3,280 research outputs found

    Data centric trust evaluation and prediction framework for IOT

    Get PDF
    © 2017 ITU. Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas

    Autonomous service composition in symbiotic networks

    Get PDF
    Part 2: PhD Workshop: Autonomic Network and Service ManagementInternational audienceTo cope with the ever-growing number of wired and wireless networks, we introduce the notion of so-called symbiotic networks. These networks seamlessly operate across layers and over network boundaries, resulting in improved scalability, dependability, and energy efficiency. This particular Ph.D. research focuses on software services operating in such symbiotic networks. When two or more networks merge, the services provided on them may be combined into a service composition that is much more than the sum of its parts. Driven by two distinct use cases, we aim to enable fully autonomous service composition and resource provisioning. For the first use case, an in-building over-the-top service platform, we describe a software architecture and a set of generic resource provisioning algorithms. The second use case, which focuses on wireless body area networks, will allow us to expand our research domain into highly dynamic symbiotic network environments, where services appear and disappear more frequently

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Trustworthiness and Quality of Context Information

    Get PDF
    Context-aware service platforms use context information to customize their services to the current users’ situation. Due to technical limitations in sensors and context reasoning algorithms, context information does not always represent accurately the reality, and Quality of Context (QoC) models have been proposed to quantify this inaccuracy. The problems we have identified with existing QoC models is that they do not follow a standard terminology and none of them clearly differentiate quality attributes related to instances of context information (e.g. accuracy and precision) from trustworthiness, which is a quality attribute related to the context information provider. In this paper we propose a QoC model and management architecture that supports the management of QoC trustworthiness and also contributes to the terminology alignment of existing QoC models.\ud In our QoC model, trustworthiness is a measurement of the reliability of a context information provider to provide context information about a specific entity according to a certain quality level. This trustworthiness value is used in our QoC management architecture to support context-aware service providers in the selection of trustworthy context\ud providers. As a proof of concept to demonstrate the feasibility of our work we show a prototype implementation of our QoC model and management architecture

    Trustee: A Trust Management System for Fog-enabled Cyber Physical Systems

    Get PDF
    In this paper, we propose a lightweight trust management system (TMS) for fog-enabled cyber physical systems (Fog-CPS). Trust computation is based on multi-factor and multi-dimensional parameters, and formulated as a statistical regression problem which is solved by employing random forest regression model. Additionally, as the Fog-CPS systems could be deployed in open and unprotected environments, the CPS devices and fog nodes are vulnerable to numerous attacks namely, collusion, self-promotion, badmouthing, ballot-stuffing, and opportunistic service. The compromised entities can impact the accuracy of trust computation model by increasing/decreasing the trust of other nodes. These challenges are addressed by designing a generic trust credibility model which can countermeasures the compromise of both CPS devices and fog nodes. The credibility of each newly computed trust value is evaluated and subsequently adjusted by correlating it with a standard deviation threshold. The standard deviation is quantified by computing the trust in two configurations of hostile environments and subsequently comparing it with the trust value in a legitimate/normal environment. Our results demonstrate that credibility model successfully countermeasures the malicious behaviour of all Fog-CPS entities i.e. CPS devices and fog nodes. The multi-factor trust assessment and credibility evaluation enable accurate and precise trust computation and guarantee a dependable Fog-CPS system

    Towards a normalized trustworthiness approach to enhance security in on-line assessment

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper proposes an approach to enhance information security in on-line assessment based on a normalized trustworthiness model. Among collaborative e-Learning drawbacks which are not completely solved, we have investigated information security requirements in on-line assessment (e-assessment). To the best of our knowledge, security requirements cannot be reached with technology alone, therefore, new models such as trustworthiness approaches can complete technological solutions and support e-assessment requirements for e-Learning. Although trustworthiness models can be defined and included as a service in e-assessment security frameworks, there are multiple factors related to trustworthiness which cannot be managed without normalization. Among these factors we discuss trustworthiness multiple sources, different data source formats, measure techniques and other trustworthiness factors such as rules, evolution or context. Hence, in this paper, we justify why trustworthiness normalization is needed and a normalized trustworthiness model is proposed by reviewing existing normalization procedures for trustworthy values applied to e-assessments. Eventually, we examine the potential of our normalized trustworthiness model in a real online collaborative learning course.Peer ReviewedPostprint (author's final draft

    NEMESYS: Enhanced Network Security for Seamless Service Provisioning in the Smart Mobile Ecosystem

    Full text link
    As a consequence of the growing popularity of smart mobile devices, mobile malware is clearly on the rise, with attackers targeting valuable user information and exploiting vulnerabilities of the mobile ecosystems. With the emergence of large-scale mobile botnets, smartphones can also be used to launch attacks on mobile networks. The NEMESYS project will develop novel security technologies for seamless service provisioning in the smart mobile ecosystem, and improve mobile network security through better understanding of the threat landscape. NEMESYS will gather and analyze information about the nature of cyber-attacks targeting mobile users and the mobile network so that appropriate counter-measures can be taken. We will develop a data collection infrastructure that incorporates virtualized mobile honeypots and a honeyclient, to gather, detect and provide early warning of mobile attacks and better understand the modus operandi of cyber-criminals that target mobile devices. By correlating the extracted information with the known patterns of attacks from wireline networks, we will reveal and identify trends in the way that cyber-criminals launch attacks against mobile devices.Comment: Accepted for publication in Proceedings of the 28th International Symposium on Computer and Information Sciences (ISCIS'13); 9 pages; 1 figur
    corecore