4 research outputs found

    A Novel Threat Intelligence Detection Model Using Neural Networks

    Get PDF
    A network intrusion detection system (IDS) is commonly recognized as an effective solution for identifying threats and malicious attacks. Due to the rapid emergence of threats and new attack vectors, novel and adaptive approaches must be considered to maintain the effectiveness of IDSs. In this paper, we present a novel Threat Intelligence Detection Model (TIDM) for online intrusion detection. The proposed TIDM focuses on the online processing of massive data flows and is accordingly able to reveal unknown connections, including zero-day attacks. The TIDM consists of three components: an optimized filter (OptiFilter), an adaptive and hybrid classifier, and an alarm component. The main contributions of the OptiFilter component are in its ability to continuously capture data flows and construct unlabeled connection vectors. The second component of the TIDM employs a hybrid model made up of an enhanced growing hierarchical self-organizing map (EGHSOM) and a normal network behavior (NNB) model to jointly identify unknown connections. The proposed TIDM updates the hybrid model continually in real-time. The model’s performance evaluation has been carried out in both offline and online operational modes using a quantitative approach that considers all possible evaluation metrics for the datasets and the hybrid classification method. The achieved results show that the proposed TIDM is able, with promising performance, to process massive data flows in real-time, classify unlabeled connections, reveal the label of unknown connections, and perform online updates successfully

    Developing Efficient and Effective Intrusion Detection System using Evolutionary Computation

    Get PDF
    The internet and computer networks have become an essential tool in distributed computing organisations especially because they enable the collaboration between components of heterogeneous systems. The efficiency and flexibility of online services have attracted many applications, but as they have grown in popularity so have the numbers of attacks on them. Thus, security teams must deal with numerous threats where the threat landscape is continuously evolving. The traditional security solutions are by no means enough to create a secure environment, intrusion detection systems (IDSs), which observe system works and detect intrusions, are usually utilised to complement other defence techniques. However, threats are becoming more sophisticated, with attackers using new attack methods or modifying existing ones. Furthermore, building an effective and efficient IDS is a challenging research problem due to the environment resource restrictions and its constant evolution. To mitigate these problems, we propose to use machine learning techniques to assist with the IDS building effort. In this thesis, Evolutionary Computation (EC) algorithms are empirically investigated for synthesising intrusion detection programs. EC can construct programs for raising intrusion alerts automatically. One novel proposed approach, i.e. Cartesian Genetic Programming, has proved particularly effective. We also used an ensemble-learning paradigm, in which EC algorithms were used as a meta-learning method to produce detectors. The latter is more fully worked out than the former and has proved a significant success. An efficient IDS should always take into account the resource restrictions of the deployed systems. Memory usage and processing speed are critical requirements. We apply a multi-objective approach to find trade-offs among intrusion detection capability and resource consumption of programs and optimise these objectives simultaneously. High complexity and the large size of detectors are identified as general issues with the current approaches. The multi-objective approach is used to evolve Pareto fronts for detectors that aim to maintain the simplicity of the generated patterns. We also investigate the potential application of these algorithms to detect unknown attacks

    Towards Efficient Intrusion Detection using Hybrid Data Mining Techniques

    Get PDF
    The enormous development in the connectivity among different type of networks poses significant concerns in terms of privacy and security. As such, the exponential expansion in the deployment of cloud technology has produced a massive amount of data from a variety of applications, resources and platforms. In turn, the rapid rate and volume of data creation in high-dimension has begun to pose significant challenges for data management and security. Handling redundant and irrelevant features in high-dimensional space has caused a long-term challenge for network anomaly detection. Eliminating such features with spectral information not only speeds up the classification process, but also helps classifiers make accurate decisions during attack recognition time, especially when coping with large-scale and heterogeneous data such as network traffic data. Furthermore, the continued evolution of network attack patterns has resulted in the emergence of zero-day cyber attacks, which nowadays has considered as a major challenge in cyber security. In this threat environment, traditional security protections like firewalls, anti-virus software, and virtual private networks are not always sufficient. With this in mind, most of the current intrusion detection systems (IDSs) are either signature-based, which has been proven to be insufficient in identifying novel attacks, or developed based on absolute datasets. Hence, a robust mechanism for detecting intrusions, i.e. anomaly-based IDS, in the big data setting has therefore become a topic of importance. In this dissertation, an empirical study has been conducted at the initial stage to identify the challenges and limitations in the current IDSs, providing a systematic treatment of methodologies and techniques. Next, a comprehensive IDS framework has been proposed to overcome the aforementioned shortcomings. First, a novel hybrid dimensionality reduction technique is proposed combining information gain (IG) and principal component analysis (PCA) methods with an ensemble classifier based on three different classification techniques, named IG-PCA-Ensemble. Experimental results show that the proposed dimensionality reduction method contributes more critical features and reduced the detection time significantly. The results show that the proposed IG-PCA-Ensemble approach has also exhibits better performance than the majority of the existing state-of-the-art approaches

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 16th International Annual Conference on Cyber Security, CNCERT 2020, held in Beijing, China, in August 2020. The 17 papers presented were carefully reviewed and selected from 58 submissions. The papers are organized according to the following topical sections: access control; cryptography; denial-of-service attacks; hardware security implementation; intrusion/anomaly detection and malware mitigation; social network security and privacy; systems security
    corecore