174 research outputs found

    Flexible Receivers in CMOS for Wireless Communication

    Get PDF
    Consumers are pushing for higher data rates to support more services that are introduced in mobile applications. As an example, a few years ago video-on-demand was only accessed through landlines, but today wireless devices are frequently used to stream video. To support this, more flexible network solutions have merged in 4G, introducing new technical problems to the mobile terminal. New techniques are thus needed, and this dissertation explores five different ideas for receiver front-ends, that are cost-efficient and flexible both in performance and operating frequency. All ideas have been implemented in chips fabricated in 65 nm CMOS technology and verified by measurements. Paper I explores a voltage-mode receiver front-end where sub-threshold positive feedback transistors are introduced to increase the linearity in combination with a bootstrapped passive mixer. Paper II builds on the idea of 8-phase harmonic rejection, but simplifies it to a 6-phase solution that can reject noise and interferers at the 3rd order harmonic of the local oscillator frequency. This provides a good trade-off between the traditional quadrature mixer and the 8- phase harmonic rejection mixer. Furthermore, a very compact inductor-less low noise amplifier is introduced. Paper III investigates the use of global negative feedback in a receiver front-end, and also introduces an auxiliary path that can cancel noise from the main path. In paper IV, another global feedback based receiver front-end is designed, but with positive feedback instead of negative. By introducing global positive feedback, the resistance of the transistors in a passive mixer-first receiver front-end can be reduced to achieve a lower noise figure, while still maintaining input matching. Finally, paper V introduces a full receiver chain with a single-ended to differential LNA, current-mode downconversion mixers, and a baseband circuity that merges the functionalities of the transimpedance amplifier, channel-select filter, and analog-to-digital converter into one single power-efficient block

    RF system model for In-band full duplex communications

    Get PDF
    Abstract. In recent years by increasing the demands for communication services various technologies are examined in order to improve the throughput and spectrum efficiency of the wireless communication systems. For improving the performance a communication network, system deficiencies such as transmitter and receiver impairments need to be removed or compensated. One way to improve the network efficiency is to employ full duplex technology. Full duplex technology doubles the network capacity compared to the case when typical frequency division duplexing (FDD) or time division duplexing (TDD) are employed in a transceiver design. Although full duplex (FD) technology has enhanced the performance of the radio communication devices, the main challenge in full duplex communication is the leaking self-interference signal from the transmitter to the receiver. Different methods are employed to suppress the self-interference signal in digital and analog domains which are categorized as passive or active cancellations. These techniques are discussed in this thesis in order to understand from which point in the propagation path, the required signal for cancellation can be taken and how those techniques are employed in digital and analog domains. For having a good self-interference cancellation (SIC) both analog and digital cancellation techniques are needed since typical digital suppression method is low complex and somewhat limited. In this thesis, first we start with discussing about the full duplex technology and the reason why it has become popular in recent years and later full duplex deficiencies are examined. In the following chapters different cancellation methods are introduced and some results are provided in Chapter 5

    Interference Suppression Techniques for RF Receivers

    Get PDF
    • …
    corecore