7,130 research outputs found

    A Testability Analysis Framework for Non-Functional Properties

    Full text link
    This paper presents background, the basic steps and an example for a testability analysis framework for non-functional properties

    Plug & Test at System Level via Testable TLM Primitives

    Get PDF
    With the evolution of Electronic System Level (ESL) design methodologies, we are experiencing an extensive use of Transaction-Level Modeling (TLM). TLM is a high-level approach to modeling digital systems where details of the communication among modules are separated from the those of the implementation of functional units. This paper represents a first step toward the automatic insertion of testing capabilities at the transaction level by definition of testable TLM primitives. The use of testable TLM primitives should help designers to easily get testable transaction level descriptions implementing what we call a "Plug & Test" design methodology. The proposed approach is intended to work both with hardware and software implementations. In particular, in this paper we will focus on the design of a testable FIFO communication channel to show how designers are given the freedom of trading-off complexity, testability levels, and cos

    MISSED: an environment for mixed-signal microsystem testing and diagnosis

    Get PDF
    A tight link between design and test data is proposed for speeding up test-pattern generation and diagnosis during mixed-signal prototype verification. Test requirements are already incorporated at the behavioral level and specified with increased detail at lower hierarchical levels. A strict distinction between generic routines and implementation data makes reuse of software possible. A testability-analysis tool and test and DFT libraries support the designer to guarantee testability. Hierarchical backtrace procedures in combination with an expert system and fault libraries assist the designer during mixed-signal chip debuggin

    Test-Signal Search for Mixed-Signal Cores in a System-on-Chip

    Get PDF
    The well-known approach towards testing mixed-signal cores is functional testing and basically measuring key parameters of the core. However, especially if performance requirements increase, and embedded cores are considered, functional testing becomes technically and economically less attractive. A more cost-effective approach could be accomplished by a combination of reduced functional tests and added structural tests. In addition, it will also improve the debugging facilities of cores. Basic problem remains the large computational effort for analogue structural testing. In this paper, we introduce the concept of Testability Transfer Function for both analogue as well as digital parts in a mixed-signal core. This opens new possibilities for efficient structural testing of embedded mixed-signal cores, thereby adding to\ud the quality of tests

    A design for testability study on a high performance automatic gain control circuit.

    Get PDF
    A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente

    Branch-coverage testability transformation for unstructured programs

    Get PDF
    Test data generation by hand is a tedious, expensive and error-prone activity, yet testing is a vital part of the development process. Several techniques have been proposed to automate the generation of test data, but all of these are hindered by the presence of unstructured control flow. This paper addresses the problem using testability transformation. Testability transformation does not preserve the traditional meaning of the program, rather it deals with preserving test-adequate sets of input data. This requires new equivalence relations which, in turn, entail novel proof obligations. The paper illustrates this using the branch coverage adequacy criterion and develops a branch adequacy equivalence relation and a testability transformation for restructuring. It then presents a proof that the transformation preserves branch adequacy

    FORTEST: Formal methods and testing

    Get PDF
    Formal methods have traditionally been used for specification and development of software. However there are potential benefits for the testing stage as well. The panel session associated with this paper explores the usefulness or otherwise of formal methods in various contexts for improving software testing. A number of different possibilities for the use of formal methods are explored and questions raised. The contributors are all members of the UK FORTEST Network on formal methods and testing. Although the authors generally believe that formal methods are useful in aiding the testing process, this paper is intended to provoke discussion. Dissenters are encouraged to put their views to the panel or individually to the authors

    Development of generic testing strategies for mixed-signal integrated circuits

    Get PDF
    Describes work at the Polytechnic of Huddersfield SERC/DTI research project IED 2/1/2121 conducted in collaboration with GEC-Plessey Semiconductors, Wolfson Microelectronics, and UMIST. The aim of the work is to develop generic testing strategies for mixed-signal (mixed analogue and digital) integrated circuits. The paper proposes a test structure for mixed-signal ICs, and details the development of a test technique and fault model for the analogue circuit cells encountered in these devices. Results obtained during the evaluation of this technique in simulation are presented, and the ECAD facilities that have contributed to this and other such projects are described

    Testing high resolution SD ADC’s by using the noise transfer function

    Get PDF
    A new solution to improve the testability of high resolution SD Analogue to Digital Converters (SD ADC’s) using the quantizer input as test node is described. The theoretical basis for the technique is discussed and results from high level simulations for a 16 bit, 4th order, audio ADC are presented. The analysis demonstrates the potential to reduce the computational effort associated with test response analysis versus conventional techniques
    corecore