21,592 research outputs found

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    On statistics, computation and scalability

    Full text link
    How should statistical procedures be designed so as to be scalable computationally to the massive datasets that are increasingly the norm? When coupled with the requirement that an answer to an inferential question be delivered within a certain time budget, this question has significant repercussions for the field of statistics. With the goal of identifying "time-data tradeoffs," we investigate some of the statistical consequences of computational perspectives on scability, in particular divide-and-conquer methodology and hierarchies of convex relaxations.Comment: Published in at http://dx.doi.org/10.3150/12-BEJSP17 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Teaching telecommunication standards: bridging the gap between theory and practice

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Telecommunication standards have become a reliable mechanism to strengthen collaboration between industry and research institutions to accelerate the evolution of communications systems. Standards are needed to enable cooperation while promoting competition. Within the framework of a standard, the companies involved in the standardization process contribute and agree on appropriate technical specifications to ensure diversity and compatibility, and facilitate worldwide commercial deployment and evolution. Those parts of the system that can create competitive advantages are intentionally left open in the specifications. Such specifications are extensive, complex, and minimalistic. This makes telecommunication standards education a difficult endeavor, but it is much demanded by industry and governments to spur economic growth. This article describes a methodology for teaching wireless communications standards. We define our methodology around six learning stages that assimilate the standardization process and identify key learning objectives for each. Enabled by software-defined radio technology, we describe a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. Using only open source software and commercial of-the-shelf computers, this environment is portable and can easily be recreated at other educational institutions and adapted to their educational needs and constraints. We discuss our and our students' experiences when employing the proposed methodology to 4G LTE standard education at Barcelona Tech.Peer ReviewedPostprint (author's final draft

    autoAx: An Automatic Design Space Exploration and Circuit Building Methodology utilizing Libraries of Approximate Components

    Full text link
    Approximate computing is an emerging paradigm for developing highly energy-efficient computing systems such as various accelerators. In the literature, many libraries of elementary approximate circuits have already been proposed to simplify the design process of approximate accelerators. Because these libraries contain from tens to thousands of approximate implementations for a single arithmetic operation it is intractable to find an optimal combination of approximate circuits in the library even for an application consisting of a few operations. An open problem is "how to effectively combine circuits from these libraries to construct complex approximate accelerators". This paper proposes a novel methodology for searching, selecting and combining the most suitable approximate circuits from a set of available libraries to generate an approximate accelerator for a given application. To enable fast design space generation and exploration, the methodology utilizes machine learning techniques to create computational models estimating the overall quality of processing and hardware cost without performing full synthesis at the accelerator level. Using the methodology, we construct hundreds of approximate accelerators (for a Sobel edge detector) showing different but relevant tradeoffs between the quality of processing and hardware cost and identify a corresponding Pareto-frontier. Furthermore, when searching for approximate implementations of a generic Gaussian filter consisting of 17 arithmetic operations, the proposed approach allows us to identify approximately 10310^3 highly important implementations from 102310^{23} possible solutions in a few hours, while the exhaustive search would take four months on a high-end processor.Comment: Accepted for publication at the Design Automation Conference 2019 (DAC'19), Las Vegas, Nevada, US
    corecore