61,582 research outputs found

    Computing Multi-Relational Sufficient Statistics for Large Databases

    Full text link
    Databases contain information about which relationships do and do not hold among entities. To make this information accessible for statistical analysis requires computing sufficient statistics that combine information from different database tables. Such statistics may involve any number of {\em positive and negative} relationships. With a naive enumeration approach, computing sufficient statistics for negative relationships is feasible only for small databases. We solve this problem with a new dynamic programming algorithm that performs a virtual join, where the requisite counts are computed without materializing join tables. Contingency table algebra is a new extension of relational algebra, that facilitates the efficient implementation of this M\"obius virtual join operation. The M\"obius Join scales to large datasets (over 1M tuples) with complex schemas. Empirical evaluation with seven benchmark datasets showed that information about the presence and absence of links can be exploited in feature selection, association rule mining, and Bayesian network learning.Comment: 11pages, 8 figures, 8 tables, CIKM'14,November 3--7, 2014, Shanghai, Chin

    Ontology-based semantic interpretation of cylindricity specification in the next-generation GPS

    Get PDF
    Cylindricity specification is one of the most important geometrical specifications in geometrical product development. This specification can be referenced from the rules and examples in tolerance standards and technical handbooks in practice. These rules and examples are described in the form of natural language, which may cause ambiguities since different designers may have different understandings on a rule or an example. To address the ambiguous problem, a categorical data model of cylindricity specification in the next-generation Geometrical Product Specifications (GPS) was proposed at the University of Huddersfield. The modeling language used in the categorical data model is category language. Even though category language can develop a syntactically correct data model, it is difficult to interpret the semantics of the cylindricity specification explicitly. This paper proposes an ontology-based approach to interpret the semantics of cylindricity specification on the basis of the categorical data model. A scheme for translating the category language to the OWL 2 Web Ontology Language (OWL 2) is presented in this approach. Through such a scheme, the categorical data model is translated into a semantically enriched model, i.e. an OWL 2 ontology for cylindricity specification. This ontology can interpret the semantics of cylindricity specification explicitly. As the benefits of such semantic interpretation, consistency checking, inference procedures and semantic queries can be performed on the OWL 2 ontology. The proposed approach could be easily extended to support the semantic interpretations of other kinds of geometrical specifications
    • …
    corecore