49,347 research outputs found

    Reasoning about Minimal Belief and Negation as Failure

    Full text link
    We investigate the problem of reasoning in the propositional fragment of MBNF, the logic of minimal belief and negation as failure introduced by Lifschitz, which can be considered as a unifying framework for several nonmonotonic formalisms, including default logic, autoepistemic logic, circumscription, epistemic queries, and logic programming. We characterize the complexity and provide algorithms for reasoning in propositional MBNF. In particular, we show that entailment in propositional MBNF lies at the third level of the polynomial hierarchy, hence it is harder than reasoning in all the above mentioned propositional formalisms for nonmonotonic reasoning. We also prove the exact correspondence between negation as failure in MBNF and negative introspection in Moore's autoepistemic logic

    Constructive Provability Logic

    Full text link
    We present constructive provability logic, an intuitionstic modal logic that validates the L\"ob rule of G\"odel and L\"ob's provability logic by permitting logical reflection over provability. Two distinct variants of this logic, CPL and CPL*, are presented in natural deduction and sequent calculus forms which are then shown to be equivalent. In addition, we discuss the use of constructive provability logic to justify stratified negation in logic programming within an intuitionstic and structural proof theory.Comment: Extended version of IMLA 2011 submission of the same titl

    Computing Strong and Weak Permissions in Defeasible Logic

    Full text link
    In this paper we propose an extension of Defeasible Logic to represent and compute three concepts of defeasible permission. In particular, we discuss different types of explicit permissive norms that work as exceptions to opposite obligations. Moreover, we show how strong permissions can be represented both with, and without introducing a new consequence relation for inferring conclusions from explicit permissive norms. Finally, we illustrate how a preference operator applicable to contrary-to-duty obligations can be combined with a new operator representing ordered sequences of strong permissions which derogate from prohibitions. The logical system is studied from a computational standpoint and is shown to have liner computational complexity

    The Relevant Logic E and Some Close Neighbours: A Reinterpretation

    Get PDF
    This paper has two aims. First, it sets out an interpretation of the relevant logic E of relevant entailment based on the theory of situated inference. Second, it uses this interpretation, together with Anderson and Belnap’s natural deduc- tion system for E, to generalise E to a range of other systems of strict relevant implication. Routley–Meyer ternary relation semantics for these systems are produced and completeness theorems are proven
    • …
    corecore