4,546 research outputs found

    Boundary induced non linearities at small Reynolds Numbers

    Get PDF
    We investigate the influence of boundary slip velocity in Newtonian fluids at finite Reynolds numbers. Numerical simulations with Lattice Boltzmann method (LBM) and Finite Differences method (FDM) are performed to quantify the effect of heterogeneous boundary conditions on the integral and local properties of the flow. Non linear effects are induced by the non homogeneity of the boundary condition and change the symmetry properties of the flow inducing an overall mean flow reduction. To explain the observed drag modification, reciprocal relations for stationary ensembles are used, predicting a reduction of the mean flow rate from the creeping flow to be proportional to the fourth power of the friction Reynolds number. Both numerical schemes are then validated within the theoretical predictions and reveal a pronounced numerical efficiency of the LBM with respect to FDM.Comment: 29 pages, 10 figure

    A solvable model of Vlasov-kinetic plasma turbulence in Fourier-Hermite phase space

    Full text link
    A class of simple kinetic systems is considered, described by the 1D Vlasov-Landau equation with Poisson or Boltzmann electrostatic response and an energy source. Assuming a stochastic electric field, a solvable model is constructed for the phase-space turbulence of the particle distribution. The model is a kinetic analog of the Kraichnan-Batchelor model of chaotic advection. The solution of the model is found in Fourier-Hermite space and shows that the free-energy flux from low to high Hermite moments is suppressed, with phase mixing cancelled on average by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is an ineffective route to dissipation (i.e., to thermalisation of electric energy via velocity space). The full Fourier-Hermite spectrum is derived. Its asymptotics are m−3/2m^{-3/2} at low wave numbers and high Hermite moments (mm) and m−1/2k−2m^{-1/2}k^{-2} at low Hermite moments and high wave numbers (kk). These conclusions hold at wave numbers below a certain cut off (analog of Kolmogorov scale), which increases with the amplitude of the stochastic electric field and scales as inverse square of the collision rate. The energy distribution and flows in phase space are a simple and, therefore, useful example of competition between phase mixing and nonlinear dynamics in kinetic turbulence, reminiscent of more realistic but more complicated multi-dimensional systems that have not so far been amenable to complete analytical solution.Comment: 35 pages, minor edits, final version accepted by JP

    Spectral properties of the trap model on sparse networks

    Get PDF
    One of the simplest models for the slow relaxation and aging of glasses is the trap model by Bouchaud and others, which represents a system as a point in configuration-space hopping between local energy minima. The time evolution depends on the transition rates and the network of allowed jumps between the minima. We consider the case of sparse configuration-space connectivity given by a random graph, and study the spectral properties of the resulting master operator. We develop a general approach using the cavity method that gives access to the density of states in large systems, as well as localisation properties of the eigenvectors, which are important for the dynamics. We illustrate how, for a system with sparse connectivity and finite temperature, the density of states and the average inverse participation ratio have attributes that arise from a non-trivial combination of the corresponding mean field (fully connected) and random walk (infinite temperature) limits. In particular, we find a range of eigenvalues for which the density of states is of mean-field form but localisation properties are not, and speculate that the corresponding eigenvectors may be concentrated on extensively many clusters of network sites.Comment: 41 pages, 15 figure
    • …
    corecore