
UPSCALING SOIL MOISTURE MEASUREMENTS 

FROM IN SITU SENSORS 

    

 

 

   By 

   WILLIAM GERALD BROWN JR 

   Bachelor of Science in Environmental Science 

   Oklahoma State University 

   Stillwater, Oklahoma 

   2019 

 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   MASTER OF SCIENCE 

   July 2021  



` 

ii 
 

   UPSCALING SOIL MOISTURE MEASUREMENTS 

FROM IN SITU SENSORS 

 

 

Thesis  Approved: 

 

 

Dr. Tyson Ochsner (Thesis Advisor) 

 

Dr. Sergio Abit 

 

Dr. Chris Zou 

 



` 

iii 
Acknowledgements reflect the views of the author and are not endorsed by committee 
members or Oklahoma State University. 

ACKNOWLEDGEMENTS  

 

Dr. Ochsner, I cannot express how much you have helped me both personally and 

professionally.  Thank you for your patience and knowledge of soil physics that you so 

freely give away to any and all. 

 

I would like to thank Dr. Michael Cosh for providing funding for this research. 

 

I would like to thank my committee members, Dr. Chris Zou and Dr. Sergio Abit for their 

suggestions and comments on improving this thesis. 

 

For all the help with my research and making me feel welcome in the group, I want to 

thank Dr. Jingnuo Dong and Dr. Briana Wyatt. 

 

I would like to thank my parents for being with me throughout my educational endeavors.  

Without their help, it would not have been possible. 

 



` 

iv 

Name: WILLIAM GERALD BROWN JR   

 

Date of Degree: July 2021 

  

Title of Study: UPSCALING SOIL MOISTURE MEASUREMENTS FROM IN SITU 

SENSORS 

 

Major Field: PLANT AND SOIL SCIENCES 

 

Abstract:  

 

Accurate, field-scale soil moisture information is needed to match the spatial scale of 

land and water management decisions related to agricultural production and 

environmental protection.  Soil moisture measurements at the field-scale are limited 

because the resolution of most satellite-based soil moisture products is too coarse, while 

most in situ monitoring networks can provide only point-scale, not field-scale, data.  This 

research attempts to develop a broadly applicable upscaling approach for observations 

from in situ soil moisture sensors using data from the Marena, Oklahoma, In Situ Sensor 

Testbed (MOISST) and a cosmic-ray neutron rover.  The landscape at the MOISST site is 

predominantly grassland with some deciduous trees and eastern redcedar intermixed.  

Cosmic-ray neutron rover survey data were used to measure average soil moisture for the 

~64 ha site on 12 dates in 2019-2020.  The relationships between the point-scale in situ 

data and the field-scale rover data were examined using data from six in situ stations.  

Statistical modeling was used to identify the soil, terrain, and vegetation properties that 

influence these relationships.  Site-specific linear upscaling models estimated the field 

average soil moisture with root mean squared error (RMSE) values ranging from 0.014 – 

0.022 cm3 cm-3, but these models are not transferable to other sites.  A general upscaling 

model using soil texture data was developed and achieved RMSE values ranging from 

0.017 – 0.038 cm3 cm-3 for four calibration sites and values ranging from 0.015 – 0.021 

cm3 cm-3 for two validation sites.  The general upscaling model demonstrated accuracy 

better than the commonly used threshold of 0.04 cm3 cm-3 and should be further tested to 

evaluate its suitability as a broadly applicable upscaling approach for point-scale in situ 

monitoring stations. 
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CHAPTER I  

 

INTRODUCTION 

 

Accurate soil moisture measurements at the field-scale (~10 – 100 ha) are needed to 

match the typical spatial scale of land and water management decisions (Robinson et al., 2008).  

Soil moisture is variable both spatially and temporally, and better methods for estimating soil 

moisture at the field scale are needed for better prediction of moisture dependent processes 

(Western et al., 2002).  Direct soil moisture measurements at the field-scale are limited because 

the resolution of most satellite-based soil moisture products is too coarse, while most in situ 

monitoring networks can provide only point-scale, not field-scale data.  High resolution soil 

moisture maps can be generated using data from in situ monitoring networks in conjunction with 

digital soil data and gridded precipitation data (Ochsner et al., 2019), but the uncertainty of the 

resulting maps is likely to be inflated if the point-scale observations are not appropriately 

upscaled to match the map resolution.  In this context, when point-scale measurements are 

mathematically transferred in an attempt to make them better represent the average conditions 

across a larger geographic area, this process is called upscaling. 

Upscaling methods for point-scale measurements include temporal stability approaches 

which identify individual point-scale sensors from a network of sensors that display a consistent 

relationship to the network average over time.  One type of temporal stability analysis is the mean 

relative difference method, which compares the average of a network to a particular sensor and 



` 

2 

shows if the sensor is consistently higher or lower than the average.  Applying the mean relative 

difference method to measurements from the 610-km2 Little Washita River Watershed Micronet 

in Oklahoma showed that four of the thirteen monitoring locations were temporally stable and 

estimated the network average with a root mean squared error < 0.04 cm3 cm-3 (Cosh et al., 2006).   

A smaller study in Maryland applied the mean relative difference method to a temporally 

stable in situ sensor installed in a 21 ha corn field and achieved an (Nash-Sutcliffe Efficiency) 

NSE of 0.82 in estimating the network average (De Lannoy et al., 2007).  These studies show 

good accuracy and precision but also highlight drawbacks such as having sensors installed in a 

representative region of interest with time-stable characteristics (Loew and Schlenz, 2011) as well 

as specificity of the model to the site. 

A more sophisticated method for upscaling soil moisture data from an in situ network is 

Random Forests regression.  This machine learning method uses multiple geophysical data layers 

and measurements from in situ sensors to produce 100-m gridded estimates of soil moisture 

(Clewley et al., 2017).  Upscaled soil moisture estimates for the network or domain are produced 

by simply averaging the gridded estimates.  In their study to validate satellite soil moisture 

sensing products, applied this method achieving a root mean square error (RMSE) of 0.025 cm3 

cm-3 at the SMAPVEX12 site in Winnipeg, Canada.  Using the random forest regression on four 

sites in the United States and Canada, Whitcomb et al. (2020) achieved RMSE results ranging 

from 0.015 – 0.037 cm3 cm-3.  The random forests regression approach demonstrates acceptable 

accuracy (RMSE <0.04 cm3 cm-3) and makes beneficial use of available supporting data such as 

topography, land cover, and soil texture, but the resulting models are site specific and require 

extensive training data for each site. 
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In order to develop upscaling methods that are more broadly applicable to the stations in 

sparse in situ networks and to single monitoring sites within a field, accurate measurements of 

soil moisture at the field scale are required.  One promising approach for measuring soil moisture 

at the field-scale is by cosmic-ray neutron detection (Dong et al., 2014).  Cosmic rays are high 

energy sub-atomic particles (mostly protons) (Zreda et al., 2008) originating in outer space, which 

interact with atmospheric nuclei to create fast neutrons (Hess et al., 1959; Zreda et al., 2012).  

These fast moving neutrons may collide with other atmosphere nuclei creating more fast 

neutrons, which continue toward the Earth’s surface and can also react with nuclei in the top 1 m 

of soils producing additional fast neutrons (Desilets et al., 2010).  Neutrons and hydrogen atoms 

have similar masses and upon impact tend to have elastic collisions, in which the neutrons 

experience kinetic energy loss.  Through repeated collisions the fast neutrons can eventually 

become slow or thermal neutrons.  As this happens, the intensity of the fast neutrons reaches a 

quasi-steady state in the atmosphere 1 - 2 m above the soil.  The moderating effect of hydrogen 

on these neutrons gives rise to an inverse correlation of fast neutron intensity with soil moisture in 

the surrounding landscape.  The cosmic-ray neutron rover is a portable device that measures the 

fast neutron intensity near the land surface and can be used to generate accurate field-scale soil 

moisture estimates (Dong et al., 2014). 

The objective of this research is to develop a broadly applicable upscaling approach for 

point-scale in situ soil moisture sensors using data from a cosmic-ray neutron rover.  Survey data 

from the rover were used to produce field-scale soil moisture values, and relationships between 

the point-scale in situ data and the field-scale rover data were determined for each of four in situ 

stations.  Statistical modeling was used to identify the soil, vegetation, and terrain properties that 
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influence these relationships and hold promise for enabling broadly applicable upscaling 

approaches for other locations that lack field-scale data. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Site Description 

This study was conducted at the Marena, Oklahoma, In Situ Sensor Testbed (MOISST) 

site located on the Oklahoma State University (OSU) Range Research Station ~13 km southwest 

of Stillwater, Oklahoma.  The MOISST site was established in 2010 to facilitate inter-

comparisons of different soil moisture sensing technologies in support of NASA’s Soil Moisture 

Active Passive (SMAP) mission (Cosh et al., 2016).  The vegetation at the site is predominantly 

native grasses with some scattered stands of post-oak (Quercus stellata) and eastern redcedar 

(Juniperus virginiana L.) trees (Figure 1).  This site is under patch burn management (Sharma et 

al., 2021) and is grazed by cattle and goats at a moderate stocking rate.  As of 2016, using the 

previous 15 years of data, annual precipitation averaged 876 mm with an annual average 

temperature of 15.6°C (Cosh et al., 2016).  Total rainfall during the 12-month study period (Nov. 

2019 – Dec. 2020) was 882 mm collected from Oklahoma Mesonet Marena (MARE) station 

located at the site (McPherson et al., 2007).  Coyle-Lucien and Grainola-Lucien complexes make 

up the two dominant soil map units within the test site.  The Coyle series (siliceous, active, 

thermic Udic Argiustolls) are fine loamy, moderately deep, well-drained soils weathered from 

sandstone.  The Grainola series (fine, mixed active, thermic Udertic Haplustalfs) are moderately 

deep, well drained soils weathered from shale.  The Lucien series (loamy, mixed, superactive, 
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thermic, shallow Udic Haplustolls) are very fine sandy loam, shallow, well drained soils 

weathered from sandstone. 

 

In Situ Sensors 

There are four primary (calibration) sites within the testbed at which in situ sensors are 

installed (Sites A, B, C, and D,  Figure 1).  Site A is located at 36.06351° N, -97.21697° W.  

From that point, site C is located ~50 m west, site B is located ~100 m south, and site D is located 

~200 m northeast (Figure 1).  Additionally, located within the study site, are two validation sites 

(Sites 5 and 6 [6 not shown], Figure 1).  Soil water content reflectometers (CS-655, Campbell 

Scientific, Logan, Utah) were installed horizontally at 5, 10, 20, and 50-cm depths, except at site 

C where the deepest sensor was at 30 cm instead of 50 cm due to shallow bedrock.  The sensors 

have two stainless steel rods spaced 32 mm apart and 120 mm long that form an open-ended 

transmission line.  An oscillating signal is applied to the rods, and dielectric permittivity is 

estimated according to the travel time of the signal.  Permittivity (Ka) is then used to calculate 

volumetric water content (VWC) by: 

θv = C0 + C1Ka + C2Ka
2 + C3Ka

3   (1) 

where C0 = = -0.53, C1 = 0.0292, and C3 = 0.0000043 (Topp et al., 1980).  Measurements were 

taken each minute, and at the top of each hour the last five measurements were averaged for an 

hourly average and recorded on a data logger (CR-1000,Campbell Scientific, Logan, Utah).  The 

data from the in situ sensors were depth-weighted using the approach of Kohli et al., (2015) 
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assuming a horizontal distance from the rover of 200 m, corresponding approximately to the 

radius of the rover footprint. 

Rover Description and Calibration 

The custom built cosmic-ray neutron rover (Hydroinnova, LLC) consisted of two 

instrument enclosures that each held two 3He-filled proportional neutron counters encased in 2.5-

cm thick high-density polyethylene (Dong and Ochsner, 2018).  Connected to the counters are 

neutron pulse modules (Q-NPM_3000, Questa Instruments, LLC) that total the neutron counts for 

60-s intervals and send them, via environmentally sealed ethernet cable with bulging locking 

connectors, to a separate case with an integrated data logger (Q-DL_2100, Questa Instruments, 

LLC) with a barometric pressure sensor, GPS receiver, and a removable SD card.  Air 

temperature and relative humidity were measured using an external sensor (CS-215, Campbell 

Scientific, Logan, Utah) mounted at 2-m height.   

The calibration data for the rover were taken from a previous study using the same 

instrument (Dong and Ochsner, 2018).  Transforming raw neutron counts to volumetric water 

content required accounting for varying atmospheric conditions that affect neutron intensity at 

ground-level.  Measurements of barometric pressure, relative humidity, and air temperature were 

used to normalize the neutron counts.  A reference pressure of 965 mb and mass attenuation 

length of 130 mbar (Dong and Ochsner, 2018), were used to correct for atmospheric pressure 

variation [Eq. 1; Andreasen et al. (2017)].  A reference water vapor concentration of 0 g m-3 was 

used in the normalization of the neutron counts [Eq. 3; Andreasen et al. (2017)].  Relative 

humidity and air temperature measurements from the rover surveys were used to calculate the 

atmospheric water vapor concentration (Rosolem et al., 2013).  Incoming neutron flux varies both 
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spatially and temporally.  Data obtained from the Dourbes station (Dong and Ochsner, 2018) of 

the neutron monitor database (http://www.nmdb.eu/) were used for the incoming flux correction 

[Eq. 2; Andreasen et al. (2017)].  The pressure, water vapor, and incoming neutron flux 

corrections were then used to convert the measured neutron counts to corrected neutron counts 

[Eq. 4; Andreasen et al. (2017)].  Corrected neutron counts were converted to soil volumetric 

water content using: 

𝜃𝑣 = (
𝑎0

 ( 
𝑁𝑐𝑜𝑟

𝑁0  
⁄ ) − 𝑎1

 −  𝑎2  −  𝑊𝑙𝑎𝑡) ∗  
𝜌𝑏

𝜌𝑤
  (2) 

where θv (cm3 cm-3) is soil volumetric water content, Wlat is the soil lattice water content (g g-1), 

Ncor are the corrected neutron counts, and a0 = 0.808, a1 = 0.372, and a2 = 0.115 are constants 

(Desilets et al., 2010).  N0 represents the neutron counts per minute over dry soil using the 

reference conditions defined above.  N0 was calculated using previous simultaneous soil sampling 

and rover data collected at four Oklahoma Mesonet sites (Lahoma, Marena, Marshall and 

Perkins) (Dong and Ochsner, 2018).  For each site, N0 was estimated by solving Eq. (2) for N0 

with θv and ρb determined by soil sampling.  The depth weighting function of Köhli et al. (2015) 

was applied to individual soil samples within the rover footprint when calculating θv for Eq. (2).  

The horizontal weighting function of Köhli et al. (2015) was applied when calculating both θv and 

ρb for Eq. (2).  The average N0 value across the four sites was 596 ±6 cpm, and this value was 

used for subsequent θv estimates using Eq. (2).  A lattice water content value of 0.032 g g-1 was 

used for the MOISST site in Eq. (2) based on the average measured lattice water content from 13 

samples.  The field averaged bulk density for the MOISST site was 1.35 g cm-3. 

http://www.nmdb.eu/
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 After calibrating the neutron counts, measurements with identical locations were 

removed.  Once the corrected counts were converted to volumetric water content, any estimates < 

0 cm3 cm-3 or > 0.5 cm3 cm-3 were discarded. 

 

Rover Surveys 

The area traversed during the rover surveys measured ~800 m x 800 m and was divided 

into 200-m sections for data collection.  Data were collected on 15 Nov. 2019; 15 Feb. 2020; 10, 

17, and 24 June 2020; 8 and 15 July 2020; 10, and 26 Aug. 2020; 16 and 30 Sep. 2020; and 16 

Oct. 2020.   

A utility terrain vehicle (Kawasaki Mule) was used to transport the rover over the test 

area to collect neutron counts.  In order to achieve an evenly spaced and thorough dataset, the test 

area was divided into 200-m segments corresponding to the rover’s footprint of ~400-m diameter 

(Köhli et al., 2015).  Two serpentine passes were made during the course of a survey to facilitate 

gathering an adequate number of neutron counts for precise soil moisture estimation.  The 

duration of the surveys ranged from 79 to 228 minutes with an average of 129 minutes.  This 

equates to an average driving speed of 5.6 km h-1 over the 12 survey dates.  It was not possible to 

traverse two points on the east-west paths located in the southeast quadrant of the site due to a 

small ravine and dense vegetation.  At those locations, once the impassable point was reached, the 

rover path was changed to follow the natural contour of the ravine either north or south until the 

next east-west path was intersected.  The field-scale average soil moisture was calculated by 
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converting each of the one-minute neutron count totals to an estimate of volumetric water content 

using Eq. (2) and averaging all the water content estimates for each individual survey date. 

In order to generate field-scale soil moisture maps for illustrative purposes, empirical 

semivariograms were created from the rover soil moisture estimates, then fit with both spherical 

and exponential variogram models.  The spherical had the minimum weighted mean squared error 

and was thus chosen for all twelve survey dates.  The prediction grid for mapping soil moisture 

was constructed in UTM coordinates with 50-m spacing.  Ordinary kriging was then used to 

estimate soil water content at each prediction point on each survey date. 

 

Ancillary Data  

Intact soil cores were taken adjacent to each in situ monitoring station to characterize soil 

physical properties.  That characterization included laboratory measurements of the following 

properties:  bulk density; volumetric water content retained at -10, -33, and -1500 kpa; and 

percent sand, silt, and clay.  A 30-m resolution digital soils dataset, POLARIS, was used to 

estimate the field average sand and clay content of the MOISST site, along with creating maps of 

sand and clay content (Chaney et al., 2016).  The POLARIS dataset, 

(http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/), was created to re-map the Soil 

Survey Geographic database (SSURGO) by digital soil mapping techniques.  POLARIS is based 

on a high performance computing algorithm that applies environmental covariates, mainly 

elevation, parent material, and land cover, to fill in the gaps of missing data in the SSURGO 

database and smooth out the discontinuities (Chaney et al., 2016).  The POLARIS data set is not a 

http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/
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replacement for SSURGO, but it does provide gridded 30-m resolution soil data across the 

contiguous US that are harmonized and spatially complete.  Both the measured sand and clay 

contents at the in situ monitoring sites and the POLARIS sand and clay data for the entire field 

were depth-averaged using the Köhli et al. (2015) depth-weighting scheme. 

Elevation data were downloaded from the Geospatial Data Gateway operated by the 

USDA-NRCS.  Elevations were determined using Light Detection and Ranging (LIDAR), a 

remote sensing technology that measures scattered light to target the range of remote targets.  

LIDAR has been widely used to produce accurate digital elevation models.  The bare earth digital 

elevation model for the study site with 2-m horizontal resolution was downloaded in Geo-TIFF 

format and used to determine the elevation of each in situ monitoring station. 

Normalized Difference Vegetation Index (NDVI) data were measured by the Landsat 8 

satellite that is part of the USGS National Land Imaging (NLI) Program.  Orbiting the earth at an 

altitude of 705 km, Landsat 8 acquires ~740 scenes daily with a footprint of 185 km x 180 km.  

Landsat 8 data were obtained and processed using a custom script on Google Earth Engine 

(https://code.earthengine.google.come/b8cc772541083ald20f9ffa8b0585066).  The NDVI data 

have a 30-m resolution and the average NDVI for each pixel in the study area was determined 

based on all available scenes during the 12-month study period. 

 

Statistical Analysis and Upscaling 

https://code.earthengine.google.come/b8cc772541083ald20f9ffa8b0585066
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The extent of agreement between the raw point-scale and field-scale data was first 

analyzed.  The Nash-Sutcliffe Efficiency (NSE) (Ritter and Muñoz-Carpena, 2013) was 

calculated as: 

𝑁𝑆𝐸 = 1 −  
𝑆𝑆𝐸

𝑆𝑆𝑇
         (3) 

where SSE is sum of squared prediction error and SST is the total sum of squares corrected for 

the mean.  The NSE tells how well the predicted values fit the 1:1 line, with 1 meaning the model 

has perfect predictive power and 0 meaning it has the same predictive ability as using the mean of 

the dependent variable.  The root mean squared error (RMSE) was also calculated using: 

𝑅𝑀𝑆𝐸 =  √
𝑆𝑆𝐸

𝑛
      (4) 

where n is the number of measurement pairs.  RMSE is a good indicator of predictive accuracy 

with values that range from zero (indicating a perfect fit) upwards to infinity.  The bias was also 

calculated by taking the mean of the observed differences between the depth-weighted point-scale 

and field-scale measurements. 

For the site-specific upscaling, linear regression models were fit with the field-scale 

average soil moisture as measured by the rover as the dependent variable and the point-scale 

depth-weighted soil moisture from each monitoring station as the independent variable.  The 

resulting models represent “best case” linear upscaling models for these sites, and their 

performance was summarized by the NSE, RMSE, and the bias.  The NSE and RMSE were 

calculated as above and the bias in this case is the mean of the difference between the observed 

point-scale measurements and the predicted or upscaled measurements. 
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In order to develop a general upscaling model, four candidate predictor variables were 

considered, along with their interactions with the point-scale data.  The candidate predictors were 

sand and clay content, NDVI, and elevation and all were calculated as the difference between the 

measured value at the selected monitoring station and the field mean.  For sand and clay contents 

the lab-measured values at the monitoring stations were used instead of the POLARIS estimates 

for these locations because the lab measured values have less uncertainty.  In order to determine 

the most influential predictors for use in a parsimonious upscaling model, the candidate predictors 

were inserted into a Least Absolute Shrinkage and Selection Operator (LASSO) regression 

model.  The LASSO algorithm solves the minimization problem: 

𝑚𝑖𝑛

𝛽0,𝛽
 (

1

2𝑁
∑ (𝑦𝑖 − 𝛽0− 𝑥𝑖

𝑇𝛽)
2

+ 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1

𝑁
𝑖=1 )  (5) 

where N is number of observations, yi is the field-scale soil moisture observation i, xi is the vector 

of candidate predictors for observation i, λ is a nonnegative regularization parameter, and β0 and 

β are the intercept and coefficients of the upscaling model with P candidate predictors.  This 

algorithm solves the minimization problem repeatedly using a sequence of increasing λ values, 

which gradually “shrinks” the number of variables with non-zero coefficients.  As the goal of this 

research is to create a general model that can be used for upscaling at other sites, LASSO 

regression was ideal in helping to identify the most essential predictor variables.  The most 

important predictors identified by LASSO regression were then input into a multiple linear 

regression model so that the best fit was achieved. 

The suitability of the resulting upscaling model was evaluated by an F test comparing the 

full model with all candidate predictors included and the reduced model containing only the most 
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significant predictors identified by the LASSO regression.  The F test evaluates the null 

hypothesis that the variables excluded have no predictive power, i.e., their true coefficients were 

zero (Ott and Longnecker, 2000).  The F statistic was calculated by: 

𝐹 =  
[𝑆𝑆(𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛,   𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) − 𝑆𝑆(𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛,   𝑟𝑒𝑑𝑢𝑐𝑒𝑑)] ÷ (𝑘−𝑔)

𝑆𝑆(𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛,   𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

[𝑛− (𝑘+1)]

    (6) 

where SS(Regression, complete) is the regression sum of squares (all variables), SS(Regression, 

reduced) is the regression sum of squares (selected variables only), k is the total number of 

variables, g is the number of variables selected for the upscaling model, and n is the number of 

measurements.  If F is less than the critical F value for α = 0.05 and n – (k + 1) degrees of 

freedom, then we fail to reject the null hypothesis.  Matlab R2021a was used to process and 

analyze all the data. 
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CHAPTER III 

 

RESULTS 

 

A time series of the data from the in situ sensors over the 12-month study period is shown 

in Figure 2 along with the neutron rover field average values plotted for the survey dates.  The 

point-scale volumetric water content varied over a wide range between 0.07 to 0.47 cm3 cm-3.  

The point-scale soil moisture data reflect the soil texture variations, as site C, with the greatest 

sand content, had the least soil moisture for most dates in the study period.  In contrast, Site B has 

the greatest clay content below the 15-cm depth (Table A1) and had the greatest soil moisture for 

most dates in the study period.  The field-scale average soil moisture as measured by the rover 

ranged from a maximum of 0.43 cm3 cm-3 on 15 November 2019 to a minimum of 0.15 cm3 cm-3 

17 June 2020. 

Field-scale soil moisture maps were created contrasting days with relatively high and low 

soil moisture contents, 16 September (Figure 3) and 30 September (Figure 4) respectively.  Field-

scale volumetric water content averaged 0.33 cm3 cm-3 on 16 September and ranged from 0.18 – 

0.47 cm3 cm-3.  Field-scale volumetric water content averaged 0.20 cm3 cm-3 on 30 September, 

with the rover estimates ranging from 0.09 – 0.48 cm3 cm-3.  The range of estimates for both days 

are actual rover data on the survey date as opposed to the 50-m grid-based rover data.  The 

standard deviation (σ) and coefficient of variation (CV) were 0.1103 cm3 cm-3 and 0.335 on 16 

September and 0.065 cm3 cm-3 and 0.333 on 30 September.  The water content maps tended to 
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partially reflect the natural topography with the lower elevations having higher soil moisture 

values and the upper elevations showing lower soil moisture values.  However, the uncertainty of 

volumetric water content estimate at any specific location in the map is relatively large as 

indicated by the square root of the mean kriging variance, which ranged from 0.0438 to 0.0725 

cm3 cm-3 across the 12 survey dates.  In contrast, the rover provided precise estimates of the field-

scale average soil moisture as reflected in the standard error of the mean which was < 0.0075 cm3 

cm-3 across all survey dates. 

Figure 5 shows the rover field-scale water content average versus the point-scale sensor 

water content depth-weighted average for the 12 survey days.  Overall, the field-scale 

observations were greater than the point-scale observations for all the calibration sites except site 

B, which not only has the highest clay content below the 15-cm depth, but also has the highest 

NSE of 0.963 and lowest RMSE of 0.02 cm3 cm-3 when compared to the field-scale observations 

without upscaling (Table 1).  Point-scale data from Site C showed the greatest discrepancies from 

the field-observations, with consistently lower soil moisture values leading to a NSE near 0 and a 

RMSE = 0.10 cm3 cm-3 without upscaling.  The linearity of the relationship between the point-

scale and field-scale soil moisture is clearly evident (Figure 5) and is reflected in the statistics for 

the site-specific upscaling models (Table 1) which were derived using linear regression.  For 

those models, the NSE values are all > 0.96 and the RMSE values are all ≤ 0.022 cm3 cm-3. 

Candidate predictors for the generalized upscaling model included depth-weighted sand 

and clay content which are mapped in Figure 6.  The sand contents ranged from 17 to 71% and 

were inversely related to the clay contents which ranged from 9 to 30% based on the POLARIS 

data.  The measured sand and clay contents for the in situ stations (Table 2) highlight the contrast 
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of site C with the other sites, as site C has the greatest sand content and lowest clay content.  

Elevation (Figure 7) was also included as a candidate predictor,  and the topographic map clearly 

shows the natural valley in the Southeast quadrant of the study site.  However, the available in 

situ stations are all located at the middle to high elevations of the field (Table 2).  Average NDVI 

values over the study period are mapped in Figure 8.  Relatively high NDVI values are associated 

with the trees that line the valley in the southeast, while the grassland dominated areas have lower 

NDVI values.  The in situ stations had NDVI values near the middle of the range (Table 2).  As 

expected, the LASSO regression indicated that point-scale volumetric water content was the most 

important predictor to include followed by sand content and NDVI data (Figure 9).  Although the 

model produced a RMSE of  ~0.024 cm3 cm-3 for the calibration sites using these three 

parameters, performance at the validation sites was poor (data not shown).  We therefore include 

only point-scale water content and sand content in the general upscaling model.  An F test 

comparing this model with only two predictor variables to the full model with nine predictors 

resulted in an F value of 0.29.  This was less than the critical F value of 2.30, therefore we failed 

to reject the null hypothesis that the predictors omitted from the smaller model have no predictive 

power at the 95% confidence level.  The general upscaling model is thus: 

𝜃𝑢𝑠 = 𝑏0 + 𝑏1 ∗ 𝜃𝑝𝑠 + 𝑏2 ∗  𝛥𝑠𝑎𝑛𝑑   (7) 

where θus is the upscaled volumetric water content, θps is the depth-weighted in situ point-scale 

measurement, b0 = 0.0593, b1 = 1.0021, b2 = 0.0034 (coefficients determined by multiple 

regression) and Δsand is the difference between the depth-weighted sand content (%) measured at 

the in situ monitoring location and the depth-weighted, field-averaged sand content from the 
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POLARIS data set.  The performance of the model at the calibrations site is shown in Figure 10, 

and the performance for the validation sites is shown in Figure 11. 

The performance of the general upscaling model was not as good as that of the site-

specific models, but it was substantially better than using the point-scale data directly to represent 

the field-scale average without upscaling (Table 1).  The NSE values for the general model 

ranged from a minimum of 0.855 for site A to a maximum of 0.972 at site C (Table 1).  The NSE 

and RMSE values were improved or maintained with the general upscaling model versus without 

upscaling for all sites except site B.  Site C showed the most dramatic improvement, 0.972 NSE 

with upscaling versus 0.057 NSE without.  The large change in the NSE at site C was probably 

attributable to its high sand content.  Site C RMSE values were also noticeably improved to 0.017 

cm3 cm-3 with upscaling versus 0.100 cm3 cm-3 without upscaling. 

The general upscaling model performed well at the validation sites with site 6 achieving 

the largest improvements in both NSE and RMSE after upscaling, 0.912 and 0.021 cm3 cm-3 

versus 0.428 and 0.055 cm3 cm-3 without upscaling (Table 1).  The NSE and RMSE values were 

identical, for site 5 with or without upscaling. 
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CHAPTER IV 

 

DISCUSSION 

 

This study used independent point-scale and field-scale soil moisture data sets to develop 

a general upscaling model that achieved RMSE values < 0.04 cm3 cm-3 for each of six in situ 

monitoring stations.  This level of accuracy meets the Soil Moisture Active Passive (SMAP) 

mission requirements of 0.04 cm3 cm-3 (Entekhabi et al., 2010) and compares favorably with the 

accuracy obtained by site specific upscaling approaches in prior studies.  The cosmic ray neutron 

rover enabled us to calibrate and validate a general upscaling model for point-scale in situ soil 

moisture sensors without the costs of installing enough sensors to effectively capture the areal 

average at the field-scale.  Crow et al. (2012) summarized the number of point-scale soil moisture 

sampling sites necessary to characterize the field-scale mean (~8002 m2) with up to 12 sites 

required for an accuracy of 0.025 cm3 cm-3 (Hupet and Vanclooster, 2002) and up to 35 sites for 

an accuracy of 0.02 cm3 cm-3 (Brocca et al., 2007). 

This study has shown comparable accuracy with other multi-scaling studies of similar 

scale.  One such multi-site study in Africa achieved an NSE = 0.66 using data from two years at a 

study site (~252 km2) with five sensor stations to estimate soil moisture at 1 km2 (de Rosnay et al., 

2009).  In comparison, all of the site-specific NSE values were > 0.96 for the general upscaling 

model.  Additionally, almost all of the soil moisture measurements were relatively low (< 10%), 

compared with the general upscaling model (0.067 to 0.45 cm3 cm-3).   



` 

20 

Some limitations of this study are worth noting.  The upscaling model is general in that it 

required no site-specific information beyond measured soil texture at the location of the in situ 

monitoring site, and it is general in the sense that it performs acceptably for each of four 

calibration sites and two validations sites.  But these sites are all in the same field, and the 

applicability of this model to other sites is still unknown.  Furthermore, validation site 5, is in 

close proximity (~25 m) to Site B, and all the point-scale monitoring locations are on topographic 

high points and do not fully capture the true heterogeneity of elevation across the study site.  

Likewise, the in situ monitoring locations do not represent the full range of NDVI observed 

across the site. 

Finally, any biases in the point-scale or field-scale soil moisture data sets could impact 

the validity of the general upscaling model developed here.  Such biases could arise from errors 

in the corrections or calibration applied to the cosmic-ray neutron data or in the calibration of the 

point-scale sensors. 
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CHAPTER V 

 

CONCLUSION 

 

The cosmic ray neutron rover, with measurements collected during 12 surveys over a 

period of twelve months, enabled the development of a general upscaling model which was able 

to successfully upscale point-scale soil moisture measurements from each of six monitoring sites 

within an 8002 m2 region at the MOISST site.  As most upscaling studies focus on sites with 

multiple sensors or a network of sensors, this study has shown that accurate soil moisture 

estimates are achievable at the field-scale without the expense and maintenance of multiple 

moisture probes that are densely populated. 

Future tests of the model should include data sets from different types of soil moisture 

sensors as well as different locations with varying soil textures, topography, and vegetation.  This 

study has shown first steps toward a general upscaling approach that could be applied to any, and 

every, soil moisture monitoring station in the contiguous U.S. that has measured soil texture data.  

Such upscaling is needed to enhance the potential of existing in situ monitoring networks for 

meeting the soil moisture information needs for a wide array of land and water management 

decisions. 
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Table 1.  Statistical comparison of field-scale average volumetric water content versus point-scale 

measurements at four calibration sites and two validation sites in the Marena, Oklahoma, In Situ 

Sensor Testbed (MOISST) without upscaling, after application of site-specific linear upscaling 

relationships, and after application of a general upscaling model.  Statistical indicators include the 

Nash-Sutcliffe Efficiency (NSE), root mean squared error (RMSE), bias, regression slope, and 

regression intercept. 

 

 

 

NSE RMSE Bias Slope Intercept NSE RMSE Bias NSE RMSE Bias

cm3 cm-3 cm3 cm-3 cm3 cm-3 cm3 cm-3 cm3 cm-3 cm3 cm-3 cm3 cm-3

A 0.772 0.047 -0.041 1.147 0.010 0.960 0.022 0.000 0.855 0.038 -0.030

B 0.963 0.020 0.011 0.902 0.016 0.986 0.014 0.000 0.898 0.033 0.028

C 0.057 0.100 -0.099 1.101 0.081 0.981 0.016 0.000 0.972 0.017 -0.003

D 0.941 0.024 -0.012 1.194 -0.035 0.981 0.015 0.000 0.947 0.023 0.009

5 0.951 0.015 -0.003 0.854 0.035 0.981 0.011 0.000 0.951 0.015 -0.002

6 0.428 0.055 -0.051 1.322 -0.006 0.988 0.014 0.000 0.912 0.021 -0.010

Calibration 

Sites

Validation 

Sites

Without upscaling Site-specific linear upscaling General upscaling
Site
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Table 2.  Depth-weighted sand content and clay content measured at four sites used to calibrate 

the general upscaling model and two sites used to validate the model.  Also listed are elevation 

for each site determined using LIDAR data with 2-m resolution and average NDVI for the study 

period using 30-m resolution data from Landsat 8.  The depth-weighted field average sand 

content and clay content from the POLARIS data set and field average elevation and NDVI are 

also listed. 

 

 

Site Sand Clay
Elevation 

(asl)
NDVI

(%) (%) m

A 33.2 30.1 330 0.39

B 34.9 28.1 329 0.42

C 58.2 14.4 328 0.40

D 35.8 26.7 332 0.40

Site 5 30.1 25.9 329 0.37

Site 6 42.2 26.6 319 0.41

Field average 47.5 20.5 323 0.39

Calibration 

sites

Validation 

sites
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Figure 1.  Map of the Marena, Oklahoma, In Situ Sensor Testbed (MOISST), located southwest 

of Stillwater, OK.  Yellow letters designate in situ monitoring sites (A-D) and the upper right 

quadrant shows the Oklahoma Mesonet site (MARE).  Reproduced from Cosh et al. (2016). 
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Figure 2.  Depth-weighted volumetric water content data from four in situ monitoring sites during 

the period of the study.  Black circles are field-scale averages measured using the rover on each 

survey date. 
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Figure 3.  Map displaying kriged soil volumetric water content estimates derived from the rover 

data on 16 Sep. 2020, averaging 0.329 cm3 cm-3.  Black dots represent the locations of rover 

measurements.  Coordinates are UTM, Zone 14. 
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Figure 4.  Map displaying kriged soil volumetric water content estimates derived from the rover 

data on 30 Sep. 2020, averaging 0.195 cm3 cm-3.  Black dots represent the locations of rover 

measurements.  Coordinates are UTM, Zone 14. 
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Figure 5.  Comparison of field-scale volumetric water content estimate from the cosmic-

ray neutron rover surveys vs. depth-weighted point-scale volumetric water content 

measurements from the in situ sensors at four sites for the twelve survey dates.  Days 

with missing point-scale data from particular sites were omitted. 
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Figure 6.  Depth-weighted sand content (top) and depth-weighted clay content (bottom) 

for the study site based on 30-m resolution POLARIS data.  Coordinates are UTM, Zone 

14. 
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Figure 7.  Map of elevation at the study site based on 2-m horizontal resolution LIDAR data from 

USGS.  Coordinates are UTM, Zone 14. 
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Figure 8.  NDVI for the study site averaged over the period of Nov. 2019 – Oct. 2020 based on 

30-m resolution Landsat 8 data.  Coordinates are UTM, Zone 14. 
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Figure 9.  LASSO regression results showing number of predictor variables used and estimated 

RMSE.  The most influential predictor variables were:  (1) point-scale volumetric water content ,  

(2)  sand content,  and (3) NDVI. 
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Figure 10.  Upscaled soil volumetric water content estimates from each of the four 

calibration sites after applying the general upscaling model compared with the field-scale 

water content measurements from the cosmic-ray neutron rover. 
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Figure 11.  Point-scale soil volumetric water content measurements from each of the two 

validation sites and upscaled water content estimates for those sites after applying the general 

upscaling model compared with the field-scale water content measurements from the cosmic-ray 

neutron rover. 
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APPENDICES 

 

Table A1.  Soil physical properties for calibration sites A, B, C, and D.

 

  

Depth (cm)

Site Midpoint Bulk Density % Sand % Silt % Clay

A 2.5 1.29

A 7.5 1.40 34 38 28

A 15 1.60 28 34 37

A 25 1.51 48 24 28

A 35 1.73 26 41 33

A 45 1.72 31 31 38

A 55 1.72 23 34 42

A 65 1.81 21 41 38

A 75 1.77 24 46 30

B 2.5 1.38

B 7.5 1.42 38 39 23

B 15 1.49 26 31 43

B 25 1.44 13 28 59

B 35 1.52 14 32 54

B 45 1.64 5 37 58

B 55 1.61 0 44 56

B 65 1.71 2 41 58

B 75 1.75 0 47 53

C 2.5 1.06

C 7.5 1.52 59 28 13

C 15 1.46 57 27 16

C 25 1.40 49 27 24

C 35 1.53 49 25 25

C 45 1.55 70 16 14

D 2.5 0.99

D 7.5 1.39 37 38 24

D 15 1.45 33 35 32

D 25 1.51 25 34 41

D 35 1.59 19 34 48

D 45 1.69 25 31 44

D 55 1.66 20 34 47

D 65 1.65 24 32 44

D 75 1.75 30 28 41

D 85 1.79 30 28 41

D 95 1.81 30 30 40

Particle size distribution
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Table 2.  Soil physical properties for validation sites, JFSP sites 5 and 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (cm)

Site Midpoint Bulk Density % Sand % Silt % Clay

5 5 1.37 30 19.7 50.2

5 10 1.37 32.2 32 35.8

5 20 1.42 23.4 48 28.6

5 50 1.59 18.7 43.9 37.4

6 5 1.19 43.4 23.5 33.1

6 10 1.41 43.3 27.4 29.3

6 20 1.32 32.8 41 26.2

6 50 1.57 9.9 59.8 30.2

Particle size distribution
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