33,458 research outputs found

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case

    A New Approach to Coding in Content Based MANETs

    Full text link
    In content-based mobile ad hoc networks (CB-MANETs), random linear network coding (NC) can be used to reliably disseminate large files under intermittent connectivity. Conventional NC involves random unrestricted coding at intermediate nodes. This however is vulnerable to pollution attacks. To avoid attacks, a brute force approach is to restrict the mixing at the source. However, source restricted NC generally reduces the robustness of the code in the face of errors, losses and mobility induced intermittence. CB-MANETs introduce a new option. Caching is common in CB MANETs and a fully reassembled cached file can be viewed as a new source. Thus, NC packets can be mixed at all sources (including the originator and the intermediate caches) yet still providing protection from pollution. The hypothesis we wish to test in this paper is whether in CB-MANETs with sufficient caches of a file, the performance (in terms of robustness) of the restricted coding equals that of unrestricted coding. In this paper, we examine and compare unrestricted coding to full cache coding, source only coding, and no coding. As expected, we find that full cache coding remains competitive with unrestricted coding while maintaining full protection against pollution attacks

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    How Many Cooks Spoil the Soup?

    Get PDF
    In this work, we study the following basic question: "How much parallelism does a distributed task permit?" Our definition of parallelism (or symmetry) here is not in terms of speed, but in terms of identical roles that processes have at the same time in the execution. We initiate this study in population protocols, a very simple model that not only allows for a straightforward definition of what a role is, but also encloses the challenge of isolating the properties that are due to the protocol from those that are due to the adversary scheduler, who controls the interactions between the processes. We (i) give a partial characterization of the set of predicates on input assignments that can be stably computed with maximum symmetry, i.e., Θ(Nmin)\Theta(N_{min}), where NminN_{min} is the minimum multiplicity of a state in the initial configuration, and (ii) we turn our attention to the remaining predicates and prove a strong impossibility result for the parity predicate: the inherent symmetry of any protocol that stably computes it is upper bounded by a constant that depends on the size of the protocol.Comment: 19 page

    Optimal configuration of active and backup servers for augmented reality cooperative games

    Get PDF
    Interactive applications as online games and mobile devices have become more and more popular in recent years. From their combination, new and interesting cooperative services could be generated. For instance, gamers endowed with Augmented Reality (AR) visors connected as wireless nodes in an ad-hoc network, can interact with each other while immersed in the game. To enable this vision, we discuss here a hybrid architecture enabling game play in ad-hoc mode instead of the traditional client-server setting. In our architecture, one of the player nodes also acts as the server of the game, whereas other backup server nodes are ready to become active servers in case of disconnection of the network i.e. due to low energy level of the currently active server. This allows to have a longer gaming session before incurring in disconnections or energy exhaustion. In this context, the server election strategy with the aim of maximizing network lifetime is not so straightforward. To this end, we have hence analyzed this issue through a Mixed Integer Linear Programming (MILP) model and both numerical and simulation-based analysis shows that the backup servers solution fulfills its design objective
    • 

    corecore