5 research outputs found

    A Method for Upscaling In Situ Soil Moisture Measurements to Satellite Footprint Scale Using Random Forests

    Get PDF
    Geophysical products generated from remotely sensed data require validation to evaluate their accuracy. Typically in situ measurements are used for validation, as is the case for satellite-derived soil moisture products. However, a large disparity in scales often exists between in situ measurements (covering meters to 10 s of meters) and satellite footprints (often hundreds of meters to several kilometers), making direct comparison difficult. Before using in situ measurements for validation, they must be “upscaled” to provide the mean soil moisture within the satellite footprint. There are a number of existing upscaling methods previously applied to soil moisture measurements, but many place strict requirements on the number and spatial distribution of soil moisture sensors difficult to achieve with permanent/semipermanent ground networks necessary for long-term validation efforts. A new method for upscaling is presented here, using Random Forests to fit a model between in situ measurements and a number of landscape parameters and variables impacting the spatial and temporal distributions of soil moisture. The method is specifically intended for validation of the NASA soil moisture active passive (SMAP) products at 36-, 9-, and 3-km scales. The method was applied to in situ data from the SoilSCAPE network in California, validated with data from the SMAPVEX12 campaign in Manitoba, Canada with additional verification from the TxSON network in Texas. For the SMAPVEX12 site, the proposed method was compared to extensive field measurements and was able to predict mean soil moisture over a large area more accurately than other upscaling approaches

    Upscaling soil moisture measurements from in situ sensors

    Get PDF
    Accurate, field-scale soil moisture information is needed to match the spatial scale of land and water management decisions related to agricultural production and environmental protection. Soil moisture measurements at the field-scale are limited because the resolution of most satellite-based soil moisture products is too coarse, while most in situ monitoring networks can provide only point-scale, not field-scale, data. This research attempts to develop a broadly applicable upscaling approach for observations from in situ soil moisture sensors using data from the Marena, Oklahoma, In Situ Sensor Testbed (MOISST) and a cosmic-ray neutron rover. The landscape at the MOISST site is predominantly grassland with some deciduous trees and eastern redcedar intermixed. Cosmic-ray neutron rover survey data were used to measure average soil moisture for the ~64 ha site on 12 dates in 2019-2020. The relationships between the point-scale in situ data and the field-scale rover data were examined using data from six in situ stations. Statistical modeling was used to identify the soil, terrain, and vegetation properties that influence these relationships. Site-specific linear upscaling models estimated the field average soil moisture with root mean squared error (RMSE) values ranging from 0.014 - 0.022 cm3 cm-3, but these models are not transferable to other sites. A general upscaling model using soil texture data was developed and achieved RMSE values ranging from 0.017 - 0.038 cm3 cm-3 for four calibration sites and values ranging from 0.015 - 0.021 cm3 cm-3 for two validation sites. The general upscaling model demonstrated accuracy better than the commonly used threshold of 0.04 cm3 cm-3 and should be further tested to evaluate its suitability as a broadly applicable upscaling approach for point-scale in situ monitoring stations

    A Method for Upscaling In Situ Soil Moisture Measurements to Satellite Footprint Scale Using Random Forests

    No full text

    Mapping Soil Moisture from Remotely Sensed and In-situ Data with Statistical Methods

    Get PDF
    Soil moisture is an important factor for accurate prediction of agricultural productivity and rainfall runoff with hydrological models. Remote sensing satellites such as Soil Moisture Active Passive (SMAP) offer synoptic views of soil moisture distribution at a regional-to-global scale. To use the soil moisture product from these satellites, however, requires a downscaling of the data from an usually large instantaneous field of view (i.e. 36 km) to the watershed analysis scales ranging from 30 m to 1 km. In addition, validation of the soil moisture products using the ground station observations without an upscaling treatment would lead to cross-level fallacy. In the literature of geographical analysis, scale is one of the top research concens because of the needs for multi-source geospatial data fusion. This dissertation research introduced a multi-level soil moisture data assimilation and processing methodology framework based on spatial information theories. The research contains three sections: downscaling using machine learning and geographically weighted regression, upscaling ground network observation to calibrate satellite data, and spatial and temporal multi-scale data assimilation using spatio-temporal interpolation. (1) Soil moisture downscaling In the first section, a downscaling method is designed using 1-km geospatial data to obtain subpixel soil moisture from the 9-km soil moisture product of the SMAP satellite. The geospatial data includes normalized difference vegetation index (NDVI), land surface temperature (LST), gross primary productivity (GPP), topographical moisture index (TMI), with all resampled to 1-km resolution. The machine learning algorithm – random forest was used to create a prediction model of the soil moisture at a 1-km resolution. The 1-km soil moisture product was compared with the ground samples from the West Texas Mesonet (WTM) station data. The residual was then interpolated to compensate the unpredicted variability of the model. The entire process was based on the concept of regression kriging- where the regression was done by the random forest model. Results show that the downscaling approach was able to achieve better accuracy than the current statistical downscaling methods. (2) Station network data upscaling The Texas Soil Observation Network (TxSON) network was designed to test the feasibility of upscaling the in-situ data to match the scale of the SMAP data. I advanced the upscaling method by using the Voronoi polygons and block kriging with a Gaussian kernel aggregation. The upscaling algorithm was calibrated using different spatial aggregation parameters, such as the fishnet cell size and Gaussian kernel standard deviation. The use of the kriging can significantly reduce the spatial autocorrelation among the TxSON stations because of its declustering ability. The result proved the new upscaling method was better than the traditional ones. (3) Multi-scale data fusion in a spatio-temporal framework None of the current works for soil moisture statistical downscaling honors time and space equally. It is important, however, that the soil moisture products are consistent in both domains. In this section, the space-time kriging model for soil moisture downscaling and upscaling computation framework designed in the last two sections is implemented to create a spatio-temporal integrated solution to soil moisture multi-scale mapping. The present work has its novelty in using spatial statistics to reconcile the scale difference from satellite data and ground observations, and therefore proposes new theories and solutions for dealing with the modifiable areal unit problem (MAUP) incurred in soil moisture mapping from satellite and ground stations

    Effect of snow microstructure and subnivean water bodies on microwave radiometry of seasonal snow

    Get PDF
    Remote sensing using microwave radiometry is an acknowledged method for monitoring various environmental processes in the cryosphere, atmosphere, soil, vegetation and oceans. Several decades long time series of spaceborne passive microwave observations can be used to detect trends relating to climate change, while present measurements provide information on the current state of the environment. Unlike optical wavelengths, microwaves are mostly insensitive to atmospheric and lighting conditions and are therefore suitable for monitoring seasonal snow in the Arctic. One of the major challenges in the utilization of spaceborne passive microwave observations for snow measurements is the poor spatial resolution of instruments. The interpretation of measurements over heterogeneous areas requires sophisticated microwave emission models relating the measured parameters to physical properties of snow, vegetation and the subnivean layer. Especially the high contrast in the electrical properties of soil and liquid water introduces inaccuracies in the retrieved parameters close to coastlines, lakes and wetlands, if the subnivean water bodies are not accounted for in the algorithm. The first focus point of this thesis is the modelling of brightness temperature of ice- and snow-covered water bodies and their differences from snow-covered forested and open land areas. Methods for modelling the microwave signatures of water bodies and for using that information in the retrieval of snow parameters from passive microwave measurements are presented in this thesis. The second focus point is the effect of snow microstructure on its microwave signature. Even small changes in the size of scattering particles, snow grains, modify the measured brightness temperature notably. The coupling of different modelled and measured snow microstructural parameters with a microwave snow emission model and the application of those parameters in the retrieval of snow parameters from remote sensing data are studied
    corecore