the worth of the representation, it is compared against the representa-

tion without the GA to optimize the placement. The comparison was done with the

12 window option since that was the case which observed the best performing case

in the standard PAA. The performance analysis was considered based on the GA pa-

rameters (crossover rate, crossover ratio, and mutation rate) which produced the best

accuracy for the final evaluation. The best example of the compared performance

was observed in comparing with the standard PAA with the Gaussian Process (GP)

evaluation seen in Fig. 6.2. The PAA-GA method consistently had lower error rates

then the standard PAA.

124



0 2 4 6 8 10 12
Number of Windows

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
ed

ia
n 

R
el

at
iv

e 
Er

ro
r

GP Analysis on

 PAA-GA vs PAA Representation Approaches

PAA-GA
PAA

Figure 6.2: Best GP with GA for segment placement compared with the
PAA. Mutation rate of 0.6 with a crossover rate of 0.3 and crossover ratio
of 1.6, note the blue points are the PAA-GA method and the red diamonds
are the standard PAA.

Evaluating with SVR and a linear kernel was not as clean in the performance benefits.

Fig. 6.3 shows that for 2-4 windows included the difference in error between the

methods was not only not substantially different, but the performance was superior

in the standard cases. The GA parameters which produced the best accuracy here

were not the same as that of the GP best performance, this shows that there is a

fit factor and other parameters may lead to full improved performance in all cases.

In the PAA methodology the performance diminished with the inclusion of more

windows, the PAA-GA method mediated this issue with improved performance when

more windows are included.

The linear regression evaluation displayed a unique feature different from the other

two evaluations, that the higher number of windows did not always out perform,
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Figure 6.3: Best SVR with GA for segment placement compared with the
PAA. Mutation rate of 0.2 or 0.4 with a crossover rate of 0.5 and crossover
ratio of 1.2, note the blue points are the PAA-GA method and the red
diamonds are the standard PAA.

that that was the region where performance benefits were of question. In Fig. 6.4

the PAA-GA method improves upon the accuracy except for when there are 9-11

windows, in those cases it is insignificantly close or performs worse.

Overall, the performance is an improvement compared to the previous method. One

of the noted issues previously was outliers and the high variance levels. To charac-

terize this behavior, boxplots were used for the best performing cases. In the linear

regression case, Fig. 6.5, less then half of the window inclusion options encountered

cases which outliers occurred. The median relative error across the folds in all cases

is maintained below 100% error. The third quartile error in come cases does extend

beyond 100% median relative error on the folds, this is in part a product of the LOS

distributions which some are a few days and some are hundreds making the regressive
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Figure 6.4: Best linear regression with GA for segment placement com-
pared with the PAA. Mutation rate of 0.2 with a crossover rate of 0.5 and
crossover ratio of 1.6, note the blue points are the PAA-GA method and the
red diamonds are the standard PAA.

fit more difficult.

The SVR analysis showed the greatest stability with no outliers occurring,

Fig. 6.6.The variation in the cap of the third quartile was fairly unremarkable in

hat it was consistent around 0.75% median relative error.

On the other end of the spectrum, the GP evaluation consistently produced outliers,

Fig. 6.7. With the exception of the first three window versions the maximum on the

range of the median relative errors for the folds stays below 100%.
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Figure 6.5: Boxplot of the ten folds for the Linear regression analysis of
the best GA parameters, median relative error for 1-12 windows. Mutation
rate of 0.2 with a crossover rate of 0.5 and crossover ratio of 1.6
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Figure 6.6: Boxplot of the ten folds for the SVR regression analysis of the
best GA parameters, median relative error for 1-12 windows. Mutation rate
of 0.2 with a crossover rate of 0.5 and crossover ratio of 1.2
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Figure 6.7: Boxplot of the ten folds for the GP regression analysis of the
best GA parameters, median relative error for 1-12 windows. Mutation rate
of 0.6 with a crossover rate of 0.3 and crossover ratio of 1.6
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6.6 Summary

The incorporation of the genetic algorithm has helped improve how the regression

analysis performs overall. Depending on the fitness function the time to determine

the segmentation is computationally infeasible. From the results with the range of

GA parameters considered there was improvement of 20% in some scenarios.

While there was a significant in some cases improvement in the overall performance,

there was not any statistical improvement seen, this was done with a t-test on the

best GA parameter set. For the linear regression, the smallest p-value from the t-

test was 0.326 with one segment window. The SVR method was expected to not see

cases of statistical difference since the curves in Fig. 6.3 were so close, but with 11

windows a p-value of 0.085 was achieved, while not significant, it is promising. GP

had several p-values which were around 0.1, with the most significant being 0.076

with 11 segment windows. The reason for this is supported with the box plots, while

the median relative error is lower there is a broad range of values in both the original

PAA and the PAA-GA which go into creating that value, and that distribution when

comparing them reduces the significance of the improved performance.

Due to the standard PAA representation not being an improvement over the clinical

sample and behavioral representations previously considered, this was also compared
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for t∗1 in Table 6.1. The PAA-GA method has a lower median relative error compared

with the regression results. Statistically due to the distributions there is not a differ-

ence between the regression and the PAA-GA, with p-values ranging from 0.232 to

0.340 when compared using a t-test.

There is no comparative analysis made to work in the literature due to the uniqueness

of the data set and the focus being on the representation with the impact determined

by the length of survival regression analysis. Similar to the constraints of the PAA,

the work using this method focuses on similarity search and indexing, which is not

comparable.

Table 6.1
Best performing regression models using reduced data set

with t∗1.

Evaluation Method Regression Features Median Relative Error
Included

Regression PAA-GA
Linear Regression 3 Samples, 7 day, 0.765 0.589

2 Diffs, Splines
Gaussian Proc. 0 Samples, 0.822 0.697

2 Diffs, Splines
SVR- Linear 1 Sample, 7 day, 0.629 0.576

2 Diffs, Splines
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6.7 Future considerations

With the variations shown from the different GA parameters, the parameter consid-

eration is an option which can be further explored. In this exploration, 27 variations

of parameters were considered but there are other parameters which can be varied

and additional values for the parameters that were considered.

Since there was no significant performance difference between the feedback approach

and the non-zero approach it is possible that another aspect of the data or how its

represented be considered in the fitness function.

One of the biggest issues observed correlated with sparseness, which is mostly the

product of zero padding to account for the variation in the duration. A consideration

of truncation in combination to zero padding to reduce the sparseness may improve

performance.

One of the parameters in the GA was the fit of the PAA to the data, this can be

modified with an alternative approach to Euclidean Distance. Using a minimum

bounding distance approach to describe the fit with respect to the dispersion of the

points in the segment may be a better approach.
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Chapter 7

Conclusion

Work was conducted to determine the length of survival prognosis through various

approaches of analysis and representation. The adaptation of the representation

techniques to fit the constraints of the unique nonuniform, multi-modal, time-limited

time series data was one of the challenges addressed, with more substantial novelty

in the adaption of the piecewise aggregate approximation. The genetic algorithm

adapted piecewise aggregate approximation method is a newly developed approach

to address the specific challenges of the data.

Through the clinical samples and behavioral representation approaches it was estab-

lished that there was a connection between the representation of the data and the

analysis in how performance of length of survival prognosis in both classification and
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regression. Adapting the dimensionality reduction technique piecewise aggregate ap-

proximation to the nonuniform multi-modal data was not an improvement on the

survival performance compared with the clinical samples and behavioral represen-

tation previously used. The explanation was associated with the sparseness of the

representation, which lead to the development of the piecewise aggregate approxima-

tion genetic algorithm method.

With the incorporation of genetic algorithms, there was improvement of up to 20%

over the standard piecewise aggregate approximation approach. This method was

numerically better then the original behavioral and interpolation approach. The one

caveat with the improved survival prognosis is that it is not statistical with the t-test

results, explainable with the large distribution in actual survival times that are trying

to be modeled.

The future of this work is to consider different modifications of the genetic algorithm

parameters. This is important since performance varied with the cross over ratios

and mutation rates. Another factor to consider is the observation duration. In the

work zero padding was done to extend, fill in additional time segments with zeros,

when those times extended beyond the observational time for a given patient. One

consideration might be a truncation to a shorter maximum duration to reduce the

amount of zero padding needed at the expense of some observations.
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This work focused on the application of outpatient oncology, there are other appli-

cations as well which present nonuniform, multi-modal, time-limited time series data

that this work can be expanded to. Social media data mining is an application which

shares many of the same characteristics as the data set which has been used, it has

multiple types of data which is observed at various times, such as when users post

images versus status versus check-ins. In nature there are observation types which oc-

cur irregularly, such as earthquakes and eruptions. In those cases while the sampling

devices are set to record at uniform frequencies, the durations of the observation can

vary extensively and missing data can occur that can cause issues. Strictly time series

or multi-modal sets in other applications are also potentials for future application;

such as stock markets, microgrid control, and image analysis done through time series

representations.

Even with a piecewise approach interpolation for regions where information is missing

is difficult, especially when there is not a uniformly distributed set of samples. The

current approaches to interpolating are based on full signal reconstruction or nearest

neighbor assignment [26, 27, 35, 144]. It is possible that an entire attribute contains no

observations, this eliminates the possibility for interpolation. When data for an entire

observation is missing research has traditionally chosen to filter out those samples and

thus reducing the sample set size [11, 44, 120, 121]. In addition to the sample size

reduction, the behaviors in the other attributes are not considered in the learning

process if the sample would be in a training set (cross validation is used to allow
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all data to train and test). An alternative to removing the sample is to use a class

assignment or assign zero value in place of reduction as a preliminary solution, with

other considerations as exploration extensions. This issue extends to normalization

and symbolic assignments. They face a challenge due to missing data issues and

domain specific population diversity. A traditional zero mean unit variance approach

struggles with the aspect of missing data.

Through this work, the challenge of quantifying the amount of data remains. The

piecewise aggregate approximation with the genetic algorithms mediates the quan-

tification issue through the number of segments that are zero being the controlling

factor.
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Appendix A

Background

This appendix contains extends on the theory of sampling (Appendix A.1) and Fourier

(Appendix A.1.1). Appendix A.2 explains the implementation of dynamic time warp-

ing.

A.1 Sampling Theory

With the spacing between samples described, the Whittaker-Kotel’nikov-Shannon

(WSK) sampling theory is formed. Using WSK with the time series S, the signal Ŝ(t)
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can be determined. The reconstructed signal Ŝ(t) is described by the summation [21],

Ŝ(t) =
∞∑

n=−∞

S
(nπ

Ω

) sin (Ωt− nπ)

Ωt− nπ
= sin (Ωt)

∞∑
n=−∞

S
(nπ

Ω

) (−1)n

Ωt− nπ
. (A.1)

In the WSK Theorem, the ability to acquire uniformly spaced observations from S

is needed. When there is no value obtainable at the desired time point additional

considerations must be made. Then to obtain uniformly spaced observations one

approach is interpolation. Using surrounding observations interpolation estimates

the missing information needed to estimate an observation at that point of time.

There are several interpolation approaches, often requiring a function to describe the

signal to estimate the observation at the desired time point.

An alternative to interpolation is gridding. The gridding kernel properties share the

same principles as those used in Support Vector Machines (see section 2.3.3.1 for more

background on kernels). For a kernel, K, will act as one of the input functions when

performing the convolution. The convolution is defined as,

(K ∗ S)(t) =

∫ t

0

K(τ)S(t− τ)dτ. (A.2)

Within the convolution, the integral contains the product operation of K(τ)S(y),

which is constrained to τ + y = t [145]. Similarly in the discrete form, the kernel

164



takes the role of one of the vectors with the sample considered as the other vector in

the general discrete convolution form,

(K ∗ S)k =
N−1∑
j=0

Kk−jsj. (A.3)

With the convolution’s ability to resolve the non-continuous behavior of a sample,

taking the integral or summation is a task which may still be very complex or difficult.

One of the properties of convolution which simplifies the computation is the utilization

of a transform. The Laplace Transform of a convolution results in the product of the

Laplace Transform of each function individually [45]. This convolution property also

is applicable to the FT. This convolution property then allows for the convolution of

a kernel, K, with a sample, S, to be defined as,

F [(K ∗ S)(t)] = F(K)(Ω)F(S)(Ω). (A.4)

A.1.1 Fourier Representation

The function form of the FT for the function g(t) is,

G (Ω) =

∫ ∞
−∞

g (t) e−iΩtdt. (A.5)
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For the discrete form, the integral is replaced with a summation. The FT is then

known as the Discrete Time Fourier Transform (DTFT) [46].

For a sample, S, the DTFT is determined,

S(Ω) =
N−1∑
n=0

s[n]e−iΩn, (A.6)

and the bound of the summation is tightened to the number of samples that exists

for the sample [46] compared to the infinite endpoints of the integral form.

In the notation for both transforms, the periodic function e−iΩn is used, with i being

the representation of
√
−1. The DTFT is made into the DFT with the evaluation

being made for the frequency, using Ω = 2πk
N

[46]. This substitution results in the

DFT with N samples being [46],

Sk =
N−1∑
n=0

s[n]e−
i2πkn
N . (A.7)

Once the function is periodic, the return of the sample to the time domain is needed

to allow for the results to be used, this is done using the Inverse Fourier Transform

(IFT) or Inverse Discrete Fourier Transform (IDFT).
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The IFT is performed with applying an integral,

S(t) =
1

2π

∫ ∞
−∞

S(Ω)eiΩtdΩ. (A.8)

The IDFT is done with an integral (presented in DFTF form), which is possible since

the DFT transformed the series into a continuous function, [46],

s[n] =
1

2π

∫ 2π

0

S(Ω)eiΩndΩ. (A.9)

A.2 Dynamic Time Warping

To implement dynamic time warping (DTW) [62], the comparison is not direct com-

parison between observations as done with Euclidean Distance, but the corresponding

observations in the sample is being compared to all the observations in the other sam-

ple. In Fig. A.1, two time series S and R are compared by both DTW and Euclidean

Distance metrics with the green lines representing the selected distanced used in the

similarity calculation with the lines extending between the series representing the

distances calculated.

The process for DTW is recursive, comparing two time series at a time. Using the

time series shown in Fig. A.1, sample S is being compared with R. In both series
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Figure A.1: Visual comparison of distance calculations comparing time
series R and series S with DTW and Euclidean distance metrics [2]. © 2012
P. Montalto, M. Aliotta, A. Cannata, C. Cassisi, and A. Pulvirenti. Adapted
from “Advances in Data Mining Knowledge Discovery and Applications”,
under CC by 3.0 license. Available from: doi.org/10.5772/49941.

there are m observations, allowing for i and j to index each series from {0, 1, ...m−1}.

DTW has been explored for similarity detection, recognition of activity [38], and

power disturbances [37]. There is caution with the application of DTW, the triangle

inequality is not satisfied, thus creating needs for lower bounding methodologies when

indexing to prevent complications [56].

Forecasting has utilized dynamic kernels based on DTW with SVM [6]. DTW has

been merged with a piecewise approach, with equal sized frames on American Sign

Language data set from the University of California Irvine (UCI) and cylinder bell
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and funnel set [17]. Other considerations of DTW incorporating in to kernels have

also been done [129, 146].
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Appendix B

Support Vector Machines

Classification Results

The tables contain the full results from the Support Vector Machines (SVM) aspect

of Chapter 3. With Table B.1 presenting for the SVM with the linear kernel and t∗1,

and Table B.2 with t∗2. The radial basis function (RBF) kernel using t∗1 is presented

in Table B.3, and t∗2 in Table B.4.
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Table B.1
Linear kernel SVM with t∗1.

# of Diffs Splines Samples % Accuracy
7 Day 14 Day

0 no 0 34.09±3.1 34.09±3.1
0 yes 0 37.37±2.5 37.37±2.5
1 no 0 34.40±2.8 34.40±2.8
1 yes 0 37.60±2.7 37.60±2.7
2 yes 0 39.13±3.3 39.13±3.3
2 no 0 36.00±2.6 36.54±2.4
0 no 1 34.25±3.2 34.25±3.2
0 yes 1 37.68±2.7 37.68±2.7
1 no 1 35.47±3.2 35.47±3.0
1 yes 1 39.13±4.3 39.13±4.3
2 no 1 35.77±2.6 35.77±2.6
2 yes 1 38.68±3.1 38.68±3.0
0 no 2 35.70±2.1 36.08±2.4
0 yes 2 38.06±2.4 38.67±2.8
1 no 2 37.22±2.8 37.76±2.3
1 yes 2 38.52±4.2 39.59±3.7
2 no 2 36.54±2.4 36.54±2.4
2 yes 2 37.99±3.6 39.29±4.0
0 no 3 36.00±2.3 36.31±2.3
0 yes 3 38.22±2.6 38.98±3.1
1 no 3 37.76±2.6 37.83±2.9
1 yes 3 37.30±4.1 39.66±3.5
2 no 3 37.15±2.7 36.92±2.4
2 yes 3 39.06±4.6 38.37±4.3
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Table B.2
Linear kernel SVM with t∗2.

# of Diffs Splines Samples % Accuracy
7 Day 14 Day

0 no 0 34.09±3.2 34.09±3.2
0 yes 0 36.30±3.2 36.30±3.2
1 no 0 33.94±3.1 33.94±3.1
1 yes 0 36.38±4.2 36.38±4.2
2 yes 0 38.13±3.2 38.13±3.2
2 no 0 35.46±3.3 35.46±3.3
0 no 1 34.86±2.1 34.86±2.1
0 yes 1 38.13±3.2 35.85±2.8
1 no 1 35.77±3.1 35.77±3.1
1 yes 1 38.06±3.6 38.06±3.6
2 no 1 36.23±2.0 36.23±2.0
2 yes 1 38.36±3.8 38.36±3.8
0 no 2 35.69±3.3 36.68±3.3
0 yes 2 36.07±3.5 36.53±4.1
1 no 2 37.37±4.1 36.91±3.8
1 yes 2 37.30±3.2 37.75±4.0
2 no 2 36.83±2.7 37.45±3.3
2 yes 2 38.36±3.4 38.82±3.9
0 no 3 36.68±3.7 36.83±4.2
0 yes 3 35.84±3.9 36.84±2.8
1 no 3 37.30±4.1 36.84±3.8
1 yes 3 38.06±3.4 37.52±3.9
2 no 3 37.37±3.1 36.84±3.7
2 yes 3 38.74±3.9 38.29±3.6
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Table B.3
RBF kernel SVM with t∗1.

# of Diffs Splines Samples % Accuracy
7 Day 14 Day

0 no 0 34.55±3.0 34.55±3.0
0 yes 0 36.23±3.7 36.23±3.7
1 no 0 34.10±3.7 34.10±3.7
1 yes 0 33.56±2.5 33.56±2.5
2 yes 0 34.25±3.1 34.25±3.1
2 no 0 33.87±4.6 33.87±4.6
0 no 1 34.55±4.3 34.55±4.2
0 yes 1 34.48±4.1 34.48±4.1
1 no 1 33.33±4.2 34.02±4.1
1 yes 1 32.72±3.3 32.72±3.3
2 no 1 34.10±3.5 34.10±3.5
2 yes 1 33.64±3.5 33.18±3.3
0 no 2 35.77±3.7 36.53±4.1
0 yes 2 34.17±3.7 34.55±3.7
1 no 2 33.33±4.2 33.25±4.4
1 yes 2 32.95±3.3 32.87±3.3
2 no 2 34.02±3.8 34.10±3.8
2 yes 2 33.64±3.5 33.64±3.5
0 no 3 35.47±4.4 36.23±3.9
0 yes 3 34.40±3.7 34.55±3.9
1 no 3 34.17±3.8 33.02±4.1
1 yes 3 32.57±2.8 32.72±3.3
2 no 3 34.17±3.8 34.10±4.2
2 yes 3 33.64±3.5 33.56±3.4
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Table B.4
RBF kernel SVM with t∗2.

# of Diffs Splines Samples % Accuracy
7 Day 14 Day

0 no 0 34.09±2.7 34.17±3.5
0 yes 0 35.23±3.2 35.84±3.0
1 no 0 35.31±3.1 35.31±3.1
1 yes 0 34.32±3.9 34.32±3.9
2 yes 0 34.32±2.5 34.02±2.6
2 no 0 35.01±3.3 34.86±2.1
0 no 1 33.26±2.2 33.94±2.5
0 yes 1 34.32±1.9 34.17±2.2
1 no 1 34.71±3.0 35.62±3.8
1 yes 1 33.03±1.8 33.26±3.8
2 no 1 34.71±3.0 34.48±2.1
2 yes 1 33.03±1.8 33.18±2.0
0 no 2 33.79±2.3 33.33±1.6
0 yes 2 35.08±1.7 34.71±2.4
1 no 2 35.47±3.1 35.39±3.4
1 yes 2 33.57±4.0 33.56±4.5
2 no 2 34.94±3.2 33.26±2.0
2 yes 2 33.48±2.2 33.56±2.2
0 no 3 34.10±3.4 34.48±2.4
0 yes 3 34.63±2.4 34.55±2.6
1 no 3 35.01±2.8 35.09±3.2
1 yes 3 33.26±4.2 33.41±4.5
2 no 3 35.01±2.8 34.86±2.9
2 yes 3 33.48±2.1 33.48±2.1
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Appendix C

Regression Length of Survival

This appendix contains extended results on the length of survival prognosis using

regression to complement the work presented in Chapter 4. The summary of the

best performing models with the complete data set is presented in Table C.1 and the

tables that follow are full model explorations.

C.1 Reduced Data Set Summary
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Table C.1
Best performing regression models complete set†.

Evaluation Num Features Median Absolute Median Relative
Method Samples Included Error (Days) Error
Linear 1, 7 day No Diffs, 82.14 0.8469

Splines
Quadratic 0 No Diffs, 86.65 0.9070

Splines
GP 1, 14 day No Diffs, 83.48 0.8910

Splines
SVR- Linear 4, 7 day No Diffs, 50.41 0.7132

No Splines
SVR- RBF 2, 7 day No Diffs, 60.86 0.7701

No Splines

Linear 5, 7 day 2 Diffs, 84.38 0.8606
Splines

Quadratic 0 1 Diffs, 91.29 0.9620
Splines

GP 0 No Diffs, 82.63 0.9478
Splines

SVR- Linear 1, 14 day 2 Diffs, 47.41 0.7146
No Splines

SVR- RBF 0 1 Diffs, 43.38 0.7778
Splines

†Above the triple line is t∗1 and blow is t∗2.
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C.2 t∗1

The following tables present the results of the regression evaluations for the complete

DS1 data set using t∗1. The order of the tables is linear regression, quadratic regression,

Gaussian Process regression, SVR with a linear kernel and finally the SVR with the

radial basis kernel for the absolute error. This order is then repeated for the relative

error.
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Table C.2
Linear regression with t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 89.3 118.2±108.9 89.8 117.7±108.9
0 0 2 89.7 118.4±108.8 90.1 118.3±108.7
0 0 3 90.2 118.7±108.7 89.5 118.4±109.1
0 0 4 89.4 118.9±109.0 90.3 118.6±108.9
0 0 5 90.3 118.9±108.9 90.8 118.7±108.8
0 1 0 82.2 114.6±107.9 82.2 114.6±107.9
0 1 1 82.1 114.2±108.1 82.4 114.1±108.1
0 1 2 83.8 114.3±108.1 83.1 114.4±108.0
0 1 3 83.2 114.6±108.0 83.1 114.5±108.1
0 1 4 83.7 114.9±108.0 83.0 114.7±108.0
0 1 5 83.3 114.9±108.0 82.9 114.7±108.0
1 0 0 89.0 117.4±108.5 89.0 117.4±108.5
1 0 1 87.4 116.9±108.4 87.7 116.5±108.4
1 0 2 88.4 117.0±108.5 88.5 116.9±108.4
1 0 3 89.9 117.4±108.5 86.9 117.1±108.7
1 0 4 90.2 117.8±108.6 87.7 117.2±108.5
1 0 5 89.3 117.7±108.6 87.6 117.3±108.4
1 1 0 82.3 114.3±107.7 82.3 114.3±107.7
1 1 1 82.4 114.1±107.8 82.6 114.0±107.8
1 1 2 82.7 114.2±107.8 83.5 114.2±107.8
1 1 3 83.2 114.4±107.9 82.9 114.3±108.0
1 1 4 83.5 114.7±107.8 83.1 114.3±107.9
1 1 5 84.5 114.7±107.8 83.3 114.4±107.9
2 0 0 85.6 116.6±108.8 85.6 116.6±108.8
2 0 1 86.0 116.2±108.7 86.4 116.0±108.7
2 0 2 87.3 116.3±108.8 87.0 116.3±108.7
2 0 3 87.0 116.5±108.9 86.5 116.0±109.1
2 0 4 87.1 116.6±108.9 87.0 115.9±109.0
2 0 5 87.2 116.5±108.9 85.5 116.2±108.8
2 1 0 83.5 114.2±108.2 83.5 114.2±108.2
2 1 1 82.6 114.1±108.3 82.0 114.2±108.2
2 1 2 82.9 114.2±108.4 83.2 114.3±108.3
2 1 3 83.5 114.3±108.4 83.4 114.2±108.4
2 1 4 83.6 114.5±108.3 84.2 114.3±108.3
2 1 5 83.3 114.5±108.3 82.5 114.5±108.3
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Table C.3
Quadratic regression with t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 91.2 117.9±106.5 92.3 117.9±107.1
0 0 2 97.3 119.4±106.3 95.3 119.5±107.1
0 0 3 96.4 120.5±106.6 96.2 120.4±107.0
0 0 4 100.0 122.9±107.8 98.5 122.0±106.2
0 0 5 99.6 125.6±107.4 101.2 125.1±106.8
0 1 0 86.7 125.2±167.4 86.7 125.2±167.4
0 1 1 88.8 127.2±171.1 90.8 128.3±182.2
0 1 2 92.3 126.7±133.6 92.7 133.6±196.5
0 1 3 97.1 130.3±136.9 97.9 130.3±128.4
0 1 4 100.3 142.3±201.6 100.8 141.6±222.9
0 1 5 107.9 162.8±348.8 105.6 150.7±267.4
1 0 0 87.7 117.9±109.8 87.7 117.9±109.8
1 0 1 90.3 118.3±107.7 90.9 118.5±108.3
1 0 2 91.8 119.6±107.9 93.4 121.7±108.8
1 0 3 95.5 122.6±109.5 96.7 124.0±109.4
1 0 4 98.7 126.4±110.9 98.9 126.7±110.0
1 0 5 100.9 132.3±118.2 102.8 130.9±112.4
1 1 0 85.8 130.1±192.9 85.8 130.1±192.9
1 1 1 91.5 128.8±136.7 94.7 131.5±147.2
1 1 2 95.5 141.7±232.4 93.7 141.0±215.4
1 1 3 97.5 142.2±189.2 99.5 151.3±278.0
1 1 4 108.5 171.6±391.8 107.1 151.7±189.1
1 1 5 119.5 181.0±323.3 116.7 201.7±580.3
2 0 0 84.3 116.7±110.2 84.3 116.7±110.2
2 0 1 87.3 118.4±109.1 87.7 118.3±109.3
2 0 2 92.3 121.9±108.7 91.0 121.0±109.4
2 0 3 95.3 124.9±110.6 94.0 124.9±111.0
2 0 4 102.2 132.3±117.9 99.2 130.2±113.7
2 0 5 107.1 140.9±126.3 103.7 135.8±120.6
2 1 0 84.5 135.6±246.5 84.5 135.6±246.5
2 1 1 92.4 140.1±226.9 92.5 140.4±236.9
2 1 2 97.5 152.2±292.8 99.9 138.5±157.9
2 1 3 101.9 153.8±224.8 100.4 152.1±207.6
2 1 4 113.8 171.3±291.4 112.9 169.5±308.3
2 1 5 122.7 190.5±300.3 125.1 181.5±260.0
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Table C.4
Gaussian Process regression with t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 83.5 116.2±106.5 84.3 116.8±107.3
0 0 2 82.6 115.9±106.4 84.8 117.0±107.1
0 0 3 83.8 116.4±106.5 84.9 117.0±106.9
0 0 4 84.5 116.5±106.5 84.6 116.9±107.0
0 0 5 84.6 116.5±106.5 84.8 116.8±107.2
0 1 0 83.9 115.0±107.7 83.9 115.0±107.7
0 1 1 84.0 114.9±108.0 83.5 114.5±108.0
0 1 2 82.1 115.1±107.5 83.9 115.1±107.8
0 1 3 82.5 115.3±107.3 83.5 115.5±107.4
0 1 4 82.6 115.5±107.3 82.8 115.4±107.3
0 1 5 82.4 115.5±107.2 82.5 115.6±107.3
1 0 0 83.4 115.9±108.4 83.6 115.5±108.9
1 0 1 84.4 116.1±108.2 83.9 114.7±108.5
1 0 2 83.4 116.0±108.1 83.8 114.9±108.3
1 0 3 84.6 116.4±107.8 83.4 115.3±108.2
1 0 4 84.5 116.5±107.8 83.5 115.2±108.1
1 0 5 84.6 116.5±107.7 83.3 115.3±108.9
1 1 0 83.5 114.5±107.5 83.5 114.5±107.5
1 1 1 81.6 114.3±107.7 81.8 114.2±107.7
1 1 2 83.3 114.5±107.7 82.9 114.6±107.6
1 1 3 82.8 114.7±107.6 83.4 114.9±107.6
1 1 4 82.5 114.9±107.6 83.4 114.9±107.4
1 1 5 82.6 115.0±107.4 83.3 115.0±107.4
2 0 0 83.6 115.5±108.9 83.4 115.9±108.4
2 0 1 83.2 114.7±108.4 84.9 116.1±108.5
2 0 2 83.9 114.9±108.2 85.3 116.3±108.4
2 0 3 84.0 115.1±108.1 85.5 116.7±108.2
2 0 4 83.9 115.3±108.1 85.0 116.6±108.1
2 0 5 83.8 115.4±108.0 84.4 116.4±108.1
2 1 0 79.1 114.0±108.0 79.1 114.0±108.0
2 1 1 80.6 113.8±108.0 79.7 113.9±108.0
2 1 2 81.2 114.0±107.9 79.7 114.1±107.9
2 1 3 80.9 114.2±107.8 80.9 114.3±107.8
2 1 4 80.6 114.3±107.8 80.9 114.3±107.7
2 1 5 81.0 114.4±107.8 81.6 114.4±107.7
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Table C.5
SVR linear regression with t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 50.2 103.0±135.4 48.1 104.4±141.4
0 0 2 51.2 103.2±135.4 48.0 104.5±141.0
0 0 3 50.6 103.1±135.5 48.0 104.5±141.2
0 0 4 50.4 103.6±136.0 47.6 104.5±141.8
0 0 5 50.1 103.5±136.2 47.8 104.6±142.1
0 1 0 48.0 103.6±136.6 48.0 103.6±136.6
0 1 1 48.9 103.2±136.4 49.1 103.2±136.6
0 1 2 48.8 103.3±136.4 48.3 103.4±136.6
0 1 3 49.0 103.3±136.3 49.3 103.4±136.1
0 1 4 48.3 103.6±137.1 48.8 103.4±137.0
0 1 5 47.6 103.5±137.6 48.2 103.4±137.6
1 0 0 48.5 104.3±139.8 61.6 108.5±129.1
1 0 1 48.1 103.8±139.0 47.3 103.7±139.3
1 0 2 47.9 103.8±139.5 49.3 103.8±138.8
1 0 3 49.4 104.0±138.9 47.4 103.9±139.1
1 0 4 48.9 104.2±139.5 47.8 103.8±139.3
1 0 5 48.1 104.3±140.1 47.1 103.9±139.7
1 1 0 48.9 103.5±135.9 48.8 103.5±135.6
1 1 1 50.2 103.0±135.8 49.5 103.0±135.5
1 1 2 51.1 103.3±135.5 49.8 103.3±135.6
1 1 3 50.7 103.1±135.4 49.1 103.3±135.3
1 1 4 50.7 103.6±135.8 48.9 103.2±135.8
1 1 5 50.2 103.5±136.2 48.7 103.1±136.1
2 0 0 49.5 104.1±137.9 49.5 104.1±137.9
2 0 1 50.5 103.8±137.4 49.5 103.8±137.4
2 0 2 50.1 103.7±137.5 49.3 103.9±137.7
2 0 3 49.5 103.8±137.1 49.5 103.8±137.2
2 0 4 50.1 104.1±137.5 49.2 103.7±137.6
2 0 5 50.3 103.9±138.0 48.5 103.7±137.7
2 1 0 50.6 103.4±135.2 50.6 103.4±135.2
2 1 1 50.8 103.2±135.1 50.5 103.4±135.1
2 1 2 51.5 103.3±135.2 50.5 103.3±135.0
2 1 3 50.6 103.3±135.0 49.9 103.1±135.2
2 1 4 51.6 103.3±135.3 50.7 103.3±135.4
2 1 5 51.0 103.4±135.7 50.0 103.2±135.9
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Table C.6
SVR with RBF kernel regression with t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 59.8 108.3±130.3 58.8 107.9±131.9
0 0 2 60.9 109.0±129.4 61.2 109.2±132.1
0 0 3 62.0 110.5±132.3 61.2 109.8±132.9
0 0 4 61.7 109.7±130.5 60.8 108.8±132.4
0 0 5 58.3 107.8±131.9 58.2 108.0±133.8
0 1 0 59.7 108.7±132.0 75.9 117.0±126.7
0 1 1 62.2 109.0±129.5 61.4 108.8±129.4
0 1 2 63.8 110.5±129.8 63.2 110.3±130.5
0 1 3 64.0 111.0±131.9 63.2 110.7±132.1
0 1 4 63.6 110.1±129.4 62.7 109.1±130.2
0 1 5 61.6 109.1±130.8 61.4 108.9±131.1
1 0 0 54.1 73.5±82.7 59.9 109.7±133.2
1 0 1 61.6 109.5±129.0 61.6 108.5±129.1
1 0 2 62.9 110.6±129.7 64.6 110.6±129.5
1 0 3 66.6 112.0±128.9 65.7 111.4±129.1
1 0 4 65.3 111.4±128.1 64.0 109.8±128.3
1 0 5 62.8 110.8±130.8 62.5 109.8±130.5
1 1 0 50.9 74.0±82.6 63.5 110.0±130.1
1 1 1 62.8 109.5±127.8 62.8 109.1±127.9
1 1 2 64.8 111.1±129.1 66.4 111.8±129.1
1 1 3 66.9 111.6±128.3 66.2 111.7±128.3
1 1 4 66.0 111.0±126.8 65.6 110.2±127.1
1 1 5 63.8 110.6±129.8 63.3 110.3±129.2
2 0 0 65.5 111.4±131.2 81.7 120.6±127.6
2 0 1 65.6 110.1±126.4 64.7 110.1±126.5
2 0 2 68.7 111.4±128.2 65.7 110.7±127.3
2 0 3 67.7 112.8±129.9 67.1 112.6±129.5
2 0 4 63.6 108.6±127.7 64.4 108.9±127.6
2 0 5 69.5 113.7±128.1 68.4 112.8±128.1
2 1 0 66.9 111.5±130.8 82.2 119.5±127.3
2 1 1 66.8 110.2±125.0 66.9 109.7±125.2
2 1 2 69.5 111.3±127.5 66.8 110.5±127.3
2 1 3 65.9 112.0±129.7 66.4 111.7±129.8
2 1 4 64.3 108.7±127.1 65.4 108.8±126.8
2 1 5 69.9 113.8±127.6 69.1 112.8±127.9
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Table C.7
Linear regression with t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 1.01 4.61±12.6 0.99 4.57±12.4
0 0 2 1.00 4.61±12.6 1.01 4.58±12.5
0 0 3 1.01 4.62±12.7 1.01 4.61±12.7
0 0 4 1.01 4.62±12.6 1.01 4.64±12.8
0 0 5 1.01 4.61±12.6 1.02 4.66±13.0
0 1 0 0.88 4.42±11.7 0.88 4.42±11.7
0 1 1 0.85 4.40±11.8 0.85 4.37±11.7
0 1 2 0.87 4.40±11.8 0.86 4.38±11.7
0 1 3 0.86 4.41±11.9 0.86 4.41±11.8
0 1 4 0.88 4.41±11.8 0.89 4.42±11.8
0 1 5 0.87 4.40±11.8 0.87 4.44±12.0
1 0 0 0.97 4.46±11.8 0.97 4.46±11.8
1 0 1 0.95 4.43±11.6 0.97 4.39±11.4
1 0 2 0.97 4.43±11.7 0.98 4.41±11.6
1 0 3 0.99 4.45±11.8 0.98 4.44±11.9
1 0 4 1.01 4.45±11.8 0.95 4.45±11.9
1 0 5 0.99 4.43±11.7 0.97 4.46±12.0
1 1 0 0.88 4.34±11.4 0.88 4.34±11.4
1 1 1 0.86 4.32±11.4 0.86 4.30±11.3
1 1 2 0.88 4.32±11.4 0.89 4.31±11.4
1 1 3 0.87 4.33±11.5 0.86 4.33±11.5
1 1 4 0.87 4.34±11.5 0.86 4.34±11.5
1 1 5 0.88 4.32±11.5 0.86 4.36±11.6
2 0 0 0.97 4.39±11.1 0.97 4.39±11.1
2 0 1 0.97 4.35±11.0 0.97 4.34±11.0
2 0 2 1.00 4.35±11.1 0.95 4.37±11.2
2 0 3 0.99 4.36±11.2 0.91 4.39±11.4
2 0 4 0.99 4.37±11.1 0.92 4.40±11.6
2 0 5 0.95 4.34±11.1 0.94 4.42±11.6
2 1 0 0.87 4.35±11.4 0.87 4.35±11.4
2 1 1 0.86 4.33±11.3 0.87 4.33±11.4
2 1 2 0.87 4.34±11.4 0.86 4.35±11.4
2 1 3 0.88 4.34±11.5 0.85 4.36±11.6
2 1 4 0.87 4.35±11.5 0.86 4.37±11.6
2 1 5 0.87 4.33±11.4 0.86 4.39±11.7
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Table C.8
Quadratic regression with t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 1.00 4.46±11.9 0.93 4.40±11.9
0 0 2 0.95 4.44±11.9 0.99 4.40±11.6
0 0 3 0.98 4.44±11.8 1.00 4.71±13.1
0 0 4 0.98 4.55±11.8 1.04 4.85±13.8
0 0 5 1.05 4.68±12.4 1.09 5.02±14.6
0 1 0 0.91 4.60±12.1 0.91 4.60±12.1
0 1 1 0.96 4.81±13.6 0.97 4.68±12.7
0 1 2 1.00 4.95±14.8 0.99 5.28±17.8
0 1 3 1.02 4.94±13.9 1.01 5.24±15.1
0 1 4 1.10 5.03±12.4 1.09 6.35±25.9
0 1 5 1.24 5.46±14.8 1.18 5.87±18.5
1 0 0 0.94 4.56±12.8 0.94 5.20±17.4
1 0 1 0.98 4.43±11.6 1.03 5.60±19.2
1 0 2 0.97 4.47±11.9 1.06 6.05±22.3
1 0 3 1.01 4.56±11.9 1.09 6.50±24.0
1 0 4 1.06 4.80±12.4 1.17 8.84±44.5
1 0 5 1.08 5.47±17.2 1.41 9.83±48.0
1 1 0 0.94 5.20±17.4 0.94 4.56±12.8
1 1 1 1.00 5.43±17.3 0.94 4.43±11.6
1 1 2 1.06 5.83±20.3 1.02 4.58±11.9
1 1 3 1.08 5.89±19.4 1.07 5.10±15.4
1 1 4 1.19 6.84±25.0 1.06 5.25±15.3
1 1 5 1.40 8.05±31.3 1.13 5.30±14.2
2 0 0 0.91 4.36±11.8 0.91 4.36±11.8
2 0 1 0.92 4.64±13.8 0.94 4.55±13.2
2 0 2 1.07 4.63±12.8 1.05 4.53±12.4
2 0 3 1.09 4.85±14.6 1.12 4.86±13.8
2 0 4 1.24 4.96±13.3 1.17 5.03±13.2
2 0 5 1.26 5.21±13.0 1.23 5.69±16.7
2 1 0 0.94 4.89±16.4 0.94 4.89±16.4
2 1 1 1.08 5.38±19.0 1.06 5.25±18.1
2 1 2 1.10 6.67±31.4 1.11 6.63±31.8
2 1 3 1.28 6.70±29.9 1.21 7.81±40.8
2 1 4 1.30 8.16±39.3 1.32 8.17±41.2
2 1 5 1.46 9.28±42.9 1.40 10.48±56.7
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Table C.9
Gaussian Process with t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 1.02 4.59±12.3 1.01 4.70±12.6
0 0 2 1.01 4.54±12.1 1.02 4.70±12.8
0 0 3 1.02 4.58±12.3 1.01 4.70±12.9
0 0 4 1.00 4.60±12.4 1.01 4.70±12.9
0 0 5 1.00 4.60±12.5 1.01 4.70±12.9
0 1 0 0.91 4.48±11.8 0.91 4.48±11.8
0 1 1 0.91 4.50±12.0 0.89 4.42±11.7
0 1 2 0.95 4.51±12.0 0.92 4.48±11.8
0 1 3 0.95 4.54±12.1 0.94 4.56±12.2
0 1 4 0.96 4.57±12.2 0.95 4.57±12.3
0 1 5 0.96 4.58±12.3 0.96 4.59±12.3
1 0 0 0.99 4.57±12.2 0.93 4.39±11.4
1 0 1 1.01 4.53±11.8 0.92 4.36±11.3
1 0 2 1.01 4.52±11.9 0.93 4.39±11.3
1 0 3 1.04 4.55±12.0 0.95 4.44±11.6
1 0 4 1.04 4.58±12.1 0.95 4.46±11.7
1 0 5 1.03 4.58±12.2 0.95 4.46±11.7
1 1 0 0.93 4.39±11.4 0.99 4.57±12.2
1 1 1 0.90 4.39±11.4 1.00 4.58±12.1
1 1 2 0.94 4.39±11.4 1.00 4.55±11.9
1 1 3 0.96 4.41±11.5 1.04 4.64±12.4
1 1 4 0.99 4.44±11.5 1.03 4.64±12.4
1 1 5 1.00 4.48±11.8 1.03 4.61±12.2
2 0 0 0.99 4.40±11.1 0.99 4.40±11.1
2 0 1 1.01 4.44±11.5 1.01 4.41±11.4
2 0 2 1.02 4.44±11.5 1.00 4.43±11.4
2 0 3 1.02 4.46±11.6 1.01 4.49±11.7
2 0 4 1.03 4.49±11.7 0.99 4.50±11.8
2 0 5 1.02 4.50±11.8 0.98 4.51±11.8
2 1 0 0.89 4.37±11.2 0.89 4.37±11.2
2 1 1 0.90 4.37±11.3 0.92 4.36±11.2
2 1 2 0.92 4.38±11.3 0.92 4.37±11.3
2 1 3 0.92 4.39±11.4 0.92 4.41±11.4
2 1 4 0.94 4.41±11.4 0.92 4.43±11.6
2 1 5 0.93 4.41±11.4 0.93 4.43±11.5
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Table C.10
SVR linear regression with t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.72 2.35±6.25 0.74 2.29±6.4
0 0 2 0.72 2.37±6.30 0.75 2.31±6.3
0 0 3 0.72 2.34±6.20 0.75 2.32±6.6
0 0 4 0.71 2.36±6.35 0.75 2.33±6.6
0 0 5 0.73 2.36±6.30 0.75 2.33±6.6
0 1 0 0.73 2.35±6.29 0.73 2.35±6.3
0 1 1 0.71 2.40±6.68 0.72 2.36±6.5
0 1 2 0.73 2.38±6.59 0.72 2.35±6.4
0 1 3 0.72 2.40±6.60 0.72 2.39±6.6
0 1 4 0.72 2.39±6.64 0.73 2.38±6.6
0 1 5 0.73 2.37±6.63 0.72 2.38±6.7
1 0 0 0.74 2.27±6.12 0.79 3.04±8.2
1 0 1 0.73 2.27±6.06 0.73 2.24±5.9
1 0 2 0.73 2.27±6.15 0.73 2.27±6.0
1 0 3 0.73 2.32±6.35 0.72 2.27±6.1
1 0 4 0.74 2.32±6.49 0.73 2.29±6.2
1 0 5 0.73 2.30±6.32 0.72 2.28±6.2
1 1 0 0.73 2.34±6.21 0.73 2.34±6.2
1 1 1 0.71 2.33±6.20 0.72 2.31±6.1
1 1 2 0.73 2.35±6.24 0.74 2.31±6.0
1 1 3 0.73 2.35±6.29 0.73 2.34±6.2
1 1 4 0.72 2.37±6.38 0.73 2.35±6.2
1 1 5 0.73 2.36±6.31 0.72 2.35±6.3
2 0 0 0.74 2.32±6.08 0.74 2.32±6.1
2 0 1 0.73 2.32±6.10 0.72 2.31±5.9
2 0 2 0.72 2.32±6.09 0.73 2.30±5.9
2 0 3 0.72 2.34±6.17 0.72 2.32±6.0
2 0 4 0.73 2.35±6.26 0.72 2.34±6.2
2 0 5 0.73 2.33±6.17 0.72 2.34±6.3
2 1 0 0.73 2.36±6.23 0.73 2.36±6.2
2 1 1 0.72 2.36±6.17 0.72 2.35±6.1
2 1 2 0.72 2.35±6.15 0.72 2.35±6.1
2 1 3 0.72 2.36±6.18 0.72 2.36±6.1
2 1 4 0.73 2.39±6.36 0.72 2.38±6.3
2 1 5 0.72 2.37±6.25 0.72 2.36±6.3
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Table C.11
SVR with RBF kernel regression with t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.78 2.81±7.7 0.78 2.76±7.5
0 0 2 0.77 3.05±8.2 0.78 3.13±8.9
0 0 3 0.77 3.06±8.0 0.79 3.12±9.3
0 0 4 0.78 3.07±8.1 0.79 3.02±8.7
0 0 5 0.78 2.91±7.9 0.78 2.77±7.0
0 1 0 0.77 3.00±8.0 0.83 4.04±10.9
0 1 1 0.79 2.97±8.1 0.78 2.89±7.5
0 1 2 0.79 3.25±8.6 0.80 3.27±8.9
0 1 3 0.80 3.25±8.6 0.80 3.28±9.4
0 1 4 0.79 3.10±8.1 0.78 3.15±8.9
0 1 5 0.80 3.09±8.3 0.79 3.01±7.9
2 0 0 0.82 3.31±9.0 0.78 3.09±8.7
2 0 1 0.82 3.33±9.2 0.79 3.04±8.2
2 0 2 0.81 3.40±9.0 0.80 3.32±9.0
2 0 3 0.84 3.52±9.6 0.84 3.43±10.3
2 0 4 0.79 3.28±8.8 0.78 3.29±9.5
2 0 5 0.84 3.50±9.0 0.79 3.03±7.6
1 0 0 0.82 3.66±9.3 0.81 3.19±8.8
1 0 1 0.79 3.01±8.1 0.80 3.10±8.2
1 0 2 0.80 3.25±8.7 0.81 3.45±9.4
1 0 3 0.82 3.37±9.3 0.83 3.54±10.7
1 0 4 0.80 3.22±8.4 0.79 3.38±9.8
1 0 5 0.82 3.06±7.7 0.83 3.14±7.9
1 1 0 0.82 3.75±10.3 0.95 4.42±12.2
1 1 1 0.81 3.10±8.3 0.81 3.30±9.0
1 1 2 0.81 3.41±9.2 0.81 3.35±8.8
1 1 3 0.82 3.45±9.3 0.85 3.50±9.8
1 1 4 0.80 3.25±8.3 0.79 3.36±9.4
1 1 5 0.82 3.13±7.9 0.83 3.61±10.5
2 1 0 0.81 3.35±9.1 0.96 4.33±11.5
2 1 1 0.81 3.37±9.3 0.81 3.33±9.1
2 1 2 0.81 3.43±9.0 0.81 3.37±8.9
2 1 3 0.84 3.54±9.7 0.83 3.55±10.2
2 1 4 0.79 3.35±9.1 0.77 3.42±9.8
2 1 5 0.84 3.58±9.2 0.82 3.69±11.0
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C.3 t∗2

The following tables present the results of the regression evaluations for the complete

DS1 data set using t∗2. The order of the tables is linear regression, quadratic regression,

Gaussian Process regression, SVR with a linear kernel and finally the SVR with the

radial basis kernel for the absolute error. This order is then repeated for the relative

error.
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Table C.12
Linear regression with t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 87.8 118.3±109.1 89.5 117.9±109.1
0 0 2 88.5 118.6±109.2 89.4 118.4±109.1
0 0 3 89.2 118.5±109.1 89.0 118.7±109.1
0 0 4 89.7 118.8±109.0 89.9 118.8±109.0
0 0 5 89.5 118.8±109.3 89.7 119.1±108.8
0 1 0 83.2 114.7±108.2 84.6 114.6±108.2
0 1 1 83.1 114.5±108.4 84.8 114.4±108.4
0 1 2 84.0 114.7±108.5 84.7 114.6±108.5
0 1 3 83.8 114.5±108.5 85.9 114.7±108.5
0 1 4 83.3 114.8±108.3 86.3 114.8±108.7
0 1 5 83.7 114.9±108.4 86.1 115.0±108.4
1 0 0 87.8 117.5±108.8 83.2 114.7±108.2
1 0 1 89.2 117.0±108.9 82.2 114.4±108.4
1 0 2 88.6 117.3±108.9 82.8 114.6±108.5
1 0 3 87.6 117.2±108.9 83.3 114.8±108.4
1 0 4 88.2 117.6±108.8 84.4 114.9±108.5
1 0 5 89.5 117.6±108.9 83.4 115.2±108.3
1 1 0 82.5 114.5±108.1 86.6 116.6±108.9
1 1 1 82.7 114.5±108.2 86.9 115.8±108.9
1 1 2 82.0 114.5±108.3 86.6 116.1±109.0
1 1 3 82.8 114.4±108.3 85.1 116.1±109.1
1 1 4 82.4 114.7±108.1 86.5 116.3±109.0
1 1 5 83.6 114.9±108.2 85.3 116.4±108.7
2 0 0 86.6 116.6±108.9 82.5 114.5±108.1
2 0 1 85.8 116.1±108.9 81.9 114.3±108.2
2 0 2 85.8 116.3±109.0 81.7 114.5±108.2
2 0 3 86.6 116.3±108.9 82.7 114.8±108.2
2 0 4 86.1 116.5±108.8 83.0 114.8±108.3
2 0 5 85.8 116.5±108.9 83.3 115.0±108.1
2 1 0 84.6 114.6±108.2 87.8 117.5±108.8
2 1 1 85.4 114.5±108.4 88.2 116.6±108.8
2 1 2 85.8 114.5±108.5 87.1 117.1±108.8
2 1 3 84.0 114.4±108.5 87.9 117.3±108.8
2 1 4 84.2 114.7±108.3 88.8 117.3±108.9
2 1 5 84.4 114.8±108.4 88.6 117.6±108.7
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Table C.13
Quadratic regression with t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 90.5 118.2±107.3 91.4 118.0±107.2
0 0 2 93.2 120.0±108.3 93.3 119.4±107.0
0 0 3 97.5 121.6±108.2 95.0 121.0±107.5
0 0 4 100.1 124.4±110.7 98.1 124.9±111.7
0 0 5 102.2 127.5±113.0 100.0 126.3±110.8
0 1 0 87.3 122.4±120.8 87.3 122.4±120.8
0 1 1 93.3 128.7±153.7 91.8 125.5±130.9
0 1 2 95.0 136.4±200.5 95.9 131.2±147.7
0 1 3 99.5 137.7±172.5 101.6 134.8±161.4
0 1 4 107.5 140.6±154.8 106.4 140.5±163.4
0 1 5 112.3 150.6±174.8 112.4 145.8±151.9
1 0 0 86.0 117.5±110.9 86.0 117.5±110.9
1 0 1 89.7 118.8±108.5 89.4 118.2±108.5
1 0 2 93.1 121.1±110.0 93.6 120.6±109.4
1 0 3 94.1 123.7±112.1 97.3 124.6±110.7
1 0 4 102.1 127.2±113.0 102.1 129.0±118
1 0 5 102.7 133.8±126.0 103.7 133.4±122.5
1 1 0 91.3 126.3±143.0 91.3 126.3±143.0
1 1 1 97.1 128.6±122.1 97.6 131.1±142.3
1 1 2 101.0 141.3±204.9 101.0 139.6±194.3
1 1 3 105.2 139.3±132.0 104.5 143.6±169.0
1 1 4 112.7 146.4±142.2 111.0 159.1±258.3
1 1 5 121.8 186.8±422.2 119.9 175.8±377.8
2 0 0 86.0 117.6±111.6 86.0 117.6±111.6
2 0 1 93.3 128.7±153.7 88.8 118.4±110.7
2 0 2 95.0 136.4±200.5 92.1 122.0±111.9
2 0 3 99.5 137.7±172.5 94.9 125.1±113.4
2 0 4 107.5 140.6±154.8 100.3 133.0±120.1
2 0 5 112.3 150.6±174.8 107.0 139.6±126.6
2 1 0 89.5 137.2±257.5 89.5 137.2±257.5
2 1 1 96.5 137.9±209.4 96.9 138.2±215.7
2 1 2 99.5 150.8±306.6 97.1 137.5±163.5
2 1 3 103.1 147.7±204.2 106.0 147.3±170.5
2 1 4 111.2 153.1±174.4 116.2 171.8±313.6
2 1 5 127.6 205.3±487.5 124.2 197.0±417.0
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Table C.14
Gaussian Process regression with t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 81.62 115.90±107.8 82.54 116.30±108.2
0 0 2 80.88 115.50±107.6 82.35 116.40±107.9
0 0 3 81.24 115.80±107.6 82.34 116.50±107.7
0 0 4 81.75 115.90±107.7 82.12 116.40±107.8
0 0 5 81.88 115.90±107.6 82.59 116.40±107.9
0 1 0 82.63 114.90±108.1 82.63 114.90±108.1
0 1 1 82.37 115.00±108.1 83.86 114.70±108.3
0 1 2 81.79 115.10±108.0 82.16 115.00±108.0
0 1 3 81.90 115.30±107.9 81.83 115.40±107.9
0 1 4 81.68 115.20±107.8 81.68 115.50±107.9
0 1 5 81.04 115.20±107.8 81.95 115.70±108.0
1 0 0 84.61 115.40±109.3 84.61 115.40±109.3
1 0 1 84.71 115.30±108.7 83.78 115.70±108.9
1 0 2 83.43 115.40±108.6 83.49 115.70±108.8
1 0 3 83.22 115.40±108.4 82.60 115.90±108.6
1 0 4 83.56 115.30±108.3 82.70 115.70±108.5
1 0 5 82.19 115.20±108.1 82.54 116.00±108.6
1 1 0 82.73 114.30±108.0 82.73 114.30±108.0
1 1 1 83.10 114.50±108.4 82.25 114.20±108.3
1 1 2 82.62 114.50±108.6 82.43 114.60±108.4
1 1 3 82.92 114.80±108.4 82.76 114.90±108.4
1 1 4 82.11 114.70±108.1 82.40 115.00±108.3
1 1 5 81.31 114.80±108.0 82.87 115.10±108.3
2 0 0 84.01 115.70±109.6 84.01 115.70±109.6
2 0 1 83.37 114.80±109.1 84.25 114.70±109.1
2 0 2 83.76 114.90±108.9 84.17 115.00±108.9
2 0 3 83.58 115.10±108.7 83.38 115.30±108.7
2 0 4 83.31 115.20±108.6 84.12 115.30±108.7
2 0 5 82.80 115.30±108.5 84.37 115.50±108.7
2 1 0 82.65 114.10±108.7 82.65 114.10±108.7
2 1 1 82.48 113.80±108.7 82.56 113.80±108.6
2 1 2 81.87 113.90±108.6 82.05 114.10±108.6
2 1 3 82.16 114.10±108.5 82.25 114.30±108.5
2 1 4 81.52 114.20±108.5 82.21 114.40±108.5
2 1 5 81.42 114.30±108.4 83.05 114.40±108.4
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Table C.15
SVR linear regression with t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 48.1 103.2±138.7 45.1 104.1±143.2
0 0 2 49.4 103.4±137.8 45.8 104.5±143.2
0 0 3 48.9 103.3±136.4 47.0 104.1±141.9
0 0 4 47.2 103.6±138.7 45.6 104.3±143.4
0 0 5 47.7 103.6±138.2 46.3 104.5±143.5
0 1 0 48.1 103.6±139.5 48.4 103.0±137.5
0 1 1 45.8 103.3±140.1 46.2 103.2±139.7
0 1 2 48.2 103.5±138.8 48.5 103.4±139.4
0 1 3 49.2 103.2±137.0 49.9 103.3±137.4
0 1 4 46.7 103.7±139.6 47.2 103.6±139.6
0 1 5 46.6 103.6±139.5 47.2 103.5±139.4
1 0 0 47.2 104.4±142.4 47.2 104.4±142.4
1 0 1 46.7 103.9±141.5 46.1 103.7±141.2
1 0 2 47.9 104.0±141.1 47.5 104.0±141.1
1 0 3 48.9 103.8±139.9 48.7 103.6±139.9
1 0 4 47.5 104.2±141.7 46.4 103.8±141.7
1 0 5 48.1 104.4±141.6 47.8 104.0±141.1
1 1 0 48.4 103.7±138.6 48.4 103.7±138.6
1 1 1 48.1 103.2±138.6 47.1 103.2±138.5
1 1 2 48.9 103.4±137.8 47.9 103.4±138.2
1 1 3 48.9 103.4±136.3 50.2 103.3±136.1
1 1 4 47.5 103.7±138.6 47.7 103.4±138.7
1 1 5 47.7 103.6±138.3 48.5 103.5±138.3
2 0 0 46.2 103.8±140.6 46.9 103.3±138.9
2 0 1 47.5 103.3±140.0 47.4 103.2±139.4
2 0 2 48.1 103.6±139.7 46.8 103.4±139.6
2 0 3 48.9 103.3±137.8 49.1 103.3±137.7
2 0 4 46.3 103.7±140.0 47.3 103.4±139.9
2 0 5 46.4 103.8±139.9 47.7 103.3±139.8
2 1 0 48.4 103.7±138.2 48.4 103.7±138.2
2 1 1 47.9 103.1±138.3 48.5 103.1±138.0
2 1 2 49.1 103.2±137.7 49.2 103.3±137.7
2 1 3 49.9 103.2±136.3 49.8 103.3±136.2
2 1 4 48.1 103.5±138.2 47.3 103.3±138.4
2 1 5 48.7 103.5±137.9 47.6 103.3±138.1
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Table C.16
SVR with RBF kernel regression with t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 58.3 109.2±133.7 57.2 108.5±135.1
0 0 2 62.3 111.3±133.4 61.0 111.1±134.9
0 0 3 52.8 106.6±136.7 52.7 106.5±137.4
0 0 4 62.6 112.2±133.4 59.7 111.4±135.1
0 0 5 61.2 110.8±134.4 60.0 111.0±135.6
0 1 0 59.9 109.7±134.0 62.4 110.5±131.7
0 1 1 61.1 110.2±132.3 60.7 110.1±133.2
0 1 2 65.5 113.2±132.1 64.9 113.2±133.5
0 1 3 55.9 107.7±136.8 57.3 107.5±137.0
0 1 4 64.7 113.1±132.4 65.1 113.3±133.5
0 1 5 64.2 112.0±131.5 64.2 112.1±132.9
1 0 0 61.5 110.7±134.7 61.5 110.7±134.7
1 0 1 62.1 109.6±133.2 61.2 109.1±133.1
1 0 2 65.6 114.4±133.0 64.6 113.0±133.7
1 0 3 55.7 108.0±137.4 55.3 107.7±137.9
1 0 4 64.2 113.0±132.6 64.1 112.5±133.3
1 0 5 63.0 111.7±133.4 63.2 111.9±134.1
1 1 0 64.2 112.1±132.5 43.4 69.7±90.8
1 1 1 63.3 110.6±133.2 62.3 110.2±133.3
1 1 2 66.3 113.8±132.1 66.1 113.2±132.4
1 1 3 56.9 108.0±136.4 56.8 107.8±136.5
1 1 4 66.1 112.8±131.7 65.2 113.0±132.0
1 1 5 64.4 112.6±132.3 64.3 112.8±132.6
2 0 0 64.0 111.5±132.8 64.0 111.5±132.8
2 0 1 63.4 110.8±132.5 63.3 110.8±133.0
2 0 2 65.6 113.2±131.5 66.2 113.4±132.0
2 0 3 57.5 108.1±136.0 57.9 108.6±136.1
2 0 4 64.8 112.1±132.5 64.7 112.6±133.0
2 0 5 64.0 111.2±131.3 64.7 111.8±132.1
2 1 0 64.6 111.4±132.3 64.6 111.4±132.3
2 1 1 62.7 110.9±132.3 62.5 111.0±132.6
2 1 2 65.8 113.0±131.3 66.4 113.5±131.6
2 1 3 57.2 107.9±135.4 57.0 108.3±135.4
2 1 4 65.6 111.9±131.7 65.2 112.2±132.1
2 1 5 64.9 111.5±130.7 65.5 112.1±131.3
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Table C.17
Linear regression t∗2 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 1.04 5.26±14.9 1.03 5.23±14.9
0 0 2 1.04 5.22±14.6 1.04 5.20±14.7
0 0 3 1.06 5.17±14.8 1.07 5.16±14.6
0 0 4 1.05 5.16±14.8 1.02 5.17±14.7
0 0 5 1.03 5.19±14.9 1.06 5.24±14.9
0 1 0 0.93 5.11±14.9 0.88 5.04±14.8
0 1 1 0.89 5.12±15.0 0.89 5.04±14.8
0 1 2 0.89 5.06±14.7 0.88 5.05±14.8
0 1 3 0.90 5.04±15.0 0.90 5.03±14.7
0 1 4 0.90 5.05±14.9 0.92 5.05±14.8
0 1 5 0.90 5.07±15.0 0.93 5.09±14.9
1 0 0 1.04 5.02±13.9 0.93 5.11±14.9
1 0 1 1.02 4.99±14.0 0.89 5.11±15.0
1 0 2 1.05 4.95±13.6 0.91 5.11±15.0
1 0 3 1.06 4.92±13.8 0.92 5.09±14.9
1 0 4 1.05 4.92±13.8 0.93 5.07±14.9
1 0 5 1.00 4.94±13.9 0.92 5.13±15.1
1 1 0 0.92 5.00±14.5 1.02 5.00±13.9
1 1 1 0.88 4.98±14.5 0.98 4.97±14.0
1 1 2 0.92 4.92±14.1 1.01 4.98±14.1
1 1 3 0.89 4.90±14.4 1.02 4.95±14.0
1 1 4 0.89 4.92±14.3 1.00 5.00±14.2
1 1 5 0.91 4.93±14.4 1.03 5.03±14.3
2 1 0 0.88 5.04±14.8 0.92 5.00±14.5
2 1 1 0.88 5.04±14.8 0.90 4.95±14.4
2 1 2 0.88 4.97±14.4 0.92 4.96±14.4
2 1 3 0.87 4.99±14.7 0.91 4.95±14.3
2 1 4 0.87 4.99±14.7 0.92 4.94±14.3
2 1 5 0.86 5.00±14.8 0.93 5.00±14.5
2 0 0 1.02 5.00±13.9 1.04 5.01±13.9
2 0 1 1.00 4.98±14.0 1.02 4.93±13.8
2 0 2 1.01 4.94±13.7 1.03 4.92±13.8
2 0 3 1.01 4.92±14.0 1.06 4.90±13.7
2 0 4 1.05 4.92±13.9 1.02 4.90±13.7
2 0 5 1.06 4.93±14.0 1.00 4.97±14.0
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Table C.18
Quadratic regression with t∗2 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 1.03 5.05±14.6 1.03 5.18±15.3
0 0 2 1.06 5.08±15.1 1.10 5.12±14.8
0 0 3 1.12 5.26±16.4 1.06 5.47±17.8
0 0 4 1.10 5.40±16.0 1.16 6.28±24.5
0 0 5 1.15 5.76±18.7 1.14 6.18±22.9
0 1 0 0.99 5.69±17.3 0.98 5.69±17.3
0 1 1 1.02 5.58±16.3 1.01 5.55±16.3
0 1 2 1.11 5.50±16.1 1.16 5.78±17.2
0 1 3 1.23 6.40±21.7 1.13 5.88±17.7
0 1 4 1.24 6.79±22.4 1.22 6.22±19.2
0 1 5 1.39 7.33±24.8 1.41 6.87±21.9
1 0 0 1.01 5.35±16.1 1.01 5.35±16.1
1 0 1 1.05 5.21±15.3 1.05 5.14±15.0
1 0 2 1.05 5.12±14.7 1.07 5.12±14.6
1 0 3 1.13 5.40±16.9 1.20 5.81±18.0
1 0 4 1.15 5.87±18.8 1.15 6.84±26.1
1 0 5 1.17 6.34±21.1 1.22 7.39±29.4
1 1 0 0.96 6.00±19.7 0.96 6.00±19.7
1 1 1 1.08 6.23±19.7 1.15 6.11±18.7
1 1 2 1.09 6.13±19.1 1.23 5.95±17.3
1 1 3 1.28 6.48±21.6 1.25 7.28±25.3
1 1 4 1.37 6.93±21.8 1.40 7.89±28.9
1 1 5 1.56 8.36±29.0 1.46 8.18±31.3
2 0 0 1.00 5.42±18.3 1.00 5.42±18.3
2 0 1 1.02 5.58±16.3 0.98 5.35±16.6
2 0 2 1.11 5.50±16.1 1.12 5.78±20.6
2 0 3 1.23 6.40±21.7 1.13 5.88±20.8
2 0 4 1.24 6.79±22.4 1.17 6.59±23.1
2 0 5 1.39 7.33±24.8 1.31 7.02±25.3
2 1 0 1.04 5.84±21.1 1.01 5.84±21.1
2 1 1 1.11 5.76±18.2 1.12 5.92±19.5
2 1 2 1.17 5.69±17.6 1.25 6.01±19.7
2 1 3 1.28 6.28±19.7 1.33 6.83±24.6
2 1 4 1.41 6.82±20.5 1.44 7.32±24.2
2 1 5 1.70 9.51±34.2 1.63 9.46±32.5
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Table C.19
Gaussian Process regression with t∗2 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 1.03 5.20±14.5 1.06 5.28±14.8
0 0 2 1.07 5.16±14.4 1.09 5.20±14.4
0 0 3 1.08 5.10±14.1 1.10 5.21±14.5
0 0 4 1.06 5.12±14.1 1.11 5.21±14.5
0 0 5 1.08 5.13±14.2 1.11 5.23±14.6
0 1 0 0.95 5.17±14.8 0.95 5.17±14.8
0 1 1 0.97 5.17±14.7 0.99 5.14±14.8
0 1 2 0.99 5.18±14.7 1.04 5.14±14.6
0 1 3 0.98 5.15±14.6 1.05 5.15±14.6
0 1 4 0.99 5.15±14.6 1.05 5.18±14.7
0 1 5 0.99 5.17±14.7 1.02 5.21±14.8
1 0 0 1.08 5.14±13.8 1.08 5.14±13.8
1 0 1 1.05 5.10±14.0 1.08 5.11±13.9
1 0 2 1.05 5.10±13.9 1.05 5.07±13.6
1 0 3 1.07 5.05±13.7 1.03 5.08±13.6
1 0 4 1.04 5.06±13.7 1.05 5.09±13.9
1 0 5 1.06 5.05±13.7 1.07 5.11±13.7
1 1 0 0.98 4.94±14.0 0.98 4.94±14.0
1 1 1 0.98 4.97±13.9 0.98 4.91±13.8
1 1 2 0.99 4.94±13.8 1.02 4.94±13.9
1 1 3 1.00 4.95±13.8 1.01 4.94±13.8
1 1 4 1.02 5.03±14.0 1.01 4.99±14.0
1 1 5 1.05 5.04±14.0 1.01 4.98±13.9
2 0 0 1.07 5.13±14.1 1.09 5.13±14.1
2 0 1 1.06 5.08±14.1 1.06 5.08±14.2
2 0 2 1.07 5.09±14.1 1.07 5.07±14.1
2 0 3 1.08 5.06±13.9 1.07 5.07±14.1
2 0 4 1.09 5.08±14.0 1.08 5.11±14.1
2 0 5 1.08 5.10±14.1 1.09 5.13±14.2
2 1 0 1.01 5.06±14.3 1.01 5.06±14.3
2 1 1 1.00 5.02±14.2 1.02 5.02±14.2
2 1 2 1.01 5.01±14.1 1.03 5.03±14.2
2 1 3 1.01 5.01±14.1 1.03 5.04±14.2
2 1 4 1.02 5.04±14.2 1.03 5.06±14.3
2 1 5 1.02 5.06±14.2 1.01 5.05±14.3
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Table C.20
SVR with linear kernel regression with t∗2 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.73 2.55±7.5 0.74 2.49±7.1
0 0 2 0.74 2.57±7.3 0.75 2.51±7.1
0 0 3 0.73 2.59±7.6 0.74 2.49±7.2
0 0 4 0.74 2.55±7.4 0.74 2.51±7.2
0 0 5 0.74 2.56±7.4 0.75 2.52±7.1
0 1 0 0.73 2.52±7.1 0.72 2.60±7.7
0 1 1 0.74 2.54±7.5 0.73 2.56±7.5
0 1 2 0.73 2.61±7.6 0.73 2.57±7.5
0 1 3 0.73 2.61±7.8 0.74 2.61±7.8
0 1 4 0.74 2.59±7.6 0.73 2.63±7.8
0 1 5 0.74 2.59±7.6 0.74 2.61±7.6
1 0 0 0.74 2.45±6.6 0.74 2.45±6.6
1 0 1 0.74 2.48±7.0 0.74 2.47±6.9
1 0 2 0.75 2.49±6.9 0.75 2.45±6.7
1 0 3 0.74 2.48±7.0 0.74 2.42±6.8
1 0 4 0.75 2.48±6.9 0.74 2.42±6.7
1 0 5 0.75 2.49±6.9 0.75 2.49±6.8
1 1 0 0.73 2.52±7.0 0.73 2.52±7.0
1 1 1 0.74 2.55±7.4 0.73 2.52±7.3
1 1 2 0.73 2.57±7.3 0.73 2.52±7.2
1 1 3 0.73 2.60±7.6 0.73 2.59±7.6
1 1 4 0.75 2.55±7.4 0.73 2.51±7.2
1 1 5 0.75 2.57±7.4 0.73 2.56±7.3
2 0 0 0.73 2.46±6.7 0.73 2.54±7.2
2 0 1 0.72 2.47±7.0 0.71 2.49±7.1
2 0 2 0.74 2.47±6.9 0.73 2.47±6.9
2 0 3 0.73 2.50±7.1 0.73 2.50±7.1
2 0 4 0.74 2.48±7.0 0.73 2.48±7.0
2 0 5 0.74 2.52±7.1 0.72 2.48±7.0
2 1 0 0.74 2.52±7.1 0.74 2.52±7.1
2 1 1 0.73 2.54±7.4 0.73 2.55±7.5
2 1 2 0.73 2.54±7.3 0.72 2.56±7.3
2 1 3 0.73 2.56±7.5 0.72 2.62±7.7
2 1 4 0.73 2.54±7.4 0.72 2.56±7.4
2 1 5 0.73 2.59±7.4 0.72 2.58±7.4
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Table C.21
SVR regression with the RBF kernel using t∗2 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.79 3.45±9.6 0.79 3.45±10.0
0 0 2 0.83 3.57±9.7 0.81 3.71±10.8
0 0 3 0.79 3.07±9.0 0.79 3.00±8.7
0 0 4 0.83 3.55±9.6 0.82 3.55±10.0
0 0 5 0.80 3.63±10.4 0.81 3.55±10.1
0 1 0 0.80 3.53±10.3 0.82 3.72±10.4
0 1 1 0.82 3.66±10.4 0.81 3.53±9.8
0 1 2 0.87 3.81±10.4 0.88 3.95±11.2
0 1 3 0.80 3.21±9.5 0.78 3.16±9.2
0 1 4 0.85 3.76±10.4 0.86 3.77±10.3
0 1 5 0.84 3.80±10.7 0.84 3.74±10.3
1 0 0 0.82 3.49±9.3 0.82 3.49±9.3
1 0 1 0.83 3.80±11.4 0.81 3.67±10.6
1 0 2 0.92 4.04±11.2 0.88 4.01±11.4
1 0 3 0.79 3.06±8.5 0.78 3.09±8.6
1 0 4 0.87 3.77±10.2 0.85 3.78±10.2
1 0 5 0.84 3.83±10.9 0.85 3.85±11.2
1 1 0 0.89 3.94±11.2 0.78 3.37±8.8
1 1 1 0.84 3.86±11.6 0.84 3.78±11.2
1 1 2 0.94 4.06±11.5 0.91 4.10±11.7
1 1 3 0.80 3.16±8.7 0.79 3.20±8.9
1 1 4 0.91 3.84±10.4 0.89 3.86±10.4
1 1 5 0.87 3.90±11.0 0.86 3.97±11.4
2 0 0 0.87 3.93±11.1 0.87 3.93±11.1
2 0 1 0.82 3.98±12.2 0.81 3.94±11.9
2 0 2 0.92 4.10±11.5 0.92 4.12±11.7
2 0 3 0.79 3.21±9.0 0.79 3.18±8.9
2 0 4 0.87 3.86±10.7 0.87 3.91±10.9
2 0 5 0.85 3.92±11.3 0.84 3.98±11.6
2 1 0 0.87 3.96±11.2 0.87 3.96±11.2
2 1 1 0.83 3.93±12.0 0.82 3.89±11.4
2 1 2 0.91 4.09±11.4 0.91 4.15±11.6
2 1 3 0.81 3.26±9.1 0.79 3.21±9.0
2 1 4 0.87 3.86±10.7 0.87 3.90±10.7
2 1 5 0.86 3.99±11.4 0.86 4.03±11.6
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C.4 Reduced Data Set t∗1

The following tables present the results of the regression evaluations for the reduced

DS1 data set using t∗1. The order of the tables is linear regression, quadratic regression,

Gaussian Process regression, SVR with a linear kernel and finally the SVR with the

radial basis kernel for the absolute error. This order is then repeated for the relative

error.
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Table C.22
Linear regression with reduced data t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 51.4 72.6±82.4 51.8 72.1±82.5
0 0 2 51.3 72.7±82.2 52.0 72.9±82.3
0 0 3 52.5 73.2±82.0 54.1 73.4±82.8
0 0 4 53.9 73.6±82.2 52.9 73.8±82.5
0 0 5 52.8 73.3±82.4 52.6 73.8±82.5
0 1 0 50.6 73.7±82.5 50.6 73.7±82.5
0 1 1 49.4 72.9±82.8 49.5 72.7±82.7
0 1 2 48.9 73.1±82.6 48.8 73.3±82.6
0 1 3 51.3 73.5±82.2 51.4 73.6±82.9
0 1 4 51.7 73.9±82.3 51.2 74.1±82.7
0 1 5 52.2 73.8±82.4 51.6 74.0±82.9
1 0 0 54.1 73.5±82.7 54.2 73.5±82.7
1 0 1 51.8 72.8±82.5 51.3 72.3±82.7
1 0 2 51.0 73.0±82.4 52.5 73.1±82.6
1 0 3 52.7 73.5±82.2 52.9 73.6±83.0
1 0 4 53.9 73.8±82.4 53.3 74.0±82.7
1 0 5 54.1 73.6±82.5 53.2 74.1±82.7
1 1 0 50.9 74.0±82.6 50.9 74.0±82.6
1 1 1 49.2 73.4±82.7 50.0 73.1±82.8
1 1 2 49.7 73.5±82.6 50.2 73.7±82.8
1 1 3 51.9 74.0±82.4 51.7 74.0±83.2
1 1 4 51.7 74.3±82.5 52.2 74.4±83.0
1 1 5 52.2 74.2±82.7 51.9 74.3±83.2
2 0 0 52.6 73.6±83.0 52.6 73.6±83.0
2 0 1 51.7 72.4±83.1 53.3 72.6±82.9
2 0 2 51.5 72.8±82.9 53.1 73.4±82.8
2 0 3 52.3 73.5±82.4 53.7 73.3±83.3
2 0 4 52.1 73.5±82.8 53.7 73.3±83.1
2 0 5 51.5 73.1±83.1 53.9 73.7±83.2
2 1 0 50.2 74.0±83.2 50.2 74.0±83.2
2 1 1 50.5 73.3±83.5 49.8 73.3±83.3
2 1 2 50.8 73.6±83.4 50.1 73.9±83.2
2 1 3 51.2 74.0±83.0 50.6 74.0±83.6
2 1 4 51.6 74.2±83.0 50.0 74.0±83.5
2 1 5 51.2 73.9±83.2 51.0 74.3±83.6
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Table C.23
Quadratic regression with reduced data t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 53.1 76.3±82.8 54.7 76.6±83.7
0 0 2 56.6 78.3±85.0 55.0 79.8±86.9
0 0 3 60.8 84.1±88.2 56.0 81.8±90.5
0 0 4 64.5 91.7±95.2 61.1 85.4±89.0
0 0 5 69.6 102.7±112.2 69.5 91.3±90.8
0 1 0 54.6 100.3±203.0 54.6 100.3±203.0
0 1 1 56.4 111.1±259.9 60.4 116.2±290.7
0 1 2 59.0 99.8±139.7 64.0 130.8±351.5
0 1 3 71.7 141.4±368.4 69.5 118.8±221.1
0 1 4 81.0 162.4±405.8 75.1 142.0±372.3
0 1 5 89.6 226.0±729.3 86.1 131.9±165.4
1 0 0 54.0 77.0±83.7 54.0 77.0±83.7
1 0 1 57.3 79.1±82.5 56.9 80.0±85.1
1 0 2 60.6 83.6±85.2 59.5 84.8±89.1
1 0 3 65.4 90.6±92.4 62.9 89.7±96.9
1 0 4 72.5 102.5±112.4 67.7 93.6±95.0
1 0 5 83.5 123.5±152.5 74.7 105.9±111.9
1 1 0 63.0 115.2±284.6 63.0 115.2±284.6
1 1 1 67.7 126.3±302.9 56.7 81.9±93.8
1 1 2 72.5 131.3±272.6 62.7 95.4±98.2
1 1 3 85.4 172.2±491.4 81.2 121.1±128.3
1 1 4 97.4 191.3±436.1 116.3 151.0±138.1
1 1 5 120.0 27.0±701.0 154.1 180.0±149.7
2 0 0 56.8 78.7±83.0 56.8 78.7±83.0
2 0 1 63.6 87.2±89.6 61.9 84.8±86.3
2 0 2 66.4 91.8±90.4 67.8 89.7±89.7
2 0 3 70.3 100.0±99.6 71.9 95.5±93.7
2 0 4 84.5 112.4±112.9 78.7 103.6±94.6
2 0 5 95.5 138.6±149.2 89.2 125.5±129.4
2 1 0 64.8 104.7±168.0 64.8 104.7±168.0
2 1 1 74.3 145.5±396.1 73.2 132.1±293.4
2 1 2 87.4 168.7±439.4 90.1 141.8±232.5
2 1 3 103.3 267.7±1017.0 95.4 151.8±222.4
2 1 4 129.9 376.0±1451.0 111.8 220.4±511.2
2 1 5 175.4 452.0±1401.0 153.4 345.5±836.6
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Table C.24
Gaussian Process with reduced data t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 53.9 73.2±81.3 54.2 72.6±81.0
0 0 2 54.0 73.3±81.3 54.8 73.0±80.8
0 0 3 54.9 73.5±81.2 55.4 73.6±81.0
0 0 4 55.1 73.7±81.3 55.8 73.3±80.6
0 0 5 55.5 73.6±81.1 55.9 73.5±81.0
0 1 0 55.0 73.5±81.7 55.0 73.5±81.7
0 1 1 53.9 72.8±81.3 52.7 72.5±81.1
0 1 2 53.4 72.8±81.1 53.1 72.7±80.9
0 1 3 54.1 73.1±81.0 54.0 73.2±81.0
0 1 4 54.1 73.4±81.1 55.0 73.1±80.7
0 1 5 54.4 73.4±81.1 54.6 73.3±81.0
1 0 0 54.6 73.0±81.3 54.6 73.0±81.3
1 0 1 54.6 73.1±80.9 54.6 73.1±80.9
1 0 2 54.2 73.3±81.1 54.2 73.3±81.1
1 0 3 54.3 73.4±81.1 54.3 73.4±81.1
1 0 4 55.4 73.6±81.2 55.4 73.6±81.2
1 0 5 55.9 73.5±81.0 55.9 73.5±81.0
1 1 0 55.2 73.2±81.2 55.2 73.2±81.2
1 1 1 53.6 72.9±81.1 53.6 72.9±81.1
1 1 2 54.0 72.9±81.0 54.0 72.9±81.0
1 1 3 54.3 73.1±81.0 54.3 73.1±81.0
1 1 4 53.7 73.4±81.1 53.7 73.4±81.1
1 1 5 55.3 73.7±81.4 55.3 73.7±81.4
2 0 0 54.9 73.5±81.4 54.9 73.5±81.4
2 0 1 53.3 73.1±81.2 53.7 72.9±81.2
2 0 2 54.7 73.2±81.4 55.2 73.1±81.2
2 0 3 54.7 73.4±81.3 56.5 73.7±81.2
2 0 4 55.3 73.7±81.4 56.4 73.3±80.9
2 0 5 56.1 73.6±81.3 56.2 73.5±81.2
2 1 0 52.8 73.2±81.0 52.8 73.2±81.0
2 1 1 53.9 73.2±81.3 52.1 72.5±81.1
2 1 2 54.0 73.2±81.3 52.9 72.7±81.0
2 1 3 54.9 73.5±81.2 54.3 73.2±81.0
2 1 4 55.1 73.7±81.3 54.7 73.0±80.8
2 1 5 55.5 73.6±81.1 54.4 73.2±81.1
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Table C.25
SVR with linear kernel with reduced data t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 32.5 64.4±96.3 50.5 103.3±135.2
0 0 2 32.2 64.0±96.5 50.5 103.4±135.1
0 0 3 32.9 64.6±96.6 49.7 103.1±135.3
0 0 4 32.6 64.9±96.3 50.3 103.3±135.5
0 0 5 33.4 64.6±96.1 45.0 103.2±135.9
0 1 0 31.8 64.4±97.0 31.8 64.4±97.0
0 1 1 31.6 64.4±96.4 48.6 103.3±136.6
0 1 2 31.5 64.3±96.6 48.2 103.4±136.6
0 1 3 31.9 64.7±96.9 49.2 103.4±136.3
0 1 4 33.1 65.1±96.8 48.6 103.4±136.9
0 1 5 33.3 64.6±96.5 47.9 103.4±137.6
1 0 0 31.6 64.4±97.3 31.6 64.4±97.3
1 0 1 48.1 103.8±139.0 31.4 63.8±96.7
1 0 2 47.9 103.8±139.5 31.0 63.9±97.4
1 0 3 49.4 104.0±138.9 32.1 64.3±97.4
1 0 4 48.9 104.2±139.5 32.2 64.5±97.1
1 0 5 48.1 104.3±140.1 31.9 64.2±97.2
1 1 0 31.7 64.5±96.9 31.7 64.5±96.9
1 1 1 50.2 103.0±135.8 31.8 64.3±96.7
1 1 2 51.1 103.3±135.5 32.4 64.2±97.0
1 1 3 50.7 103.1±135.4 33.3 64.5±97.1
1 1 4 50.7 103.6±135.8 34.0 64.9±96.8
1 1 5 50.2 103.5±136.2 32.7 64.5±97.1
2 0 0 31.4 64.0±97.1 31.4 64.0±97.1
2 0 1 32.5 63.8±96.2 49.9 103.9±137.5
2 0 2 32.2 63.7±96.5 49.4 103.8±137.7
2 0 3 32.4 64.0±96.7 49.1 103.8±137.2
2 0 4 32.2 64.4±96.5 49.1 103.7±137.6
2 0 5 31.5 64.2±96.4 49.3 103.7±137.6
2 1 0 31.5 64.3±96.7 31.5 64.3±96.7
2 1 1 31.4 63.9±96.6 48.1 104.4±141.4
2 1 2 30.7 63.9±96.8 48.4 104.5±141.1
2 1 3 31.4 64.3±97.1 47.6 104.6±141.6
2 1 4 31.6 64.6±97.0 47.6 104.5±141.7
2 1 5 32.3 64.4±96.9 47.8 104.6±142.0
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Table C.26
SVR with RBF kernel with reduced data t∗1 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 42.0 69.5±91.9 43.6 69.7±91.0
0 0 2 47.1 71.8±91.0 46.9 71.4±91.4
0 0 3 47.5 71.1±90.3 46.9 71.3±90.8
0 0 4 43.2 69.8±92.3 43.6 69.1±91.7
0 0 5 44.6 69.7±91.8 44.3 69.4±90.8
0 1 0 31.8 64.4±97.0 43.5 70.4±91.3
0 1 1 44.1 70.1±91.1 43.4 69.7±90.0
0 1 2 46.6 71.2±89.5 46.3 70.7±88.8
0 1 3 48.3 71.3±89.2 47.6 71.3±90.8
0 1 4 43.6 69.8±91.8 43.6 69.3±91.7
0 1 5 45.5 69.7±92.1 44.4 69.3±90.8
1 0 0 49.9 75.7±94.9 44.8 71.5±93.6
1 0 1 44.9 70.5±91.8 45.2 70.2±91.4
1 0 2 45.4 70.2±91.3 45.9 70.2±91.1
1 0 3 50.0 71.9±89.1 50.2 71.8±89.1
1 0 4 44.0 69.6±91.9 43.8 69.2±91.7
1 0 5 43.3 68.6±91.6 43.5 68.8±91.5
1 1 0 51.8 72.4±87.3 47.3 71.2±89.8
1 1 1 45.6 69.4±90.1 44.7 69.5±89.5
1 1 2 45.7 70.0±90.8 45.6 70.0±90.7
1 1 3 49.5 71.7±87.8 50.3 71.6±88.1
1 1 4 44.0 69.7±92.1 44.1 69.4±91.9
1 1 5 43.7 69.0±91.6 43.8 69.0±91.4
2 0 0 31.4 64.0±97.1 47.5 70.9±90.2
2 0 1 44.5 70.0±91.6 45.3 70.3±91.0
2 0 2 47.1 71.4±90.3 48.2 71.4±89.7
2 0 3 48.2 70.9±89.4 48.0 70.7±89.5
2 0 4 44.3 69.9±92.4 44.2 69.7±92.3
2 0 5 44.8 70.0±91.5 44.6 69.7±91.4
2 1 0 31.5 64.3±96.7 47.6 70.9±89.5
2 1 1 44.5 69.7±90.8 44.7 69.7±90.0
2 1 2 48.0 71.5±90.0 47.8 71.3±89.4
2 1 3 48.3 70.9±89.2 48.1 70.7±89.2
2 1 4 44.4 69.9±92.4 44.3 69.6±92.2
2 1 5 45.1 69.9±91.1 45.1 69.7±90.9
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Table C.27
Linear regression with reduced data t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.83 3.58±9.4 0.84 3.52±9.2
0 0 2 0.83 3.56±9.2 0.81 3.54±9.1
0 0 3 0.84 3.55±9.0 0.83 3.63±9.4
0 0 4 0.83 3.58±9.0 0.81 3.67±9.6
0 0 5 0.82 3.59±9.2 0.82 3.68±9.7
0 1 0 0.84 3.77±10.5 0.84 3.77±10.5
0 1 1 0.79 3.71±10.5 0.79 3.66±10.4
0 1 2 0.79 3.67±10.3 0.80 3.67±10.2
0 1 3 0.80 3.67±10.2 0.81 3.74±10.5
0 1 4 0.81 3.70±10.2 0.83 3.78±10.8
0 1 5 0.80 3.70±10.3 0.82 3.80±11.0
1 0 0 0.82 3.66±9.3 0.82 3.66±9.3
1 0 1 0.82 3.57±9.3 0.82 3.52±9.2
1 0 2 0.82 3.55±9.2 0.82 3.55±9.1
1 0 3 0.84 3.55±9.0 0.82 3.62±9.3
1 0 4 0.82 3.59±9.0 0.81 3.67±9.5
1 0 5 0.82 3.61±9.2 0.81 3.68±9.7
1 1 0 0.82 3.75±10.3 0.82 3.75±10.3
1 1 1 0.80 3.66±10.2 0.80 3.63±10.2
1 1 2 0.80 3.63±10.0 0.81 3.67±10.1
1 1 3 0.81 3.65±10.0 0.81 3.71±10.3
1 1 4 0.81 3.68±10.0 0.82 3.74±10.5
1 1 5 0.80 3.68±10.1 0.81 3.77±10.8
2 0 0 0.85 3.57±9.0 0.85 3.57±9.0
2 0 1 0.80 3.47±9.0 0.82 3.46±9.1
2 0 2 0.83 3.45±8.9 0.82 3.47±8.9
2 0 3 0.81 3.44±8.7 0.82 3.55±9.2
2 0 4 0.81 3.47±8.7 0.81 3.58±9.7
2 0 5 0.80 3.48±8.9 0.82 3.59±9.7
2 1 0 0.82 3.78±10.7 0.82 3.78±10.7
2 1 1 0.79 3.66±10.5 0.79 3.67±10.6
2 1 2 0.80 3.65±10.3 0.79 3.68±10.5
2 1 3 0.77 3.65±10.3 0.80 3.74±10.8
2 1 4 0.77 3.68±10.3 0.79 3.75±11.1
2 1 5 0.78 3.67±10.4 0.80 3.78±11.4
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Table C.28
Quadratic regression with reduced data t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.83 3.545±9.3 0.80 3.41±8.5
0 0 2 0.82 3.58±9.2 0.90 3.42±7.8
0 0 3 0.91 3.92±9.5 0.85 3.93±10.0
0 0 4 0.97 4.68±13.7 0.98 4.26±11.1
0 0 5 1.10 5.85±18.4 1.08 4.32±11.2
0 1 0 0.85 5.08±17.9 0.85 5.10±17.9
0 1 1 0.95 5.25±18.6 1.00 4.78±14.7
0 1 2 0.96 4.61±12.2 0.97 5.11±15.1
0 1 3 1.12 6.85±25.3 1.12 5.67±15.6
0 1 4 1.31 7.01±22.5 1.30 5.89±18.1
0 1 5 1.63 8.95±29.3 1.35 6.63±18.1
1 0 0 0.89 4.11±13.2 0.89 4.11±13.2
1 0 1 0.91 3.78±10.4 0.87 4.22±13.6
1 0 2 0.87 4.25±12.9 0.94 4.47±14.2
1 0 3 1.02 4.53±12.6 0.93 5.42±19.1
1 0 4 1.18 5.71±18.5 1.11 5.23±15.3
1 0 5 1.45 7.46±25.8 1.27 5.34±13.3
1 1 0 0.97 5.86±22.3 0.97 5.86±22.3
1 1 1 1.16 5.53±18.0 0.87 5.56±19.1
1 1 2 1.22 6.04±19.4 1.09 5.99±19.5
1 1 3 1.32 7.56±24.9 1.53 8.46±23.0
1 1 4 1.76 11.45±47.9 1.79 9.30±24.2
1 1 5 2.29 13.04±44.9 2.37 12.39±30.1
2 0 0 0.82 3.60±9.2 0.82 3.60±9.2
2 0 1 0.96 4.33±12.0 0.87 4.23±12.1
2 0 2 1.05 4.53±12.8 1.04 4.34±11.3
2 0 3 1.12 4.71±12.1 1.13 4.84±13.6
2 0 4 1.42 5.67±16.5 1.35 5.17±14.4
2 0 5 1.79 7.85±25.3 1.60 6.71±19.2
2 1 0 1.10 5.60±19.6 1.10 5.60±19.6
2 1 1 1.25 5.41±14.3 1.21 5.25±12.6
2 1 2 1.44 8.28±30.8 1.44 7.26±24.8
2 1 3 1.80 12.77±57.2 1.56 9.56±35.7
2 1 4 2.48 12.95±37.5 2.07 13.92±61.6
2 1 5 3.57 15.43±33.9 3.21 15.45±43.1
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Table C.29
Gaussian Process with reduced data t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.84 3.68±9.3 0.85 3.62±9.2
0 0 2 0.85 3.66±9.2 0.88 3.62±9.1
0 0 3 0.85 3.69±9.3 0.87 3.72±9.5
0 0 4 0.84 3.74±9.5 0.87 3.72±9.6
0 0 5 0.85 3.75±9.7 0.87 3.73±9.5
0 1 0 0.84 3.69±9.4 0.84 3.69±9.4
0 1 1 0.85 3.66±9.4 0.85 3.62±9.4
0 1 2 0.85 3.63±9.4 0.84 3.60±9.2
0 1 3 0.84 3.65±9.4 0.85 3.70±9.5
0 1 4 0.86 3.70±9.4 0.85 3.72±9.7
0 1 5 0.85 3.73±9.6 0.86 3.71±9.5
1 0 0 0.83 3.74±9.7 0.83 3.74±9.7
1 0 1 0.85 3.70±9.5 0.85 3.70±9.5
1 0 2 0.84 3.68±9.4 0.84 3.68±9.4
1 0 3 0.86 3.71±9.5 0.86 3.71±9.5
1 0 4 0.84 3.75±9.6 0.84 3.75±9.6
1 0 5 0.84 3.77±9.8 0.84 3.77±9.8
1 1 0 0.82 3.76±9.8 0.82 3.76±9.8
1 1 1 0.85 3.68±9.5 0.85 3.68±9.5
1 1 2 0.85 3.65±9.4 0.85 3.65±9.4
1 1 3 0.85 3.68±9.4 0.85 3.68±9.4
1 1 4 0.84 3.72±9.5 0.84 3.72±9.5
1 1 5 0.86 3.73±9.5 0.86 3.73±9.5
2 0 0 0.85 3.74±9.6 0.85 3.74±9.6
2 0 1 0.86 3.68±9.4 0.87 3.63±9.2
2 0 2 0.88 3.64±9.2 0.89 3.63±9.2
2 0 3 0.89 3.67±9.3 0.86 3.73±9.5
2 0 4 0.86 3.72±9.5 0.86 3.72±9.6
2 0 5 0.86 3.75±9.6 0.86 3.74±9.6
2 1 0 0.82 3.71±9.5 0.82 3.70±9.5
2 1 1 0.84 3.68±9.3 0.85 3.62±9.4
2 1 2 0.85 3.66±9.2 0.85 3.61±9.3
2 1 3 0.85 3.69±9.3 0.85 3.69±9.5
2 1 4 0.84 3.74±9.5 0.85 3.70±9.6
2 1 5 0.85 3.75±9.7 0.85 3.70±9.6
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Table C.30
SVR with linear kernel with reduced data t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.65 2.10±5.7 0.72 2.35±6.1
0 0 2 0.65 2.04±5.2 0.72 2.35±6.1
0 0 3 0.66 2.08±5.5 0.72 2.35±6.2
0 0 4 0.66 2.09±5.4 0.72 2.37±6.2
0 0 5 0.67 2.18±5.9 0.72 2.37±6.3
0 1 0 0.65 2.08±5.6 0.65 2.08±5.6
0 1 1 0.65 2.12±5.7 0.72 2.36±6.5
0 1 2 0.64 2.06±5.4 0.72 2.35±6.4
0 1 3 0.66 2.12±5.7 0.72 2.37±6.5
0 1 4 0.66 2.14±5.6 0.73 2.38±6.6
0 1 5 0.66 2.20±6.0 0.72 2.38±6.7
1 0 0 0.67 2.03±5.3 0.67 2.03±5.3
1 0 1 0.73 2.27±6.1 0.64 1.96±4.9
1 0 2 0.73 2.27±6.2 0.65 1.98±5.0
1 0 3 0.73 2.32±6.4 0.65 1.99±5.1
1 0 4 0.74 2.32±6.5 0.66 2.04±5.2
1 0 5 0.73 2.30±6.3 0.66 2.06±5.4
1 1 0 0.67 2.11±5.7 0.67 2.11±5.7
1 1 1 0.71 2.33±6.2 0.65 2.00±5.1
1 1 2 0.73 2.35±6.2 0.66 2.00±5.1
1 1 3 0.73 2.35±6.3 0.67 2.02±5.2
1 1 4 0.72 2.37±6.4 0.67 2.09±5.5
1 1 5 0.73 2.36±6.3 0.66 2.12±5.7
2 0 0 0.65 1.99±5.1 0.65 1.99±5.1
2 0 1 0.64 2.05±5.4 0.72 2.31±6.0
2 0 2 0.64 2.03±5.3 0.72 2.30±5.9
2 0 3 0.64 2.03±5.2 0.72 2.32±6.0
2 0 4 0.64 2.05±5.2 0.72 2.34±6.2
2 0 5 0.66 2.07±5.3 0.73 2.34±6.2
2 1 0 0.64 2.09±5.7 0.64 2.09±5.7
2 1 1 0.63 2.05±5.4 0.74 2.29±6.4
2 1 2 0.63 2.03±5.3 0.75 2.31±6.4
2 1 3 0.65 2.04±5.2 0.75 2.30±6.5
2 1 4 0.65 2.06±5.3 0.75 2.33±6.6
2 1 5 0.65 2.11±5.6 0.75 2.33±6.7
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Table C.31
SVR with RBF kernel with reduced data t∗1 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.75 2.78±7.0 0.75 2.77±6.8
0 0 2 0.81 3.05±7.8 0.79 3.00±7.5
0 0 3 0.81 3.08±7.6 0.81 3.04±7.4
0 0 4 0.77 2.74±6.9 0.74 2.71±6.9
0 0 5 0.77 2.92±7.5 0.76 2.77±6.7
0 1 0 0.65 2.08±5.6 0.73 2.85±7.2
0 1 1 0.74 2.82±7.1 0.74 2.77±6.9
0 1 2 0.81 3.01±7.6 0.80 2.96±7.3
0 1 3 0.83 3.12±7.7 0.82 3.03±7.3
0 1 4 0.80 2.75±6.9 0.77 2.73±6.9
0 1 5 0.79 3.00±7.9 0.78 2.78±6.7
1 0 0 0.79 3.22±8.1 0.76 2.69±6.2
1 0 1 0.76 2.86±7.2 0.75 2.88±7.2
1 0 2 0.78 2.81±6.7 0.76 2.95±7.6
1 0 3 0.83 3.23±8.1 0.83 3.18±8.0
1 0 4 0.78 2.75±6.9 0.77 2.74±6.9
1 0 5 0.78 2.78±7.0 0.77 2.74±6.8
1 1 0 0.82 3.29±8.3 0.78 3.10±8.1
1 1 1 0.76 2.81±7.1 0.75 2.85±7.2
1 1 2 0.78 2.85±6.9 0.76 3.01±8.0
1 1 3 0.84 3.24±8.3 0.83 3.21±8.2
1 1 4 0.78 2.77±6.9 0.78 2.76±6.9
1 1 5 0.79 2.81±7.1 0.77 2.77±6.8
2 0 0 0.65 1.99±5.1 0.79 3.01±7.3
2 0 1 0.78 2.86±7.3 0.76 2.89±7.2
2 0 2 0.82 3.04±7.7 0.82 3.06±7.7
2 0 3 0.82 3.09±7.7 0.81 3.07±7.6
2 0 4 0.79 2.77±6.9 0.79 2.75±6.9
2 0 5 0.80 2.88±7.3 0.79 2.83±7.1
2 1 0 0.64 2.09±5.7 0.79 2.99±7.3
2 1 1 0.77 2.83±7.2 0.76 2.86±7.2
2 1 2 0.82 3.05±7.7 0.83 3.06±7.7
2 1 3 0.82 3.08±7.6 0.81 3.08±7.6
2 1 4 0.79 2.77±6.9 0.79 2.76±6.9
2 1 5 0.80 2.88±7.2 0.80 2.83±7.1
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C.5 Reduced data set with t∗2

The following tables present the results of the regression evaluations for the reduced

DS1 data set using t∗2. The order of the tables is linear regression, quadratic regression,

Gaussian Process regression, SVR with a linear kernel and finally the SVR with the

radial basis kernel for the absolute error. This order is then repeated for the relative

error.
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Table C.32
Linear regression with reduced data t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 53.4 71.4±81.3 51.5 71.0±81.4
0 0 2 52.7 71.8±81.5 53.6 71.8±81.3
0 0 3 54.6 72.3±81.1 53.0 72.1±81.5
0 0 4 54.7 72.6±81.4 52.6 72.4±81.6
0 0 5 54.2 72.6±81.5 54.3 72.7±81.3
0 1 0 50.3 72.5±81.3 50.2 72.1±81.6
0 1 1 50.8 72.3±81.5 50.2 72.1±81.6
0 1 2 50.6 72.6±81.6 49.8 72.5±81.7
0 1 3 51.1 72.8±81.3 50.0 72.7±81.8
0 1 4 50.9 73.1±81.5 49.6 73.0±82.0
0 1 5 51.2 73.1±81.7 52.0 73.3±81.8
1 0 0 53.4 72.2±81.3 53.4 72.2±81.3
1 0 1 53.5 71.8±81.3 52.2 71.4±81.4
1 0 2 53.4 72.2±81.6 52.8 72.0±81.6
1 0 3 54.9 72.5±81.3 53.0 72.2±81.8
1 0 4 54.8 72.8±81.6 53.2 72.5±81.9
1 0 5 54.5 72.8±81.8 54.4 72.9±81.6
1 1 0 50.0 72.9±81.4 50.0 72.9±81.4
1 1 1 51.0 72.7±81.6 50.6 72.4±81.6
1 1 2 51.7 73.0±81.7 49.2 72.7±81.9
1 1 3 52.7 73.1±81.5 49.0 73.0±82.0
1 1 4 51.8 73.4±81.7 49.6 73.2±82.1
1 1 5 52.3 73.4±81.9 51.0 73.6±81.8
2 0 0 53.2 72.2±81.4 51.1 71.2±81.4
2 0 1 51.5 71.3±81.2 51.1 71.2±81.4
2 0 2 51.3 71.6±81.6 51.7 71.8±81.4
2 0 3 52.4 72.1±81.2 53.6 72.1±81.5
2 0 4 53.5 72.4±81.5 53.2 72.6±81.5
2 0 5 52.3 72.4±81.7 54.6 72.9±81.0
2 1 0 50.9 72.9±82.1 50.5 72.4±82.2
2 1 1 52.1 72.5±82.1 50.5 72.4±82.2
2 1 2 51.3 72.7±82.4 49.6 72.6±82.4
2 1 3 52.1 73.0±82.0 50.3 72.9±82.3
2 1 4 51.8 73.3±82.2 50.4 73.4±82.5
2 1 5 52.2 73.3±82.4 51.3 73.7±82.0
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Table C.33
Quadratic regression with reduced data t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 53.7 75.7±80.5 57.0 76.5±80.7
0 0 2 53.8 77.9±83.3 56.8 77.9±82.1
0 0 3 60.3 83.1±87 61.0 81.1±85.5
0 0 4 63.5 91.6±107.1 66.7 87.6±89.4
0 0 5 70.8 98.0±100.7 67.6 90.0±89.6
0 1 0 57.5 100.9±192.9 56.1 78.0±84.3
0 1 1 62.1 102.4±160.3 62.9 104.7±173.4
0 1 2 63.5 110.5±188.5 66.3 117.8±200.2
0 1 3 72.1 120.3±183.1 68.7 140.2±357.9
0 1 4 77.3 149.9±302.1 78.6 163.2±442.7
0 1 5 92.3 243.3±802.4 81.2 153.3±324.6
1 0 0 56.2 75.3±81.7 56.2 75.3±81.7
1 0 1 57.8 77.8±81.0 57.7 77.6±81.3
1 0 2 58.2 82.4±85.3 62.1 82.3±83.7
1 0 3 65.2 91.1±93.0 66.4 86.5±87.9
1 0 4 72.3 104.7±120.5 73.1 99.2±100.4
1 0 5 84.0 126.7±149.8 76.7 104.1±100.0
1 1 0 61.4 104.0±179.5 61.4 104.0±179.5
1 1 1 68.1 109.3±165.3 67.8 107.2±146.3
1 1 2 74.1 119.0±157.7 76.8 124.8±179.8
1 1 3 85.7 164.9±357.6 81.8 186.9±570.0
1 1 4 103.7 240.7±653.8 99.4 205.8±586.3
1 1 5 130.9 429.0±1708.0 109.8 252.0±778.7
2 0 0 56.1 78.0±84.3 56.1 78.0±84.3
2 0 1 59.7 83.0±86.3 60.8 83.5±86.0
2 0 2 64.8 89.9±92.1 66.3 87.0±87.7
2 0 3 71.7 102.8±108.6 74.3 97.7±98.0
2 0 4 88.0 122.9±130.1 82.4 115.0±117.9
2 0 5 100.3 151.3±163.4 96.2 134.1±144.4
2 1 0 65.5 105.8±157.2 65.5 105.8±157.2
2 1 1 73.7 133.4±307.9 78.7 123.3±204.2
2 1 2 88.7 154.9±315.6 83.4 139.0±213.0
2 1 3 102.7 161.1±261.3 95.2 180.8±433.2
2 1 4 131.5 230.2±351.8 116.9 261.0±854.4
2 1 5 171.2 470.1±1390.0 165.1 353.1±902.3
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Table C.34
Gaussian Process with reduced data t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 54.4 72.2±80.6 55.3 71.8±80.4
0 0 2 55.3 72.3±80.7 55.8 72.3±80.8
0 0 3 55.8 72.5±80.6 55.5 72.5±80.7
0 0 4 55.8 72.5±80.7 55.5 72.4±80.5
0 0 5 55.3 72.5±80.7 55.5 72.6±80.9
0 1 0 54.1 72.0±80.7 54.1 72.0±80.7
0 1 1 53.4 71.9±80.3 53.1 71.6±80.3
0 1 2 53.2 71.9±80.3 54.1 72.1±80.4
0 1 3 53.8 72.1±80.2 54.6 72.2±81.0
0 1 4 53.8 72.1±80.2 54.6 72.3±80.3
0 1 5 54.9 72.3±80.4 54.8 72.4±80.4
1 0 0 54.3 71.9±80.9 54.3 71.9±80.9
1 0 1 54.1 72.0±80.4 54.1 71.5±80.3
1 0 2 54.8 72.2±80.6 55.0 72.2±80.6
1 0 3 55.7 72.4±80.5 55.2 72.5±80.7
1 0 4 55.2 72.4±80.6 54.6 72.3±80.5
1 0 5 54.8 72.3±80.6 55.2 73.7±81.7
1 1 0 54.3 71.9±80.6 54.3 71.9±80.6
1 1 1 53.3 71.9±80.2 52.6 71.5±80.2
1 1 2 53.3 72.0±80.3 54.7 73.2±81.4
1 1 3 54.4 73.3±81.1 55.1 73.4±81.4
1 1 4 54.5 73.2±81.2 54.8 73.4±81.3
1 1 5 54.6 73.3±81.7 54.6 73.5±81.4
2 0 0 55.2 72.5±81.6 55.2 72.5±81.6
2 0 1 53.8 72.2±80.8 54.7 72.0±80.9
2 0 2 54.2 72.2±80.8 55.9 72.4±80.9
2 0 3 54.3 72.5±80.8 56.3 72.6±80.9
2 0 4 55.6 72.5±80.9 56.2 72.5±80.8
2 0 5 55.6 72.7±81.1 56.0 72.5±80.9
2 1 0 55.1 72.1±81.0 55.1 72.1±81.0
2 1 1 53.4 71.8±80.6 53.3 71.7±80.7
2 1 2 53.5 73.1±81.8 54.3 72.0±80.7
2 1 3 54.6 73.8±81.9 54.5 72.4±81.1
2 1 4 55.3 73.8±81.9 55.2 72.5±80.8
2 1 5 54.8 73.5±81.9 55.4 72.5±80.7
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Table C.35
SVR with linear kernel with reduced data t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 30.6 62.9±95.9 30.2 62.9±96.0
0 0 2 30.7 63.3±96.0 29.9 63.4±96.3
0 0 3 31.0 63.6±96.0 30.0 63.4±96.0
0 0 4 30.0 63.4±96.2 30.2 63.2±96.1
0 0 5 29.5 63.4±96.6 30.0 63.3±96.4
0 1 0 30.0 63.5±96.0 30.0 63.5±96.0
0 1 1 31.5 63.3±95.6 30.9 63.2±95.5
0 1 2 31.7 63.9±95.8 30.8 63.7±95.9
0 1 3 30.8 63.7±95.8 30.4 63.7±95.9
0 1 4 29.9 63.7±95.8 30.2 63.5±95.9
0 1 5 29.6 63.5±96.3 29.9 63.5±96.0
1 0 0 30.6 63.2±96.1 30.6 63.1±96.1
1 0 1 31.5 63.3±95.6 31.4 62.7±95.9
1 0 2 31.7 63.9±95.8 30.8 63.1±96.3
1 0 3 30.8 63.7±95.8 30.8 63.1±96.0
1 0 4 29.9 63.7±95.8 30.5 63.1±96.2
1 0 5 29.6 63.5±96.3 30.5 63.0±96.4
1 1 0 30.4 63.3±96.0 30.4 63.3±96.0
1 1 1 31.6 63.2±95.7 32.1 63.1±95.7
1 1 2 31.6 63.6±95.9 30.9 63.5±96.0
1 1 3 31.1 63.6±95.9 30.8 63.5±95.8
1 1 4 30.8 63.4±96.0 30.6 63.3±96.0
1 1 5 30.6 63.5±96.2 30.8 63.3±96.2
2 0 0 30.1 63.3±96.1 30.1 63.3±96.1
2 0 1 31.2 62.8±95.0 47.1 103.3±139.6
2 0 2 31.6 63.1±95.2 47.5 103.4±139.6
2 0 3 31.3 63.2±94.8 49.1 103.4±137.9
2 0 4 31.2 63.2±95.2 46.9 103.3±140.2
2 0 5 30.8 63.2±95.9 47.5 103.3±139.8
2 1 0 30.8 63.5±95.8 30.8 63.5±95.8
2 1 1 31.2 62.8±95.1 32.0 63.2±95.5
2 1 2 31.6 63.1±95.1 31.4 63.5±95.5
2 1 3 31.0 63.2±94.9 31.0 63.4±95.2
2 1 4 31.2 63.1±95.1 30.6 63.4±95.5
2 1 5 30.9 63.2±95.8 31.2 63.5±95.8
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Table C.36
SVR with RBF kernel with reduced data t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Abs. Mean Abs. Med. Abs. Mean Abs.
Diffs Error Error Error Error

0 0 1 49.4 73.3±89.5 48.4 71.7±89.5
0 0 2 45.4 72.9±92.0 47.3 72.2±91.4
0 0 3 45.7 69.9±89.8 44.3 68.8±89.4
0 0 4 43.7 70.4±91.1 44.9 70.8±90.2
0 0 5 43.4 68.9±89.2 42.5 67.1±86.8
0 1 0 43.1 70.9±92.4 45.2 72.2±91.6
0 1 1 49.0 72.8±90.0 48.2 72.2±90.2
0 1 2 46.6 72.6±91.5 47.1 72.9±91.1
0 1 3 46.0 69.9±89.5 45.1 69.0±88.8
0 1 4 44.6 71.2±91.1 45.4 71.7±90.7
0 1 5 44.3 70.3±90.0 43.8 67.5±86.7
1 0 0 41.6 70.1±91.7 41.6 70.1±91.7
1 0 1 49.5 72.3±88.0 47.5 71.2±89.0
1 0 2 47.7 73.9±90.5 47.2 72.5±90.3
1 0 3 49.0 72.3±87.2 48.3 72.2±88.6
1 0 4 43.9 70.5±91.2 44.5 70.8±91.5
1 0 5 42.9 69.3±89.3 42.7 69.1±90.0
1 1 0 43.4 69.7±90.8 43.4 69.7±90.8
1 1 1 49.8 73.2±89.4 47.7 71.7±90.3
1 1 2 48.0 73.6±90.6 47.2 72.5±89.8
1 1 3 49.3 73.1±88.4 49.0 72.7±87.9
1 1 4 44.4 70.8±91.4 45.1 71.3±91.4
1 1 5 43.4 69.8±90.4 43.4 69.1±89.2
2 0 0 44.2 69.9±91.0 44.2 69.9±91.0
2 0 1 50.2 73.0±87.7 50.2 73.0±87.7
2 0 2 47.1 71.5±89.2 47.1 71.5±89.2
2 0 3 46.3 69.5±87.3 46.3 69.5±87.3
2 0 4 46.3 71.3±89.3 46.3 71.3±89.3
2 0 5 47.2 70.5±87.9 47.1 70.5±87.9
2 1 0 45.0 70.1±91.2 45.0 70.1±91.2
2 1 1 51.0 73.1±88.2 50.9 73.2±87.7
2 1 2 47.7 72.2±88.9 47.6 71.6±89.2
2 1 3 47.4 70.5±87.8 46.9 69.9±87.2
2 1 4 45.7 70.6±89.3 46.0 71.1±89.2
2 1 5 46.4 69.8±88.4 46.0 71.1±89.2
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Table C.37
Linear regression with reduced data t∗2 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.84 3.90±10.6 0.88 3.84±10.4
0 0 2 0.89 3.87±10.3 0.88 3.76±9.7
0 0 3 0.89 3.79±9.5 0.88 3.80±9.7
0 0 4 0.90 3.85±9.8 0.89 3.78±9.7
0 0 5 0.87 3.85±9.8 0.88 3.91±10.3
0 1 0 0.82 3.87±10.3 0.80 3.85±10.6
0 1 1 0.80 3.90±10.8 0.80 3.85±10.6
0 1 2 0.85 3.89±10.6 0.82 3.80±10.2
0 1 3 0.85 3.84±10.1 0.83 3.83±10.3
0 1 4 0.83 3.88±10.4 0.83 3.84±10.3
0 1 5 0.83 3.86±10.3 0.84 3.93±10.7
1 0 0 0.91 3.89±10.0 0.91 3.89±10.0
1 0 1 0.83 3.93±10.7 0.89 3.85±10.3
1 0 2 0.91 3.91±10.3 0.90 3.80±9.8
1 0 3 0.88 3.87±9.9 0.90 3.84±9.8
1 0 4 0.90 3.93±10.2 0.89 3.81±9.8
1 0 5 0.87 3.92±10.1 0.86 3.97±10.5
1 1 0 0.84 3.91±10.4 0.83 3.91±10.4
1 1 1 0.80 3.90±10.7 0.80 3.84±10.3
1 1 2 0.85 3.89±10.5 0.83 3.80±10.1
1 1 3 0.84 3.87±10.2 0.81 3.84±10.2
1 1 4 0.83 3.93±10.5 0.83 3.82±10.2
1 1 5 0.83 3.91±10.4 0.85 3.95±10.6
2 0 0 0.92 3.70±9.3 0.87 3.71±9.9
2 0 1 0.87 3.74±10.2 0.87 3.71±9.9
2 0 2 0.88 3.72±9.9 0.88 3.65±9.3
2 0 3 0.92 3.64±9.3 0.89 3.69±9.5
2 0 4 0.89 3.70±9.5 0.92 3.74±9.7
2 0 5 0.88 3.70±9.5 0.87 3.83±10.2
2 1 0 0.85 3.82±10.2 0.82 3.81±10.4
2 1 1 0.81 3.85±10.7 0.82 3.81±10.4
2 1 2 0.84 3.83±10.5 0.84 3.78±10.2
2 1 3 0.84 3.80±10.2 0.83 3.82±10.4
2 1 4 0.86 3.85±10.5 0.84 3.86±10.5
2 1 5 0.85 3.83±10.4 0.83 3.95±11.0

218



Table C.38
SVR with RBF kernel regression with reduced data and t∗2 absolute error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.96 4.06±11.1 0.96 4.06±11.1
0 0 2 0.96 4.22±12.0 0.94 4.09±11.5
0 0 3 0.96 5.12±17.3 1.00 4.89±16.7
0 0 4 1.01 5.34±16.8 1.02 5.03±15.3
0 0 5 1.17 5.39±15.3 1.08 5.60±19.7
0 1 0 0.90 4.98±14.0 0.89 3.73±9.2
0 1 1 1.15 4.92±13.3 1.06 4.99±13.5
0 1 2 1.09 5.43±16.5 1.18 6.28±19.9
0 1 3 1.25 7.93±30.7 1.28 7.27±25.6
0 1 4 1.37 9.12±35.0 1.34 8.56±31.0
0 1 5 1.70 11.56±43.1 1.52 8.22±28.2
1 0 0 0.91 4.2±12.1 0.91 4.2±12.1
1 0 1 0.93 4.04±10.6 0.98 3.58±8.5
1 0 2 0.99 4.45±12.5 1.03 4.03±10.2
1 0 3 1.05 5.38±17.3 1.12 5.12±16.4
1 0 4 1.14 5.51±15.4 1.18 5.61±16.1
1 0 5 1.49 8.34±31.7 1.20 6.60±20.8
1 1 0 1.01 5.80±19.0 1.01 5.80±19.0
1 1 1 1.20 6.49±21.4 1.18 5.94±18.3
1 1 2 1.35 6.97±23.9 1.26 7.63±25.5
1 1 3 1.32 10.49±43.2 1.43 9.20±32.4
1 1 4 1.84 15.57±69.0 1.69 10.39±36.7
1 1 5 2.35 22.78±105.4 2.30 12.16±43.4
2 0 0 0.89 3.73±9.2 0.89 3.73±9.2
2 0 1 0.96 4.70±15.7 0.98 4.87±16.6
2 0 2 1.03 5.35±18.2 0.99 4.85±14.9
2 0 3 1.16 7.16±29.2 1.16 5.31±16.0
2 0 4 1.44 8.10±31.2 1.41 7.59±26.4
2 0 5 1.76 11.68±47.9 1.68 10.49±44.1
2 1 0 1.09 5.80±17.5 1.09 5.80±17.5
2 1 1 1.33 6.61±20.9 1.33 5.81±16.3
2 1 2 1.51 7.62±22.7 1.50 7.34±21.8
2 1 3 1.70 9.58±32.6 1.70 8.99±29.2
2 1 4 2.19 12.09±33.3 2.13 12.37±44.5
2 1 5 3.31 23.93±88.8 3.34 24.21±99.9
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Table C.39
Gaussian Process with reduced data t∗2 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.88 4.04±10.6 0.87 4.00±10.4
0 0 2 0.88 4.03±10.6 0.88 4.01±10.3
0 0 3 0.87 4.00±10.3 0.89 4.01±10.3
0 0 4 0.89 4.03±10.4 0.90 4.01±10.3
0 0 5 0.91 4.06±10.5 0.90 4.08±10.6
0 1 0 0.87 4.06±10.7 0.87 4.06±10.7
0 1 1 0.85 4.03±10.7 0.87 4.00±10.5
0 1 2 0.88 3.99±10.5 0.91 3.97±10.2
0 1 3 0.89 3.95±10.2 0.94 3.96±10.2
0 1 4 0.88 4.00±10.4 0.89 4.00±10.3
0 1 5 0.91 4.03±10.5 0.90 4.05±10.5
1 0 0 0.89 3.98±10.3 0.89 3.98±10.3
1 0 1 0.88 4.00±10.4 0.87 3.97±10.3
1 0 2 0.89 4.02±10.5 0.89 4.01±10.4
1 0 3 0.90 4.01±10.3 0.90 4.01±10.3
1 0 4 0.88 4.04±10.5 0.89 4.01±10.3
1 0 5 0.88 4.04±10.5 0.92 4.10±10.6
1 1 0 0.86 4.02±10.5 0.86 4.02±10.5
1 1 1 0.86 4.01±10.6 0.08 3.98±10.4
1 1 2 0.88 4.00±10.5 0.93 4.02±10.3
1 1 3 0.91 4.02±10.3 0.93 4.02±10.3
1 1 4 0.90 4.05±10.5 0.90 4.03±10.4
1 1 5 0.90 4.06±10.5 0.92 4.08±10.5
2 0 0 0.91 4.02±10.4 0.91 4.02±10.4
2 0 1 0.88 3.97±10.3 0.88 3.96±10.3
2 0 2 0.89 3.95±10.2 0.89 3.95±10.1
2 0 3 0.87 3.94±10.0 0.90 3.98±10.2
2 0 4 0.90 3.99±10.3 0.89 3.98±10.2
2 0 5 0.91 4.03±10.4 0.89 4.01±10.3
2 1 0 0.90 3.96±10.2 0.90 3.96±10.2
2 1 1 0.88 3.93±10.3 0.89 3.92±10.2
2 1 2 0.93 3.98±10.3 0.90 3.90±10.0
2 1 3 0.93 3.98±10.1 0.93 3.94±10.1
2 1 4 0.91 4.04±10.4 0.90 3.96±10.1
2 1 5 0.91 4.03±10.4 0.93 4.00±10.3

220



Table C.40
SVR with linear kernel and with reduced data t∗2 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.63 2.14±5.9 0.64 2.10±5.8
0 0 2 0.64 2.13±5.8 0.65 2.03±5.3
0 0 3 0.66 2.11±5.6 0.66 2.08±5.5
0 0 4 0.67 2.06±5.5 0.67 2.06±5.4
0 0 5 0.66 2.11±5.6 0.66 2.14±5.8
0 1 0 0.67 2.03±5.2 0.67 2.03±5.2
0 1 1 0.64 2.16±6.0 0.65 2.14±5.9
0 1 2 0.67 2.16±5.8 0.66 2.06±5.3
0 1 3 0.65 2.12±5.6 0.67 2.07±5.4
0 1 4 0.67 2.09±5.6 0.68 2.08±5.5
0 1 5 0.66 2.10±5.5 0.66 2.13±5.7
1 0 0 0.66 2.19±5.8 0.66 2.19±5.8
1 0 1 0.64 2.16±6.0 0.62 2.12±5.8
1 0 2 0.66 2.16±5.8 0.63 2.03±5.3
1 0 3 0.65 2.12±5.6 0.64 2.09±5.5
1 0 4 0.67 2.09±5.6 0.66 2.06±5.5
1 0 5 0.66 2.10±5.5 0.63 2.15±5.7
1 1 0 0.66 2.18±5.8 0.66 2.18±5.8
1 1 1 0.63 2.21±6.1 0.63 2.16±5.8
1 1 2 0.64 2.19±5.9 0.63 2.06±5.3
1 1 3 0.63 2.18±5.8 0.63 2.12±5.5
1 1 4 0.65 2.19±6.0 0.66 2.06±5.4
1 1 5 0.64 2.20±5.8 0.63 2.12±5.6
2 0 0 0.67 1.98±5.1 0.67 1.98±5.1
2 0 1 0.64 2.06±5.7 0.72 2.49±7.1
2 0 2 0.67 2.03±5.6 0.72 2.47±6.9
2 0 3 0.68 2.04±5.5 0.74 2.51±7.1
2 0 4 0.67 2.03±5.6 0.72 2.46±7.0
2 0 5 0.66 2.06±5.6 0.72 2.48±7.0
2 1 0 0.67 1.99±5.1 0.67 1.99±5.1
2 1 1 0.64 2.04±5.7 0.67 2.05±5.5
2 1 2 0.67 2.03±5.6 0.66 1.98±5.2
2 1 3 0.68 2.03±5.4 0.66 2.03±5.3
2 1 4 0.68 2.01±5.5 0.67 2.00±5.3
2 1 5 0.66 2.06±5.6 0.65 2.07±5.6
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Table C.41
SVR with RBF kernel with reduced data t∗2 relative error.

7 day 14 day
# of Spl. Sam. Med. Rel. Mean Rel. Med. Rel. Mean Rel.
Diffs Error Error Error Error

0 0 1 0.85 3.81±10.2 0.82 3.68±9.8
0 0 2 0.83 3.59±9.4 0.81 3.63±10.5
0 0 3 0.78 3.27±8.3 0.79 3.15±7.8
0 0 4 0.80 3.43±8.9 0.83 3.47±9.0
0 0 5 0.78 3.23±8.5 0.79 3.28±8.6
0 1 0 0.78 3.32±8.7 0.80 3.47±8.9
0 1 1 0.83 3.92±10.8 0.84 3.84±10.4
0 1 2 0.83 3.57±9.3 0.83 3.71±10.6
0 1 3 0.79 3.30±8.3 0.80 3.17±7.7
0 1 4 0.82 3.48±9.0 0.83 3.53±9.1
0 1 5 0.82 3.44±9.1 0.79 3.32±8.7
1 0 0 0.75 3.23±8.4 0.75 3.23±8.4
1 0 1 0.88 3.72±9.8 0.84 3.59±9.6
1 0 2 0.83 3.74±9.9 0.81 3.79±10.5
1 0 3 0.86 3.42±8.3 0.87 3.37±8.1
1 0 4 0.81 3.45±8.9 0.81 3.47±9.1
1 0 5 0.78 3.31±8.6 0.79 3.31±8.6
1 1 0 0.78 3.37±8.8 0.78 3.37±8.8
1 1 1 0.86 3.84±10.2 0.83 3.70±9.9
1 1 2 0.83 3.71±9.7 0.83 3.79±10.5
1 1 3 0.86 3.52±8.6 0.88 3.44±8.1
1 1 4 0.82 3.46±9.0 0.82 3.49±9.1
1 1 5 0.80 3.45±9.2 0.79 3.33±8.7
2 0 0 0.81 3.34±8.8 0.81 3.34±8.8
2 0 1 0.87 3.82±10.2 0.87 3.82±10.2
2 0 2 0.82 3.62±9.5 0.82 3.62±9.5
2 0 3 0.82 3.24±8.0 0.82 3.24±8.0
2 0 4 0.85 3.52±8.9 0.85 3.52±8.9
2 0 5 0.85 3.44±8.8 0.85 3.44±8.8
2 1 0 0.80 3.37±8.9 0.80 3.37±8.9
2 1 1 0.87 3.85±10.2 0.88 3.83±10.2
2 1 2 0.84 3.60±9.2 0.82 3.63±9.5
2 1 3 0.82 3.30±8.0 0.84 3.28±8.0
2 1 4 0.84 3.49±8.9 0.85 3.52±8.9
2 1 5 0.82 3.42±8.7 0.86 3.45±8.8
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Appendix D

Piecewise Aggregate

Approximation Fit

The figures in this sections display the behaviors which are seen for the evaluations

being conducted across the folds. Fig. D.1 is the length of survival distributions for

each fold used in the 10-fold cross validation and Fig. D.2 is the histogram view.
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D.1 Length of Survival Distributions
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Figure D.1: LOS distributions per fold, all exhibit the same behaviors
overall, a product of the cross validation split used.

D.2 PAA Segmentation

In the first phase of segmentation, the genetic algorithm utilized a fitness function

which incorporated the evaluation of the model. This is elaborated on in Fig. D.3.
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Figure D.2: LOS histograms for censored data set distributions per fold,
all exhibit the same behaviors overall, a product of the cross validation split
used.

This was not used in the evaluations due to the computational intensity being in-

feasible. During the evaluation the complete evaluation is needed for each genetic

algorithm fitness calculation, with support vector regression this becomes even more

intensive with the addition of nested cross validation for parameter selection
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Figure D.3: Fitness function for genetic algorithm initial version.
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Appendix E

Copyright Permissions

In this appendix is the correspondences and documentation pertaining to permissions

to use work that is published in some variation elsewhere. All of the work has been

modified from the form published in these venues.

E.1 Taxonomy of Representation Figure

The correspondence for permission to use the adapted taxonomy of representation

figure, Figure 2.4.
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Re: Copyright Permissions 
1 message

Jessica Lin <jessica@gmu.edu> Thu, Nov 10, 2016 at 4:19 PM
To: Jennifer Winikus <jawiniku@mtu.edu>

Hi Jennifer,

Congratulations! That’s fine regarding the figure.

Regards,
Jessica

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Dr. Jessica Lin 
Associate Professor 
Department of Computer Science  
George Mason University  
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"Prediction is very difficult, especially about the future."  
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From: Jennifer Winikus <jawiniku@mtu.edu> 
Date: Thursday, November 10, 2016 at 4:26 PM 
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Subject: Copyright Permissions 

Hi Dr. Lin,

I just successfully defended my PhD, and in my Dissertation I have included a modified version of Figure 1
from the paper "A Symbolic Representation of Time Series, with Implications for Streaming Algorithms" by
Lin et. al. (doi 10.1145/882082.882086) published in 2003 that you did with Dr. Keogh. I would like
permissions to include the modified figure in my dissertation with the citation to the paper. Thank you.  

Jennifer Winikus
Teaching Assistant Professor
Department of Computer Science and Engineering
University at Buffalo, The State University of New York
Davis 351 | 716-645-4757 | jwinikus@buffalo.edu 
Computer Engineering- PhD Candidate- Michigan Technological University
jawiniku@mtu.edu
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E.2 2016 IEEE International Conference on Elec-

tro Information Technology

The work presented in Chapter 3 was published in part in the conference proceedings

for 2016 IEEE International Conference on Electro Information Technology. Here is

the copyright policy granting use in the dissertation.
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