
Received 21 November 2022, accepted 8 December 2022, date of publication 15 December 2022,
date of current version 21 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3229495

A Novel Threat Intelligence Detection Model
Using Neural Networks
MAHER SALEM 1 AND ABDEL-KARIM AL-TAMIMI2,3
1Department of Informatics, King’s College London, WC2R 2LS London, U.K.
2Department of Computing, Sheffield Hallam University, S1 1WB Sheffield, U.K.
3Computer Engineering Department, Yarmouk University, Irbid 21163, Jordan

Corresponding author: Maher Salem (maher.salem@kcl.ac.uk)

This work was supported by the German Federal Ministry of Education and Research under Grant 17062X10.

ABSTRACT A network intrusion detection system (IDS) is commonly recognized as an effective solution
for identifying threats and malicious attacks. Due to the rapid emergence of threats and new attack vectors,
novel and adaptive approaches must be considered to maintain the effectiveness of IDSs. In this paper,
we present a novel Threat Intelligence DetectionModel (TIDM) for online intrusion detection. The proposed
TIDM focuses on the online processing of massive data flows and is accordingly able to reveal unknown
connections, including zero-day attacks. The TIDM consists of three components: an optimized filter
(OptiFilter), an adaptive and hybrid classifier, and an alarm component. The main contributions of the
OptiFilter component are in its ability to continuously capture data flows and construct unlabeled connection
vectors. The second component of the TIDM employs a hybrid model made up of an enhanced growing
hierarchical self-organizingmap (EGHSOM) and a normal network behavior (NNB)model to jointly identify
unknown connections. The proposed TIDM updates the hybrid model continually in real-time. The model’s
performance evaluation has been carried out in both offline and online operational modes using a quantitative
approach that considers all possible evaluation metrics for the datasets and the hybrid classification method.
The achieved results show that the proposed TIDM is able, with promising performance, to process massive
data flows in real-time, classify unlabeled connections, reveal the label of unknown connections, and perform
online updates successfully.

INDEX TERMS Neural networks, GHSOM, EGHSOM, NNB, threat intelligence, data processing, intrusion
detection, clustering.

I. INTRODUCTION
Successful security management is the key to enhancing
network services and boosting their management [1], [2],
[3]. It provides large computer networks with integrity, avail-
ability, and confidentiality of data [4], [5]. The revolutions
in networking and information technology have increased
interconnection and user interactions and, thus, demand a
significant number of services and increased data manage-
ment efforts. Furthermore, this has led to the generation of
massive amounts of data, which makes online processing of
the continuous data flow very challenging, hence increasing

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyu Du .

the chances of successful attacks [6], [7]. In addition, secu-
rity aspects such as standard security gateway architectures,
anti-malware solutions, signature-based intrusion detection
methods, and other security tools are still suffering from the
complexity of big data in terms of data management and the
identification of suspicious connections [8], [9], [10], [11].

Current security approaches, particularly intrusion detec-
tion systems (IDSs), rely strongly on the collected data of
the network under concern to perform the required monitor-
ing and intrusion detection processes [12], [13]. Principally,
an IDS aggregates data and preprocesses them to identify
anomalous connections. Revealing the anomalous connec-
tions in an offline operational mode is a feasible task for most
IDSs due to the plausible amount of aggregated data [14].

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 131229

https://orcid.org/0000-0002-6479-4335
https://orcid.org/0000-0002-5954-1675

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

However, the massive increase in data flows nowadays hin-
ders the analysis and management of the aggregated data and
results in poor performance due to the inability to classify
unknown connections into normal or anomalous connections
[15], [16].

In addition, big data with its voluminous data streams has
rapidly intensified the amount of data flows and degraded the
overall performance of the IDS model [17], [18]. Therefore,
capturing online data flows, processing them into a proper
format for the IDS model, and then detecting any threat is
still considered a significant challenge in the field of net-
work intrusion detection research [19]. Furthermore, most
IDS models cannot accommodate the huge number of flows
and often classify them incorrectly. Thus, an adaptive and
practical Threat Intelligence Detection Model (TIDM) that
overcomes these challenges is essential in the area of IDSs.

A threat intelligence model gathers raw data about existing
and emerging threats and associated threat actors from several
sources, and then analyzes and filters the data to produce
useable information in the form of management reports and
data feeds for automated security control systems. Its primary
purpose is to help organizations understand the risks they
are exposed to and better protect against zero-day threats,
advanced persistent threats and exploits—especially those
that are most likely to affect their own specific environments
[20].

In this paper, we present an adaptive and practical TIDM
that is able to process massive online data flows, and iden-
tify and label unknown connections. The TIDM consists of
the following main components: a) a novel and optimized
filter (viz. OptiFilter), b) an adaptive hybrid classifier, and
c) an alarm. The main contributions of the optimized fil-
ter (OptiFilter) are as follows: 1) capture massive flows
of network packets and hosts’ events continuously; 2) pro-
cess them in a queue of a dynamic window size; and 3)
construct unlabeled connection vectors continuously. The
hybrid classifier employs a neural network hybrid model that
uses both enhanced growing hierarchical self-organizing map
(EGHSOM) and normal network behavior (NNB) modeling
approaches. The main contributions of the hybrid classifier
are as follows: 1) The EGHSOM model classifies the unla-
beled connections as ‘‘normal’’, ‘‘anomaly’’ or ‘‘unknown’’;
2) the NNB model examines whether the unknown connec-
tions are ‘‘normal’’ or ‘‘anomalous’’; and 3) novel online
updating methods for both EGHSOM and NNB models in
the proposed TIDM are presented to update the hybrid model
constantly in real-time.

The rest of this paper is organized as follows: Section II
explains key concepts and foundations related to this
research. Section III provides a comprehensive discussion
of the related work. The theoretical and practical declara-
tions of the proposed TIDM architecture are discussed in
Section IV. The testing and evaluation of the model are
addressed in Section V. Section VI discusses the model’s
performance, and Section VII draws conclusions based on
our work.

II. PRELIMINARY/BACKGROUND
In this section, we will explore the key concepts and funda-
mentals related to the proposed TIDM model and establishes
the key knowledge areas associated with IDS data collection
and classification.

A. DATA COLLECTION
Usually, network data flows and internal users’ activities are
the sources for any IDS. If we observe a computer network
for a certain period of time, the observed data flows can be
represented by a dataset D (i.e., a set of connection vectors
that are constructed from network packets and hosts’ events).
These connections are formally described as feature vectors
x1, . . . , xM , where each vector consists of n attributes (fea-
tures). Let xi = (xi1, . . . , xin) ∈ �1× . . .×�n, i = 1, . . . ,M
be a feature vector such that xi1 = attribute1, xi2 = attribute2,
and so forth. Let D be a dataset constructed with M such
feature vectors. Accordingly, the dataset D can be formally
described as a matrix XM in the input space of the computer
network as follows:

�M : XM :=

 x1
...

xM

 =
 x11 · · · x1n

...
. . .

...

xM1 · · · xMn

 (1)

If we consider each column xj = (x1j, . . . , xMj), j = 1, . . . , n
in the matrix asM realizations of the jth attribute, then we can
interpret each feature as a realization of a random variable
Xj of the space �j. Hence, a dataset D consists of M×n
values of the n-dimensional discrete random variables X =
(X1, . . . ,Xn) at �M := �1 × . . .×�n.

B. IDS TRAFFIC CLASSIFICATION
Intelligent detection systems (IDSs) rely mainly on the
following machine learning techniques: statistical-based
techniques, such as Naïve Bayes [21], [22], anomaly-based
techniques, such as [23], [24], [25], neural networks [26],
[27], [28], deep neural networks [29], and customized clus-
tering techniques [30], [31]. The use of artificial neural net-
works (ANNs) has become the most effective IDS method
in network security [28], whereas the most successful appli-
cations of neural networks are in classification or catego-
rization and pattern recognition [32]. A growing hierarchical
self-organizing map (GHSOM) is considered a special ANN
approach and is an improved version of Kohonen’s self-
organizing map (SOM) [33], [34], [35].

Generally, SOMs can discover knowledge in data and
find relations of high-dimensional data and then map these
data into a two-dimensional representation space [36], [37].
However, they suffer from static architecture and expensive
computational requirements. GHSOMs have solved these
problems by structuring several SOMs in a hierarchical grow-
ing form [38]. Note that neural networks handle only numeric
data and most likely with the same scale. This requires that
all nominal values within a connection vector must be trans-
ferred to numeric values and then the entire connection must
be normalized.

131230 VOLUME 10, 2022

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

C. GHSOM MODEL
AGHSOMconstrues high-dimensional data on several layers
with several maps to explore supplementary details. Although
the training of each map in a GHSOM is the same as with
a SOM, a GHSOM controls the growth process horizontally
and vertically by examining two main threshold criteria after
a certain number of iterations. The main processes of a
GHSOM are the competition and the cooperation between
neurons [38]. GHSOMs are used to detect anomalies in com-
puter networks [39] and have shown significant results in this
regard. The training process of a GHSOM is summarized in
the following steps:

1) INPUT
Let D be a dataset with M different connection vectors
[x1, x2, . . . , xM]T . Initialize layer0 with a single root neuron
that has the weight vector w0 =

1
M

∑M
i=1 xi and then cal-

culate the quantization error (qe) and the mean quantization
error(mqe) of the root node as follows:

qe0 =
∑M

i=1
‖xi − w0‖ , mqe0 =

1
M
· qe0 (2)

Initialize layer1 with a single map that has four neurons and
initialize the weight vector of each neuron randomly. Finally,
determine the number of iterations λ (e.g., λ = 400).

2) COMPETITION PROCESS
Select a random input vector xj from D and find its closest
neuron c (i.e., the winner or the best-matching unit (BMU)),
c is determined as follows:

c := argmini{
∥∥xj − wi∥∥}, (3)

where i is the number of neurons on the map.

3) COOPERATIVE PROCESS
In this step, we update the neuron c and its neighbor neurons
Nc as follows:

wi(t + 1) := wi(t)+ hci(t)[x(t)− wi(t)], i ∈ Nc, (4)

where h(t) := a(t) · e
‖rc−ri‖

2

2σ2(t) is a Gaussian neighborhood
function with a learning rate α(t), radius σ , BMU position rc,
and the posit ion ri of the closest unit in the neighborhood
of the BMU. The competition and cooperation processes are
repeated for λ iterations.

4) GROWTH CONTROL
Determine the control thresholds τ1 and τ2 such as 0 <

τ1, τ2 < 1 then calculate the minimum quantization error
(MQE) of the map as

MQEm =
1
n

∑n

i=1
qei, (5)

where n is number of neurons in the map m. Then, check the
following horizontal growth condition:

MQEm < τ1 · qep, (6)

where p is the map’s parent node on the upper layer. The
highest error node (e) on map m and its most dissimilar id in
the neighborhood will be calculated if the horizontal growth
condition is not met:

e = argmax
i∈Map

{∑
xj∈RFi

∥∥xj − wi∥∥},
id = argmin

i∈Map

{∑
xj∈RFi

∥∥xj − wi∥∥}, (7)

where RFi is the receptive field that represents the set of all
the input vectors mapped on the same neuron i. Based on that,
insert a new column or row between e and id , then initialize
the new nodes randomly, reset α(t) and h(t), and repeat the
competition and cooperative processes with new λ iterations.
But, if the horizontal growth condition (equation 6) is met,

calculate the mqe of each neuron on the map m individually
and for each neuron i and examine the following vertical
growth condition:

mqei < τ2 · mqep (8)

If the vertical growth condition is not met then add a new
layer with a single map that has four neurons, initialize their
weight vectors randomly, and repeat the competition and
cooperative processes on the new map accordingly. However,
if the condition is met then stop the training process.

The GHSOM model can be defined as

(C,wC ,Labels) (9)

Accordingly, the final model of the GHSOM after the
training is shown in Table 1.

TABLE 1. Final GHSOM model.

where the projection functions or 8(x), the receptive field of
the BMU c or RF, the GHSOM grid or ℵ, number of final
BMUs or m, and M is the number of instances in the input
dataset.

III. RELATED WORK
We have meaningfully adopted the idea presented by S. Babu
and J. Widom, who proposed a general and flexible architec-
ture for processing continuous queries in the presence of data
streams and presented a prototype that manages data streams
accordingly [40]. The essence of their idea has inspired us
to propose an evolutionary queuing concept approach [41],
which is further improved in this paper.

Several approaches have investigated the challenges of
handling continuous data flows and detecting suspicious con-
nections on computer networks. F. Hashim et al. introduced

VOLUME 10, 2022 131231

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

a framework that identifies security attacks from cooperation
among network entities [42]. The proposed work consists of
an anomaly detection TIDM that is based on negative selec-
tion and danger theory, and a security control module that
incorporates a security update process and an attack recovery
process. Their anomaly detection approach is responsible for
detecting epidemic and pandemic attacks, whereas the secu-
rity control module administrates the security update process.
Although this work is considered promising in detecting
attacks on heterogeneous networks, it does not investigate the
propagation of new or undetected attacks.

C. J. Fung et al. proposed a distributed host-based collabo-
rative IDS (CIDS) to enhance the overall network security and
evaluate the trade-off between maintenance cost and intru-
sion cost, using Bayesian learning and a Bayesian decision
model [43]. They proposed a simulated CIDS environment to
evaluate the Bayesian decisionmodel against threshold-based
decision models, and an acquaintance selection algorithm
against the brute force approach. As a result, they achieved
better performance with less computation time. However,
this model focused on the host-based CIDS to perform the
comparison and cannot be considered a standalone model for
detecting new attacks.

The idea of developing distributed IDSs has also been
examined by Fisch et al. [44]. They proposed a detection
model for large-scale collaborative intrusion detection agents
(IDAs). The detection model includes no central control unit,
but instead uses distributed and self-organized agents that
operate in four separate layers: sensor layer, detection layer,
alert correlation layer, and reaction layer. These agents work
in a decentralized manner through data acquisition, analysis,
and communication. The detection model focuses on large-
scale environments where agents can communicate and syn-
chronize information. However, agent-based solutions are not
preferable due to the associated time-consuming communica-
tions that might fail during data exchange.

Fisch et al. proposed an organic computing technique for
detecting attacks based on probabilistic rule modeling [45].
The work is based on the IDA methodology that recognizes
new attacks and reacts by creating new rules and exchanging
them with other agents. Although the proposed technique
was evaluated using the offline DARPA traffic, it achieved
a self-adaptive status and promising results, especially in the
area of organic computing.

Zhang et al. investigated the detection of unknown
attacks by using an effective network traffic classification
method [15]. Their proposed method introduces a flow
label-propagation technique to label the flows, and a com-
pound classification process to classify correlated flows in a
bag-of-flows model instead of classifying them individually.
The results show that their work outperforms other traditional
classification methods, such as Naïve Bayes.

Lee et al. [14] proposed the use of oversampling principal
component analysis to achieve online anomaly detection by
detecting the effects of introducing outliers to a normal data
flow. The detectionmodel is based on characterizing a normal

data flow profile to help identify any outlier data point. The
detection model achieves reasonable results using synthetic
datasets and provides satisfactory results in detecting outliers.

Ortiz et al. [39] presented a method using a GHSOM
that requires only one parameter to govern the growth pro-
cess, instead of two parameters as in typical GHSOM-based
Anomaly Detection systems (ADSs), to detect anomalous
traffic. In their approach, they used a probabilistic model to
train their model online.

Thework of Sperotto et al. [46] concentrated on SSH traffic
as a binary classification problem (benign or malicious) to
automatically tune the IDS parameters by formalizing the
relation between them and the performance metrics.

Biggio et al. [47] proposed a framework for empirical
evaluations of security classifiers in adversarial environments
to improve their design. Their main goal was to provide a
quantitative and general-purpose basis for the application of
the what-if analysis to classify security evaluations based on
the definition of potential attack scenarios. They proposed:
1) a model of adversaries that allows us to define attack
scenarios; 2) a corresponding model for data distribution; and
3) a method for generating training and testing sets that are
representative of the data distributions used.

On the other hand, Zhang et al. [48] proposed a novel
ensemble-tree (E-tree for short) indexing structure to orga-
nize all the base classifiers in an ensemble for fast prediction.
This framework wasmotivated by the fact that there is a linear
increase in the prediction time associated with the increase
of the ensemble size used. The proposed E-tree structure can
achieve logarithmic time complexity for prediction.

Ferrag et al. [11] conducted a comparative study of the
latest deep learning techniques, including recurrent neural
networks (RNNs), restricted and deep Boltzmann machines,
convolutional neural networks (CNNs), and deep belief net-
works. They also surveyed the datasets used to categorize
them for better utilization in future empirical studies. They
concluded that CNNs achieved a slightly better classification
performance than other deep learning techniques.

Jiang et al. [49] proposed an offline, multi-channel
intelligent attack detection approach based on the long
short-term memory recurrent neural network deep learning
technique. The authors used an ensemble of RNN clas-
sifiers trained on basic and content-based features, basic
and traffic-based features, and all features. The classifiers’
predictions were then fed into a voting system to decide
whether the traffic should be classified as benign or mali-
cious. Their initial experimental results show that they out-
performed several classic machine learning (KNN, SVM,
and Bayesian) and deep learning (GRNN, PNN, and RBNN)
techniques.

Liang et al. [50] proposed an offline multi-feature data
clusterization optimization mode. Their proposed approach
outperformed the deep learning technique proposed in [51],
which is based on stacking nonsymmetric deep autoencoders
to create a deep learning hierarchy. They compared their
results using an NSL-KDD dataset.

131232 VOLUME 10, 2022

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

Purohit et al. [52] proposed the use of blockchain to
share threat information to improve cooperative and collec-
tive defense across multiple domain entities. The authors
tested the proposed system using the OpenCloud testbed. The
shared results demonstrated the system’s ability to effectively
choose the best peers for threat detection and mitigation.

In summary, our study of related topics in this area
confirms that there are several detection models that have
achieved satisfactory results. However, unlike the aforemen-
tioned proposed IDSs and others such as [53], [54], and [55],
our proposed detection model can continuously capture net-
work packets and hosts’ events and process them to construct
connection vectors based on certain features. In addition, the
proposed model is exceptionally capable of detecting new
attacks from the identified unknown connections using the
combination of EGHSOM and NNB models. Moreover, it is
an adaptive approach as it constantly updates its EGHSOM
and NNB models based on the current network traffic.

IV. TIDM ARCHITECTURE
The proposed TIDM architecture, shown in Figure 1, consists
of three major components: the optimized filter (OptiFilter),
which handles and preprocesses all network- and host-
captured data; the adaptive hybrid classifier, which is respon-
sible for detecting and classifying the abnormal and unknown
connections; and an alarm or a notification component to
alert subscribed services. These three components work in a
consistent and harmonious manner, as OptiFilter collects data
from the network and hosts continuously and with high effi-
ciency and converts it into appropriate data for the adaptive
hybrid classifier, which in turn detects and classifies potential
and unknown threats. Accordingly, the third component, i.e.
Alarm, issues a notice to the concerned authorities.

FIGURE 1. The proposed TIDM architecture with OptiFilter.

A. OPTIFILTER
The term ‘‘OptiFilter’’ stands for ‘‘optimized filtering’’.
It consists of data aggregators, a queue as a container for
predetermined time slot windows, and a connections exporter.
The queue in our method can contain n windows, and each
window w is a time slot of t seconds (e.g., 5 seconds).
Figure 2 illustrates the internal structure of an OptiFilter with
a 5-second time slot window. OptiFilter has been designed
and developed in such a way that is configurable using an
XML configuration file containing all parameters. One of
these parameters is the time slot window. We tested our

TIDM in a real industrial partner network for two hours long
and with a 5-second time slot, in which the model worked
smoothly without dropping any packet and with detecting all
constructed connections.

FIGURE 2. The internal structure of the OptiFilter.

Basically, correlated hosts’ events and network packets
will be constructed as connection vectors in w1 and pushed
forward in the queue (now the queue has 5-sec window);
then, the next window w2 will take place so that a queue
with 10 seconds is occupied (w1 and w2), and so on. During
any window’s existence in the queue, all the constructed
connections of this window will be continuously modified
until the window is pushed out of the queue. Based on the
work in [41], at the end of the queue, each time slot windowwi
will contain a certain number of connection vectors Di (also
known as a dataset) and will be pushed out of the queue in
the form wn, wn−1, . . . ,w1 → Dn, Dn−1, . . . ,D1 (first-in,
first-out, viz. FIFO concept). In this work, we have further
improved the OptiFilter to manage the massive network data
flows in the online operational mode. These improvements
are in transferring the nominal features into numeric ones and
normalizing all features in the constructed connections into
the range [0,1]. The new improvements in the OptiFilter are
illustrated in the following sections.

1) PROPOSED CONVERSION AND NORMALIZATION
METHODS
Most classifiers in IDSs handle only numeric values: specif-
ically, models based on neural networks [56]. Hence, the
proposed datasets in the IDS area need to be preprocessed and
prepared in an appropriate format for the detection model.

Several classifiers ignore nominal features if they are not
converted into numeric values. Moreover, a feature scale that
has a large numeric value will dominate any process, and
small values of other features will be devolved and become
ineffective. For instance, protocol_type is a feature with string
values; likewise, the feature logged_in has small values, while
the feature source_byte often has large values. Generally,
researchers prepare a proper dataset format in three individ-
ual steps: data collection, use of a tool for conversion, and
normalization. Notably, this approach is time-consuming and
requires additional effort. In this regard, we propose a plau-
sible and meaningful conversion method and a minimum-
maximum normalization method to scale the features into the

VOLUME 10, 2022 131233

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

range [0,1]. These methods are considered to be the prepro-
cessing step and are applied to each generated dataset from
the queue, as shown in Figure 2. Considering equation 1, net-
work traffic can be described withM feature vectors of finite
dimension, where each element represents a specification of a
discrete random variable Xj with values from the probability
space �j. Let, then, Xj be a random variable with nominal
values while x1j, x2j, . . . , xMj are samples with Kj different
nominal types nomj1, . . . , nom

j
Kj . We obtain the absolute fre-

quency rkj of the nominal type nomjk , k = 1, . . . ,Kj in Xj as

rkj = |{i ∈ N|xij = normjk , i = 1, . . . ,M}|. (10)

Then
∑Kj

k=1 rkj = M and 0 ≤ rkj
M ≤ 1. Hence,

fkj :=
rkj
M
, k = 1, . . . ,Kj (11)

is called the relative frequency occurrence of the nominal
feature type nomjk in Xj. Finally, by using these relative
frequencies, we define the mapping pmf : �j → [0, 1] that
transfers each nominal feature xkj ∈ �j into a real number as
pmf (xkj) = fkj. These steps for the conversion are defined in
Figure 3 as Converter (Xi).
After converting all nominal features in the current dataset,

all features have numeric values with different scales and
can be normalized into a new scale [a,b] (e.g., a = 0 and
b = 1). Let f : I → [a, b], I = [min,max] be the
minimum-maximum normalization function and v ∈ R the
numerical value of an element in Xj, then the normalized
feature value nv after the normalization process is represented
as

nv :=
v− min(Xj)

max(Xj)− min(Xj)
· (b− a)+ a. (12)

Algorithm 1 list the algorithm that contains the conver-
sion and normalization methods employed in the OptiFilter
component. The algorithm consists of two main processes,
that is, conversion and normalization. The conversion process
starts with verifying each feature vector X if it’s a nominal or
numeric one, so that the feature vector with nominal values
will be converted into a real number as stated in equations
10 and 11. The outcome of the conversion process generates
a numeric dataset, which will be then used as input to the
next process, i.e. normalization. In the normalization process,
all feature vectors will be normalized into the same range to
avoid any feature dominancy. Accordingly, the output of this
algorithm will be a completely normalized dataset.

2) EXPORTING CONNECTION VECTORS
The last component in the OptiFilter is the exporter. Prin-
cipally, all normalized datasets Ḋn, Ḋn − 1, . . . , Ḋ1 are
exported in CSV format. The CSV format is easy and can be
handled effectively in real-time. The exporter can combine
them to present a single dataset of all connections or can
send them in a pipe based on the FIFO concept. Exporting
a single dataset enables it to be used for different purposes,
such as evaluating IDS models in offline mode. However,

Algorithm 1 The Conversion and Normalization Steps
Require: D1, D2
while true do continuous loop
conn← size(Di) number of connections in D
– – Start Conversion – –
while i = 1 : n do number of features
if Xi is nominal then
Converter(Xi);

else
Output ← Xi

end if
end while
– – Start Normalization – –
while j = 1 : n do number of features
while k = 1 : conn do
nvjk :=

v−min(Xj)
max(Xj)−min(Xj)

· (b− a)+ a
vjk ← nvjk

end while
end while
Output ← normalized dataset Ḋi

end while

to classify the data flow in the online mode, the pipe concept
is particularly appropriate and is preferable in research and
development.

As a result, the OptiFilter can constantly capture data flows
and export them as connections in CSV format. Note that
the OptiFilter can be configured to perform certain steps
by enabling them and disabling others. For instance, users
can enable the normalizer and disable the converter. Figure 3
shows a sample dataset that has been generated directly from
the OptiFilter in real-time. Some fields, such as IP addresses,
have been hidden due to data privacy. Note that our OptiFilter
exports unlabeled connection vectors.

The following parameters have been used to generate the
sample dataset, Queue capacity = 3 windows, Time slot
window w = 5-sec, and Backlog = 1000 connections.

B. ADAPTIVE HYBRID CLASSIFICATION MODEL
The adaptive hybrid classifier, shown in Figure 4, is the
second part of the proposed TIDM architecture. Accordingly,
it updates the model to keep the response of the proposed
TIDM adaptive. The adaptive classifier consists of a) an
EGHSOM model that receives connection vectors from the
OptiFilter using the pipe concept, see Figure 2, and classifies
them into ‘‘normal’’, ‘‘anomaly’’, and ‘‘unknown’’, b) an
NNBmodel that examines whether the unknown connections
are ‘‘normal’’ or ‘‘anomalous’’ based on the continuously
updated dataset of normal connections, and update models to
ensure the adaptivity of the architecture. The alarm module
is activated based on the joint EGHSOM and NNB models
decisions that are fed into the controller.

This part of the TIDM also includes management
components—i.e., the controller and the alarm. The con-
troller receives classified data flows from the EGHSOM

131234 VOLUME 10, 2022

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

FIGURE 3. A sample of a dataset exported from OptiFilter.

FIGURE 4. The internal architecture of the adaptive hybrid classifier.

and NNB models and manages them properly. Specifically,
the controller gathers the detected anomalous and normal
connections in different datasets, which are subsequently
used to update the models. Moreover, it sends the detected
connections to the alarm component to show a proper alert
message. More details about the functionality of each model
are presented in the next subsections.

1) ONLINE EGHSOM MODEL
In our previous published work [57], we enhanced the orig-
inal GHSOM model to be more effective and accurate in
detecting unknown connections. The enhanced model, called
the EGHSOM, includes a meaningful initialization process
instead of random initialization, a novel splitting technique
to stabilize the growth topology, a method to remedy the
final BMUs, and a classification-confidence margin thresh-
old to uncover unknown connections. In this paper, we will
further examine the trade-off between the accuracy and the
attraction limit nRF of merging weak BMUs, as well as the
splitting threshold ζ . More details about the attraction limit
and the splitting threshold are available in [57]. Moreover,
we will explain the classification-confidence threshold in the
Section V model evaluation. According to the merge condi-
tions in [57], Figure 5 shows the trade-off between the attrac-
tion limit and the accuracy of the EGHSOM model using
three different datasets, which contain heterogenous network
traffic from offline and online networks and hosts evens,
as well as injected attacks. These datasets are NSL-KDD

FIGURE 5. The trade-off between nRF and the accuracy of EGHSOM.

FIGURE 6. The trade-off between ζ and the accuracy of EGHSOM.

dataset and two datasets collected from synthetic networks
and real industrial networks.

The trade-off shows that the attraction limit of each BMU
must at least be between 200 and 450 input vectors to achieve
maximum accuracy.

In addition, we investigated the trade-off between the split-
ting threshold and the accuracy in the EGHSOM model,
as shown in Figure 6.

Varying the splitting threshold value helps examine the
heterogeneity of each node to provide better and higher
resolution, stable growth, and robust hierarchical topology.
Hence, it is a very helpful factor to improve the detection
rate and the accuracy of the adaptive classifier. The figure
shows clearly that the best splitting threshold to achieve a high

VOLUME 10, 2022 131235

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

FIGURE 7. Representation of the NNB model.

accuracy range between 45 and 95. Hereby, the first value,
i.e., zero, is the accuracywithout any splitting technique. That
is, it has achieved the poorest accuracy. The final EGHSOM
model is therefore represented as

(C, wC, Labels,δ) (13)

where δ is the classification-confidence margin [49].

2) ONLINE NNB MODEL
Defining an NNB model is considered one of the known
challenges in network management. Several contributions
have provided different solutions to tackling this challenge,
such as a tool to describe only internal network behavior [58]
or a criterion for measuring the statistical state of hosts in
the network [59]. However, due to concept drift and the fact
that data flows are non-stationary [60], this challenge still
exists. Therefore, the proposed EGHSOM is utilized to define
a reasonable NNB model.

To achieve this goal, we gathered data flows from an
isolated network environment to guarantee suspicion-free
connection vectors (i.e., only ‘‘normal’’ connections). Then,
we trained the EGHSOM using these connections so that
the final BMUs and their receptive fields became assigned
with only ‘‘normal’’ labels. Consequently, let the maximum
distance of a BMU ci to its RFi be

Ri := max{d(xj,wci)|xj ∈ RFi, ci ∈ C}, i = 1, . . . ,m,

(14)

where m is the final number of BMUs in the EGHSOM
model. Geometrically, this can be represented as a circle
around the BMU. Thus, if we determine the maximum dis-
tance Ri for each BMU ci in the final model (as shown in
Figure 7), we can define a reasonable NNB model based on
these distances.

Note that the small circles represent input vectors, and
the big, dashed circles are the obtained maximum radius
around the BMUs. Accordingly, the NNBmodel based on the
EGHSOM training process can be defined as

(C,wC ,RC), (15)

where RC is the distance set of the final BMUs. The goal
of this model is to classify unknown connections as either
‘‘normal’’ or ‘‘anomaly’’. Note that, as mentioned before,
the EGHSOM model can classify connections as ‘‘normal’’,
‘‘anomaly’’, or ‘‘unknown’’ [57]. Hence, the NNB is a very

important component that classifies unknown connections as
‘‘normal’’ and ‘‘anomaly’’, basedAlgorithm 2. The algorithm
is very simple and effective at the same time. The first step
of the algorithm is to consider all connections detected and
labeled as ‘‘unknown’’. In the second step, we measure the
distance of each unknown connection to the BMU in the
normal NNB model. Based on equation 14 and figure 7, each
BMU in the NNB has a radius, so if the measured distance
in the second step is less than the radius of any BMU in the
NNB, then it will be classified as Normal because it belongs
to this cluster, otherwise, the unknown connection will be
classified as ‘‘unknown anomaly’’ and it should be further
analyzed.

In the following subsections, we will describe the update
procedures used in both EGHSOM and NNB models. These
procedures are vital to ensure that the outcome of the Opti-
Filter is dynamically and continuously optimized.

3) EGHSOM UPDATE MODEL
The update procedure of EGHSOM uses connections from
the anomaly database and measures the selection percentage
(η) of each BMU, where η determines which BMU was
active, and which one was not, according to the online detec-
tion process. The use of the selection percentage (η) is nec-
essary to expand the topology of the EGHSOM during online
detection in which the growth of the original EGHSOM
model is kept within plausible limits. We need to mention
that, when our EGHSOM detects an anomalous connection,
it sends this connection and the BMU that has detected it
to the controller in the following form (connection, label,
BMU).

Algorithm 2 Labeling Unknown Connections Using the
NNB Model
Require: NNB Model (C,wc,Rc)

while true do continuous loop
input← unknown connection x̂(t)
while i < m do m = number of BMUs
d̂ = ||x̂(t)− wi|| distance to each BMU
if d̂ ≤ Ri then
x̂(t) is normal connection
Write x̂(t) to Normal Dataset
Output ← x̂(t); Break;

else
i++;

end if
end while
Output ← x̂(t) is unknown anamoly

end while

Accordingly, the controller decides to store the connec-
tion in the anomaly database and forwards it to the alarm
component. Therefore, one BMU can appear several times
in the anomaly database. Let the number of BMUs in the
database be N such that Q := {bmu1, bmu2 . . . , bmuN } and
Q ⊂ C . Thus, the selection percentage of each BMU ci can

131236 VOLUME 10, 2022

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

be determined as

ηi :=
|{bmui|bmui ∈ Q}|

|Q|
, i = 1, ..,N , (16)

where |Q| is the total number of connections in the anomaly
database. Each BMU with a high selection percentage value
should be further analyzed, because the large number of
mapped instances onto one BMU can be used to improve
detection model accuracy and precision. Therefore, a bmui
will be divided into two neurons bmui1 and bmui2 if it satisfies
the condition ηi > 0.95. This value has been selected based
on several practical tests of the EGHSOM with a continuous
tuning process. That means if the BMU has been selected
by 95% of the connection vectors, it should be split into
two BMUs to maintain plausible growth and accurate detec-
tion. In this regard, all connections in the anomaly database
detected by the bmui are considered as its RF i. Initializing the
weight vectors of the two BMUs bmui1 and bmui2 should be
performed using the initialization process presented in [57].
Input vectors in theRF i will be reassigned on both newBMUs
according to the minimal distance measure. As a result,

{bmui,RFi} → {bmui1,RFi1}, {bmui2,RFi2} (17)

The next step is to update the classification-confidence
threshold δ = [dmin, dmax]. Let δQ be the threshold margin of
all BMUs in Q such that δQ =

[
d̂min, d̂max

]
. Therefore, the

new threshold margin δ́ =
[
d́min, d́max

]
is determined based

on the following:

d́min =

{
d̂min d̂min ≤ dmin
dmin else,

and

d́max =

{
d̂max d̂max ≥ dmax
dmax else.

(18)

After examining the BMUs in Q and updating the margin
of the classification-confidence threshold, the final step is to
update the BMUs using equation 4, where the RF of each
BMU is considered as its input and hci(t) is an exponentially
decreasing function that is used in the same way as training
the GHSOM by decreasing the neighborhood area around the
unit during the update process, such that

hci(t) = α0 · e
−

I
|Q| . (19)

Hereby, α0 is a constant and 0 < α0 < 1, I is the total
number of input vectors in the RFi of the BMUi, and |Q| is the
total number of instances in the anomaly database. Accord-
ingly, the update model loads the new EGHSOM model by
replacing it with the current EGHSOM model as

(C,wC ,Labels, δ)→ (C ′,wC ′ ,Labels, δ
′). (20)

The flowchart in Figure 8 illustrates the steps in the
EGHSOM updates model.

FIGURE 8. Flowchart of EGHSOM update model steps.

FIGURE 9. Flowchart of NNB update model steps.

4) NNB UPDATE MODEL
The NNB update procedure considers only detected normal
connections from the online EGHSOM model and the online
NNB model. The normality of the network changes con-
stantly because the data stream is made up of non-stationary
data, which are affected by concept drift [60]. Figure 9 shows
a flowchart of the steps in the NNB update model.

Due to the constant changes in the normality of the net-
work, the NNB model should be updated continuously. All
connections in the normal database will be used to update
the state of each BMU in the NNB model (C, wC , RC) using
the k-means clustering algorithm [61], [62], [63]. In other
words, BMUs that were not active in the online detection
could be modified during the update procedure, which in turn
enhances the NNB model and makes it more adaptive and
homogeneous with the new normal state of the network.

Based on Figure 8, the weight vector of each BMU can
be considered as a cluster centroid in k-means. Accordingly,
to update the NNB model, the k-means algorithm should be
performed as

K − means(m, centroids,Normal_database, λ), (21)

VOLUME 10, 2022 131237

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

where λ is the number of iterations. After the algorithm
is converged, the radius of each cluster is determined as
described in equation 13 and, hence, the update model loads
the new NNB model as

(C,wC ,RC)→ (C ′,wC ′ ,RC ′) (22)

V. MODEL EVALUATION
In the performance evaluation, the proposed TIDM was eval-
uated in both its offline and online operational modes. Several
benchmark datasets have been used in these evaluations with
predefined performance metrics to assess the practicality of
the proposed solution.

A. DATASET FOR EVALUATION
We used data flows from four different datasets for eval-
uation. The first one is the benchmark offline dump data
from DARPA (D1) [64]. The second is synthetic data from
our simulated network, which is called ‘‘Artificial Dataset’’
(D2). We installed a simulated network at the university
campus that simulates internal and external traffic on vir-
tual machines. On the internal network, we set up five
GNU/Linux server systems, two Windows Internet Informa-
tion and Exchange servers, and two Windows domain con-
trollers for a total of 10 windows runningWindows 7 and XP.
On the external network, we set up five virtual machines, each
providing a dedicated service (i.e., HTTP, DNS, and SMTP).
The virtual machines were assigned 1024 IP addresses each,
ranging over the whole IPv4 address space. This allowed us
to simulate connections to the internet with a wide range of
different IP addresses. In this test network, we used the appli-
cations Metasploit, Nexpose, OpenVAS, and other attack
scenarios like ping around or DoS to generate new uncovered
attacks (or anomalous traffic).

Accordingly, network data were captured using tcpdump
at the virtual bridge interface of the internal physical server.
For our tests, we selected 17 of the most common services
that should be present in the network traffic dump; these were
ftp, ssh, telnet, smtp, smb, nfs, xmpp, http, ntp, dhcp, syslog,
snmp, rdp, IMAP, pop3, and rsync. Note that, for a complete
day, we injected different attacks into our simulated network.
We called this third data flow ‘‘Artificial Dataset+Anomaly’’
(D3).The fourth trace is of real-time data from a large-scale
firm computer network operating on 1–10 GB; we called it
‘‘RealSet’’ (D4) [65].

B. EVALUATION IN THE OFFLINE OPERATIONAL MODE
In this section, both OptiFilter and the Adaptive hybrid clas-
sifier will be evaluated offline using different datasets which
are explained in the previous sub-section (V.A.).

1) OPTIFILTER EVALUATION
In this section, the first part of the proposed TIDM is eval-
uated in its offline mode. Table 2 summarizes the configu-
ration parameters of this part. In this mode, the OptiFilter
was evaluated using the datasets provided in Table 2 and

TABLE 2. Configuration of optifilter for offline evaluation.

FIGURE 10. Number of processed packets per window.

the performance metrics of this evaluation are discussed
individually.

The first performance metric monitors the total number
of packets that have been processed by each window in the
queue. Further details about the queue concept are available
in our work [41]. This metric indicates the adequacy and
performance of the OptiFilter by processing packets every
5 seconds. In other words, the OptiFilter reads a certain
number of captured packets every w seconds (e.g., w = 5)
and inserts them in the current window to be analyzed and
correlated with the host events. Therefore, the metric will
show if the total number of captured packets can be effec-
tively processed in the current window without any failure or
limitation. Figure 10 demonstrates the result for the selected
data flows.

Note that each data flow has a different size with different
packet flows per second, which normally leads to different
numbers of windows. This results in uneven curves for each
data flow, as shown in Figure 10.

For instance, it is possible that only one connection was
established in the first 5 seconds, which would mean the
number of packets in the current window is small. In contrast,
it is possible that hundreds of connections were established in

131238 VOLUME 10, 2022

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

FIGURE 11. Processing time per window.

the first 5 seconds, which would mean the number of packets
in the current window is large. This implies that a packet
flows every 5 seconds is not consistent; hence, the number
of processed packets in each window will be different.

The OptiFilter can handle a huge number of packets,
as shown in Figure 10, without any failure or limitation. For
instance, the 3.5 GB data flow of the dataset ‘‘RealSet’’ was
processed within 1200 windows in the queue, whereas more
than 15500 windows were required to process the data flow
from the dataset D1. Moreover, some irregular curves, such
as the one related to the data flow of dataset D3, provide
further information about the nature of the processed packets.
This data flow in D3 contains some types of attacks, which
can be recognized in Figure 10. We verified if these salient
peaks belong to any attack class, and all of them were indeed
attacks.

The second monitored metric relates to the total time
required for each window to process the corresponding pack-
ets and to construct the connection vectors accordingly. This
performance metric indicates the superiority of the OptiFil-
ter in managing massive data flows within reasonable time-
frames, as shown in Figure 11.

Intuitively, whenever the number of packets increases, the
required processing time should also increase. In general,
Figure 11 confirms this assumption. The salient peaks on
some results, such as in the D2 dataset data flow, are consid-
ered to be glitches, but they have no influence on the overall
performance of the OptiFilter. Other peaks could be related to
programming issues such as the salient peak in the data flow
of dataset D3.

The third metric involves observing the number of con-
structed connection vectors for each window. Figure 12
shows the final constructed connection vectors of each win-
dow, which should be proportional to the number of pro-
cessed packets.

The last metric is packet dropped, which is very important
in computer network management. We carefully monitored
the number of dropped packets for each window and then

FIGURE 12. Number of constructed connections per window.

TABLE 3. Final results of evaluating the optifilter in offline mode.

calibrated the OptiFilter accordingly. Regarding data flow
from the D3 dataset, the number of packet drops was very
small. At the start, the OptiFilter dropped around 150 packets
due to the cold start—that is, the OptiFilter was still in its
start-up phase.

Moreover, some IPv6 packets appear at the beginning and
the OptiFilter dropped them immediately. In contrast, the
OptiFilter regularly dropped around 20 packets per window
while processing the data flow in the D4 dataset. This refers
to the IPv6 packets and some packets belonging to other
dedicated services that are not included in the OptiFilter’s
configuration. According to the data flow of the D2 dataset,
the OptiFilter dropped all IPv6 packets and, because the
data flows were synthetically generated, the same number
of packet drops from each window was repeated until the
last window. Table 3 summarizes all the metrics for better
illustration.

2) ADAPTIVE HYBRID CLASSIFIER EVALUATION
The second part of the offline evaluation focuses on the
EGHSOM classifier model. It examines the following perfor-
mance metrics: the accuracy and the false positive rate. The
best-knownmethod to evaluate the IDS classifier is the cross-
validation technique.

Cross-validation is an accuracy estimation technique that
evaluates the precision of the classifier model by building
a confusion matrix for different datasets. Accordingly, for
evaluating the adaptive classifier, 10-fold cross-validation

VOLUME 10, 2022 131239

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

TABLE 4. Datasets for evaluating the classifier in offline mode.

FIGURE 13. Final accuracy results using the offline 10-fold
cross-validation.

was selected because it has been shown that 10 levels are
about right for obtaining the best estimate of error and 10-
fold cross-validation is a widely used technique for evaluating
the classifier model [66]. Several labeled datasets, which vary
in size and source, were prepared for cross-validation. The
datasets prepared are shown in Table 4.

Additionally, the final accuracy results of the 10-fold cross-
validation are illustrated in Figure 13.

The cross-validation technique divides the dataset into dif-
ferent parts. For instance, if the classifier is evaluated by a
5-fold cross-validation technique then the total number of
instances M in the dataset would be divided into five sets,
with each set having a size M /5 in such a way that the
classifier can be trained using the first four sets and evaluated
using the fifth set. This process would then be repeated five
times, themean accuracy being taken as the final performance
measure of the classifier. Mean accuracy is simply the mean
value of all computed accuracy in each fold. Hence, for 5-fold
cross-validation, we have 5 different accuracy measures,
so we take the mean value of these 5 performance measures,
and this is considered then our mean accuracy. While False
Positive Rate (FPR) is the number of normal connections seen
by the TIDM as an anomaly.

Based on Figure 13, the mean accuracy of the total
10-fold approach for all datasets in Table 3 reached 97.11,
and the mean FPR= 0.01417. As mentioned above, the
cross-validation technique evaluates the classifier using the
untrained set; hence, we utilized this option to verify whether
our EGHSOM model can detect new connections as being
‘‘unknown’’. Figure 14 shows the number of connections
detected as unknown during the cross-validation.

FIGURE 14. Total number of connections detected as unknown during the
offline 10-fold cross-validation.

FIGURE 15. Number of BMUs before and after merging during the offline
10-fold cross-validation.

It is very possible that a test subset (fold) contains
anomalous connections that have not been present in the
training subset, in which case the classifier will classify
them as ‘‘unknown’’. The next monitored metric during the
cross-validation is the number of BMUs in the final EGH-
SOM before and after performing the proposed merging pro-
cess [57], as shown in Figure 15.

Notably, the EGHSOM training could reduce the total
number of final BMUs significantly, which, in turn, would
improve the overall TIDM performance.

C. EVALUATION IN THE ONLINE OPERATIONAL MODE
We installed the TIDM on a real-time 1–10 GB firm com-
puter network and evaluated both parts online. In this mode,
the TIDM was executed for almost 2 hours (nonstop) and
processed around 920 windows in the queue (window w =
5 sec). Figure 16 demonstrates the nature of the aggregated
data flow within these 2 hours.

The same performance metrics in the offline operational
mode for the OptiFilter were also used in the online opera-
tional mode. Figure 17 summarizes these metrics.

131240 VOLUME 10, 2022

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

FIGURE 16. Most used services in the real-time data flow.

FIGURE 17. OptiFilter performance in real-time.

The proposed TIDM processed more than 13500 packets
per window in the dynamic queue and accordingly con-
structed more than 3000 connections in less than 5 seconds,
without any packet drops.

On the other hand, the adaptive classifier shows very
superior results in the online operational mode. In addition
to monitoring accuracy, detection rate, and false positive
rate, the update models for EGHSOM and NNB were also
monitored to check the adaptivity of the TIDM in real-time.
The update model of EGHSOM performed an update after
30 minutes, provided that the number of detected anomalies
was greater than 100 connections. Moreover, the update for
NNB was configured to perform an update after 25 minutes,
provided that the number detected as ‘‘normal’’ was greater
than 5000 connections. Accordingly, we checked if the TIDM
is able to adapt the classification-confidence margin and the
radiuses of the NNB model via massive data flows.

Firstly, we used the classification-confidence margin and
some postulates to construct the confusion matrix in online
operational mode for the EGHSOM, as shown in Figure 18.
These postulates were:

FIGURE 18. Confusion matrix and the corresponding performance
metrics.

FIGURE 19. (a) Classification-confidence margin used at the beginning;
(b) adapted classification-confidence margin at the end.

- Connections between internal IPs are considered
normal.

- All connections from internal to external IPs are consid-
ered normal.

- Connections from external to internal IPs have been
assigned with the same label as is given by the proposed
TIDM.

For instance, the false positive (FP) value in the matrix is
actually the number of connections that have been detected
as anomalies but were originally classed as ‘‘normal’’. Note
that TP is the true positive, TN is the true negative, and FN
is the false negative. Moreover, the performance metrics are
TPR (the detection rate), FPR (the false positive rate), and
ACC (the accuracy). They were obtained as follows.

TPR =
TP

TP+ FN
,FPR =

FP
FP+ TN

(23)

ACC =
TN + TP

TP+ TN + FP+ FN
(24)

Figure 19 shows the classification-confidence at the begin-
ning of executing the TIDM and at the end. It emphasizes
that the TIDM could optimally adapt the margin, in real-time,
throughout the online classification.

As mentioned previously, the idea of the classification-
confidence margin was derived from the mean quantiza-
tion error of each BMU. Thus, the TIDM is considered
effective if the mean quantization error (i.e., the margin)
decreases during the online classification. In this regard,
Figure 21 shows that the minimum and maximum boundaries
of the classification-confidence margin did indeed decrease
gradually.

Another major property of the TIDM is the ability
to classify new suspicious connections as ‘‘unknown’’.

VOLUME 10, 2022 131241

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

FIGURE 20. Distances of all classified connections in real time.

FIGURE 21. Radius adaption by the NNB model in real time.

Figure 20 shows the classification-confidence margin used in
the online operational mode and the distance of each classi-
fied connection revealed by the TIDM.

The Euclidean distance of each constructed connection
to the EGHSOM model was calculated and examined if it
fell inside or outside the margin. Note that if the distance
of a new constructed connection is smaller than the min-
imum margin boundary then this connection is considered
a known connection, because it is very close to a BMU
in the EGHSOM model. On the contrary, if the distance
falls outside the maximum margin boundary, then it is con-
sidered ‘‘unknown’’. Therefore, the EGHSOM model can
effectively detect suspicious connections and classify them
as ‘‘unknown’’, as Figure 20 illustrates.

Regarding the NNB model, the radiuses were also adapted
during the online operational mode using the k-means algo-
rithm, which achieved smaller radiuses at the end of the
execution. This implies that the proposed TIDM adapted the
NNB model so that each BMU has a minimized mean quan-
tization error and hence a robust cluster form. The adaption
of the radiuses can be seen in Figure 21.

As a result, the TIDM provided very promising results in
online operational mode. It can process a massive data flow
within seconds without dropping any packets. In addition, all
packets were processed within a reasonable time. Moreover,

it can achieve maximum accuracy and a minimum false alarm
rate, and can classify connections as ‘‘normal’’, ‘‘anomaly’’,
or ‘‘unknown’’. Here, ‘‘unknown’’ connections refer to sus-
picious connections. Finally, the TIDM is effectively able to
adapt its classification models and other parameters during
the online operational mode.

VI. MODEL PERFORMANCE
It is also important to evaluate other necessary perfor-
mance metrics of the model. First, we compare the proposed
TIDM with other competitive models. Second, based on
our expertise, and by referring to some industrial standards
[68], we have chosen the following metrics: user satisfac-
tion/Apdex scores, average response time, and scalability.

A. COMPARISON STUDY WITH OTHER MODELS
In this section, the proposed TIDM model is compared
against other intrusion detection models, which are summa-
rized by Ozkan-Okay et al. [69]. It is worth mentioning that
these models including TIDM, have different configurations
and datasets. Therefore, the comparison will focus on the per-
formance metrics for all models. These metrics are Detection
Rate (DR), False Positive Rate (FP), and Accuracy (ACC).
Table 5 shows the comparison result.

TABLE 5. Summary of intrusion detection comparison.

As clearly shown from the table, used datasets for the
evaluation are different, but obviously the TIDM model has
been evaluated by several datasets. The salient difference
here is the evaluation on a real industrial firm network in the
online operational mode (that means during the firm normal
business day). In addition, some articles from the table eval-
uated known machine learning methods against the selected

131242 VOLUME 10, 2022

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

FIGURE 22. User satisfaction with using TIDM.

dataset. For instance, Meftah et al. [75] evaluated Logistic
Regression and SVM using the UNSW-NB 15 dataset, hence,
no new or novel proposed model on their work is presented.
Moreover, some articles did not include certain performance
metric, such as Qassim et al. [72]. They covered only the
performance metric accuracy and did not cover other both
metrics. In addition, we have selected the best performance
metric value in the comparison, for example, if the author of
certain article in the table conducted several tests and reported
several accuracies, we considered the best resulted accuracy
of that article in the comparison. As a result, all selected
articles in table 5 are competitive, but the proposed TIDM
model delivers the best performance. Moreover, it’s the only
model capable of updating itself continuously in real-time.

B. USER SATISFACTION/APDEX SCORES
Apdex is an industry standard to measure users’ satisfac-
tion with the response time of web applications and ser-
vices. It helps to reveal how satisfied users are with an
application. We distributed a survey to about 120 users and
asked them to score their satisfaction with using the TIDM
framework from 1 (‘‘not satisfied’’) to 10 (‘‘very satisfied’’).
Figure 22 shows the results of the survey.

As is obvious from Figure 22, most of the users were
very satisfied with using the application: the average value of
7.55 gives a good indication of the degree of user satisfaction.
In general, the application still needs improvements, and
these will be considered during future work.

C. AVERAGE RESPONSE TIME AND SCALABILITY
This metric shows the response time of any request made to
the model. That means the response time of the model from
the time a data item is captured until a result is displayed as a
classification of the generated instance.

We evaluated this metric using three parameters: namely,
small offline traffic up to 2 GB, large offline traffic up
to 15 GB, and online traffic over 2 hours. Figure 23 displays
the response time, in seconds, based on these scenarios.

The OptiFilter component takes more time than the other
components (e.g., 10 seconds for 15 GB) because it needs to

FIGURE 23. Response time for all components.

reprocess the flows and events and then generate a dataset
based on the sliding window mechanism, which in turn
depends on the size of the input and whether it is offline
or online. However, the online response time is still very
reasonable.

Regarding scalability, the application should be suitable
for any network, and it works properly even if new net-
work devices are installed or the amount of collected traffic
changes. Indeed, the previous test showed that the application
will work with networks beyond our simulated one and with
different collected data sizes.

VII. CONCLUSION AND FUTURE WORK
In this paper, an adaptive real-time IDS TIDM has been
introduced as a means to manage the data flows in com-
puter networks and reveal unknown connections in the online
operational mode. The TIDM consists of two parts. The first
part namely, the OptiFilter aggregates continuous data flows
and hosts’ events, processes them, and constructs connection
vectors based on the selected features set. The second part
known as the adaptive classifier uncovers anomalous and
unknown connections. Moreover, the latter is able to further
classify unknown connections and to adapt itself to the actual
network behavior by using novel update models. Specifi-
cally, the adaptive classifier utilizes an EGHSOM model to
classify the constructed connections and an NNB model to
further classify the unknown connections. It uses the detected
anomalous connections to update the EGHSOM model and
the detected normal connections to update the NNB model.
We evaluated the TIDM in the offline operational mode using
various data flows and in the online operational mode in
a real-time firm 1–10 GB computer network. The TIDM
achieved high accuracy and very low false positive rates in
both operational modes. Moreover, it can handle massive data
flows within reasonable timeframes and uncover anomalous
and unknown connections with precision. The TIDM can
adapt the classifier models and other parameters continuously
in real-time. However, the proposed model does not consider
IPv6, the OptiFilter occasionally needs some manual con-
figuration, and the alarm should ideally be more interactive.

VOLUME 10, 2022 131243

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

Finally, the application has been attractive to users, who have
expressed their satisfaction. It has also been recommended
by some of them, with further improvement, to become an
industrial application. In our future work, we will tune the
TIDM to handle IPv6 packets, and will develop a dynamic
labeling technique.

REFERENCES
[1] S. M. Bellovin and R. Bush, ‘‘Configuration management and security,’’

IEEE J. Sel. Areas Commun., vol. 27, no. 3, pp. 268–274, Apr. 2009.
[2] P. Skeffington and R. Ward, ‘‘Network computer management,’’ in Proc.

6th Annu. Comput. Secur. Appl. Conf., Tucson, AZ, USA, 1990.
[3] G. Y. Keung, B. Li, and Q. Zhang, ‘‘The intrusion detection in mobile

sensor network,’’ IEEE/ACM Trans. Netw., vol. 20, no. 4, pp. 1152–1161,
Aug. 2012.

[4] L. Kufel, ‘‘Security event monitoring in a distributed systems environ-
ment,’’ IEEE Security Privacy, vol. 11, no. 1, pp. 36–43, Jan. 2013.

[5] H. Duan and J. Wu, ‘‘Security management for large computer networks,’’
in Proc. 5th Asia–Pacific Conf. 4th Optoelectronics Commun. Conf. Com-
mun., Beijing, 1999, pp. 1208–1213.

[6] F. Majeed, M. S. Mahmood, andM. Iqbal, ‘‘Efficient data streams process-
ing in the real time data warehouse,’’ in Proc. 3rd Int. Conf. Comput. Sci.
Inf. Technol., Chengdu, China, Jul. 2010, pp. 57–61.

[7] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, ‘‘StreamCloud: An elastic and scalable data streaming sys-
tem,’’ IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2351–2365,
Dec. 2012.

[8] L. Vokorokos, P. Fanfara, J. Radusovsky, and P. Poor, ‘‘Sophisticated
honeypot mechanism—The autonomous hybrid solution for enhancing
computer system security,’’ in Proc. IEEE 11th Int. Symp. Appl. Mach.
Intell. Inform. (SAMI), Herl’any, Slovakia, Jan. 2013, pp. 41–46.

[9] M.Missbach, T. Staerk, C. Gardiner, J.McCloud, R.Madl,M. Tempes, and
G. Anderson, SAP on the Cloud (Management for Professionals), Berlin,
Germany: Springer, 2016.

[10] J. Bayuk and A. Mostashari, ‘‘Measuring systems security,’’ Syst. Eng.,
vol. 16, no. 1, pp. 1–14, 2013.

[11] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, ‘‘Deep
learning for cyber security intrusion detection: Approaches, datasets, and
comparative study,’’ J. Inf. Secur. Appl., vol. 50, pp. 1–18, Feb. 2020.

[12] B. Sun, X. Shan, K.Wu, and Y. Xiao, ‘‘Anomaly detection based secure in-
network aggregation for wireless sensor networks,’’ IEEE Syst. J., vol. 7,
no. 1, pp. 13–25, Mar. 2013.

[13] Y.-L. Hu, W.-B. Su, L.-Y. Wu, Y. Huang, and S.-Y. Kuo, ‘‘Design of
event-based intrusion detection system on OpenFlow network,’’ in Proc.
43rd Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Budapest,
Hungary, Jun. 2013, pp. 1–2.

[14] Y. J. Lee, Y. R. Yeh, and Y. C. F. Wang, ‘‘Anomaly detection via online
oversampling principal component analysis,’’ IEEE Trans. Knowl. Data
Eng., vol. 25, no. 7, pp. 1460–1470, Jul. 2013.

[15] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. Vasilakos, ‘‘An effective
network traffic classification method with unknown flow detection,’’ IEEE
Trans. Netw. Service Manage., vol. 10, no. 2, pp. 133–146, Mar. 2013.

[16] A. Hofmann and B. Sick, ‘‘Online intrusion alert aggregation with gener-
ative data stream modeling,’’ IEEE Trans. Dependable Secure Computing,
vol. 8, no. 2, pp. 282–294, Mar. 2011.

[17] S. LaValle, E. Lesser, R. Shockley, M. S. Hopkins, N. Kruschwitz, and
S. LaValle, ‘‘Big data, analytics and the path from insights to value,’’MIT
Sloan Manag. Rev., vol. 52, no. 2, pp. 21–31, 2011.

[18] A. Jacobs, ‘‘The pathologies of big data,’’ Commun. ACM, vol. 52, no. 8,
pp. 36–44, Aug. 2009.

[19] M. Guarascio, N. Cassavia, F. S. Pisani, and G. Manco, ‘‘Boosting cyber-
threat intelligence via collaborative intrusion detection,’’ Future Gener.
Comput. Syst., vol. 135, pp. 30–43, Oct. 2022.

[20] W.-S. Choi, S.-Y. Lee, and S.-G. Choi, ‘‘Implementation and design of
a zero-day intrusion detection and response system for responding to
network security blind spots,’’ Mobile Inf. Syst., vol. 2022, pp. 1–13,
Apr. 2022.

[21] N. Ye, S. M. Emran, Q. Chen, and S. Vilbert, ‘‘Multivariate statistical
analysis of audit trails for host-based intrusion detection,’’ IEEE Trans.
Comput., vol. 51, no. 7, pp. 810–820, Jul. 2002.

[22] N. B. S. Amor and Z. Elouedi, ‘‘Naive Bayes vs decision trees in intrusion
detection systems,’’ in Proc. ACM Symp. Appl. Comput., Nicosia, Cyprus,
2004, pp. 420–424.

[23] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, ‘‘Intrusion detection
by machine learning: A review,’’ Exp. Syst. Appl., vol. 36, no. 10,
pp. 11994–12000, 2009.

[24] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.-L. Zhang, ‘‘A mod-
ular machine learning system for flow-level traffic classification in large
networks,’’ ACM Trans. Knowl. Discovery Data, vol. 6, no. 1, pp.1–34,
2012.

[25] M. Q. Ali, E. Al-Shaer, H. Khan, and S. A. Khayam, ‘‘Automated anomaly
detector adaptation using adaptive threshold tuning,’’ ACMTrans. Inf. Syst.
Secur., vol. 15, no. 4, pp. 1–30, Apr. 2013.

[26] G. P. Zhang, ‘‘Neural networks for classification: A survey,’’ IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 30, no. 4, pp. 451–462, Nov. 2000.

[27] T. C. Silva and L. Zhao, ‘‘Network-based high level data classification,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 6, pp. 954–970,
Jun. 2012.

[28] J. Zhao, M. Chen, and Q. Luo, ‘‘Research of intrusion detection system
based on neural networks,’’ in Proc. IEEE 3rd Int. Conf. Commun. Softw.
Netw., May 2011, pp. 174–178.

[29] M. Al-Fawa’reh, M. Al-Fayoumi, S. Nashwan, and S. Fraihat, ‘‘Cyber
threat intelligence using PCA-DNN model to detect abnormal network
behavior,’’ Egyptian Informat. J., vol. 23, no. 2, pp. 173–185, Jul. 2022.

[30] R. Xu and D. C. Wunsch, ‘‘Survey of clustering algorithms,’’ IEEE Trans.
Neural Netw., vol. 16, no. 3, pp. 645–678, Nov. 2005.

[31] A. K. Jain, M. N.Murty, and P. J. Flynn, ‘‘Data clustering: A review,’’ ACM
Comput. Surv., vol. 31, no. 3, pp. 264–323, Nov. 1999.

[32] M. Norouzian and S. Merati, ‘‘Classifying attacks in a network intru-
sion detection system based on artificial neural networks,’’ in Proc. 13th
Int. Conf. Adv. Commun. Technol. (ICACT), Seoul, South Korea, 2011,
pp. 868–873.

[33] T. Kohonen, ‘‘Self-organized formation of topologically correct feature
maps,’’ Biol. Cybern., vol. 43, no. 1, pp. 59–69, Jan. 1982.

[34] H. Ritter and T. Kohonen, ‘‘Self-organizing semanticmaps,’’Biol. Cybern.,
vol. 61, no. 4, pp. 241–254, Aug. 1989.

[35] T. Kohonen, ‘‘The self-organizing map,’’ Proc. IEEE, vol. 78, no. 9,
pp. 1464–1480, Sep. 1990.

[36] T. Kohonen, Self-Organization and Associative Memory, Berlin, Germany:
Springer-Verlag, 1989.

[37] T. Kohonen, Self-Organizing Maps. Berlin, Germany: Springer, 1995.
[38] A. Rauber, D. Merkl, and M. Dittenbach, ‘‘The growing hierarchical

self-organizing map: Exploratory analysis of high-dimensional data,’’
IEEE Trans. Neural Netw., vol. 13, no. 6, pp. 1331–1341, Nov. 2002.

[39] E. J. Palomo, J. M. Ortiz-de-Lazcano-Lobato, E. Dominguez, and
R. M. Luque, ‘‘An anomaly detection system using a GHSOM-1,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Barcelona, Spain, Jul. 2010.

[40] S. Babu and J. Widom, ‘‘Continuous queries over data streams,’’ ACM
Sigmod Rec., vol. 30, no. 3, pp. 109–120, Sep. 2001.

[41] M. Salem, S. Reissmann, and U. Buehler, ‘‘Persistent dataset generation
using real-time operative framework,’’ in Proc. Int. Conf. Comput., Netw.
Commun. (ICNC), Honolulu, HI, USA, Feb. 2014.

[42] F. Hashim, K. S. Munasinghe, and A. Jamalipour, ‘‘Biologically inspired
anomaly detection and security control frameworks for complex hetero-
geneous networks,’’ IEEE Trans. Netw. Service Manage., vol. 7, no. 4,
pp. 268–281, Dec. 2010.

[43] C. J. Fung, J. Zhang, and R. Boutaba, ‘‘Effective acquaintancemanagement
based on Bayesian learning for distributed intrusion detection networks,’’
IEEE Trans. Netw. Service Manage., vol. 9, no. 3, pp. 320–332, Sep. 2012.

[44] D. Fisch, A. Hofmann, V. Hornik, I. Dedinski, and B. Sick, ‘‘A framework
for large-scale simulation of collaborative intrusion detection systems,’’
in Proc. IEEE Conf. Soft Comput. Ind. Appl., Muroran, Japan, Jun. 2008,
pp. 125–130.

[45] D. Fisch, F. Kastl, and B. Sick, ‘‘Novelty-aware attack recognition—
Intrusion detection with organic computing techniques,’’ in Proc. IFIP
Conf. Biologically-Inspired Collaborative Comput., Brisbane, QLD, Aus-
tralia, 2010, pp. 242–253.

[46] A. Sperotto, M.Mandjes, R. Sadre, P.-T. de Boer, and A. Pras, ‘‘Autonomic
parameter tuning of anomaly-based IDSs: An SSH case study,’’ IEEE
Trans. Netw. Service Manage., vol. 9, no. 2, pp. 128–141, Jun. 2012.

[47] B. Biggio, G. Fumera, and F. Roli, ‘‘Security evaluation of pattern clas-
sifiers under attack,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 4,
pp. 984–996, Apr. 2014.

131244 VOLUME 10, 2022

M. Salem, A.-K. Al-Tamimi: Novel Threat Intelligence Detection Model Using Neural Networks

[48] P. Zhang, C. Zhou, P. Wang, B. J. Gao, X. Zhu, and L. Guo, ‘‘E-tree: An
efficient indexing structure for ensemble models on data streams,’’ IEEE
Trans. Knowl. Data Eng., vol. 27, no. 2, pp. 461–474, Feb. 2015.

[49] F. Jiang, Y. Fu, B. B. Gupta, Y. Liang, S. Rho, F. Lou, F. Meng, and Z. Tian,
‘‘Deep learning based multi-channel intelligent attack detection for data
security,’’ IEEE Trans. Sustain. Comput., vol. 5, no. 2, pp. 204–212,
Apr. 2018.

[50] W. Liang, K.-C. Li, J. Long, X. Kui, and A. Y. Zomaya, ‘‘An industrial
network intrusion detection algorithm based on multifeature data clus-
tering optimization model,’’ IEEE Trans. Ind. Informat., vol. 16, no. 3,
pp. 2063–2071, Mar. 2020.

[51] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, ‘‘A deep learning approach to
network intrusion detection,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 41–50, Feb. 2018.

[52] S. Purohit, R. Neupane, N. R. Bhamidipati, V. Vakkavanthula, S. Wang,
M. Rockey, and P. Calyam, ‘‘Cyber threat intelligence sharing for co-
operative defense in multi-domain entities,’’ IEEE Trans. Dependable
Secure Comput. Comput., vol. 135, no. 1, pp. 30–43, Oct. 2022.

[53] F. Bao, I.-R. Chen, M. Chang, and J.-H. Cho, ‘‘Hierarchical trust man-
agement for wireless sensor networks and its applications to trust-based
routing and intrusion detection,’’ IEEE Trans. Netw. Service Manage.,
vol. 9, no. 2, pp. 69–183, Jun. 2012.

[54] Z. Yu, J. J. P. Tsai, and T. Weigert, ‘‘An adaptive automatically tuning
intrusion detection system,’’ ACM Trans. Auto. Adapt. Syst., vol. 3, no. 3,
pp. 1–25, Aug. 2008.

[55] M. Zolotukhin, T. Hamalainen, and A. Juvonen, ‘‘Online anomaly detec-
tion by using N-gram model and growing hierarchical self-organizing
maps,’’ in Proc. 8th Int. Wireless Commun. Mobile Comput. Conf.
(IWCMC), Aug. 2012, pp. 47–52.

[56] Y. Yang, D. Jiang, and X. Min, ‘‘Using improved GHSOM for intrusion
detection,’’ J. Inf. Assurance Secur., vol. 5, pp. 232–239, May 2010.

[57] M. Salem and U. Buehler, ‘‘An enhanced GHSOM for IDS,’’ in Proc.
IEEE Int. Conf. Syst., Man, Cybern., Manchester, U.K., Oct. 2013,
pp. 1138–1143.

[58] S. Kakuru, ‘‘Behavior based network traffic analysis tool,’’ in Proc.
IEEE 3rd Int. Conf. Commun. Softw. Netw., Xi’an, China, May 2011,
pp. 649–652.

[59] M. Burgess, H. Haugerud, S. Straumsnes, and T. Reitan, ‘‘Measuring
system normality,’’ ACM Trans. Comput. Syst., vol. 20, no. 2, pp. 125–160,
May 2002.

[60] R. Elwell and R. Polikar, ‘‘Incremental learning of concept drift in non-
stationary environments,’’ IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[61] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Boston, NY, USA: Addison-Wesley, 2005.

[62] J. B. MacQueen, ‘‘Some methods for classification and analysis of multi-
variate observations,’’ in Proc. 5th Berkeley Symp. Math. Statist. Probab.,
Berkeley, CA, USA, 1967, pp. 281–297.

[63] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, ‘‘An efficient K-means clustering algorithm: Analysis and
implementation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 881–892, Jul. 2002.

[64] MIT. (Jan. 9, 1999). 1999 Darpa Intrusion Detection Evaluation Dataset.
Accessed: May 30, 2022. [Online]. Available: https://www.ll.mit.edu/r-
d/datasets/1999-darpa-intrusion-detection-evaluation-dataset

[65] JUMO. Accessed: Jun. 5, 2022. [Online]. Available: https://www.jumo.de/
[66] I.Witten, E. Frank, andM.Hall,DataMining: PracticalMachine Learning

Tools and Techniques. Amsterdam, The Netherlands: Elsevier, 2011.
[67] University of NewBrunswick.NSL-KDDDataset. Accessed: Jun. 6, 2022.

[Online]. Available: https://www.unb.ca/cic/datasets/nsl.html
[68] M. Watson. Mar. 7, 2017. 8 Key Application Performance Metrics & How

to Measure Them. Stackify. Accessed: Jun. 6, 2022. [Online]. Available:
https://stackify.com/application-performance-metrics/

[69] M. Ozkan-Okay, R. Samet, O. Aslan, and D. Gupta, ‘‘A comprehensive
systematic literature review on intrusion detection systems,’’ IEEE Access,
vol. 9, pp. 157727–157760, 2021, doi: 10.1109/ACCESS.2021.3129336.

[70] N. Wattanapongsakorn, S. Srakaew, E. Wonghirunsombat, C. Sribavon-
mongkol, and T. Junhom, ‘‘A practical network-based intrusion detection
and prevention system,’’ in Proc. Trust, Security Privacy Comput. Com-
mun. (TrustCom), IEEE 11th Int. Conf., Jun. 2012, pp. 209–214.

[71] S. Kumar, A. Viinikainen, and T. Hamalainen, ‘‘Machine learning clas-
sification model for network based intrusion detection system,’’ in Proc.
11th Int. Conf. Internet Technol. Secured Trans. (ICITST), Dec. 2016,
pp. 242–249.

[72] Q. Qassim, A. M. Zin, and M. J. A. Aziz, ‘‘Anomalies classification
approach for network-based intrusion detection system,’’ Int. J. Netw.
Secur., vol. 18, no. 6, pp. 1159–1172, 2016.

[73] A.-U.-H. Qureshi, H. Larijani, J. Ahmad, and N.Mtetwa, ‘‘A novel random
neural network based approach for intrusion detection systems,’’Proc. 10th
Comput. Sci. Electron. Eng. (CEEC), Sep. 2018, pp. 50–55.

[74] M. Mazini, B. Shirazi, and I. Mahdavi, ‘‘Anomaly network-based intru-
sion detection system using a reliable hybrid artificial bee colony and
AdaBoost algorithms,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 31, no. 4,
pp. 541–553, Oct. 2019.

[75] S. Meftah, T. Rachidi, and N. Assem, ‘‘Network based intrusion detection
using the UNSW-NB15 dataset,’’ Int. J. Comput. Digit. Syst., vol. 8, no. 5,
pp. 478–487, 2019.

[76] P. Devan and N. Khare, ‘‘An efficient XGBoost–DNN-based classification
model for network intrusion detection system,’’ Neural Comput. Appl.,
vol. 32, no. 16, pp. 12499–12514, Jan. 2020.

[77] P. Bedi, N. Gupta, and V. Jindal, ‘‘I-SiamIDS: An improved siam-IDS for
handling class imbalance in network-based intrusion detection systems,’’
Int. J. Speech Technol., vol. 51, no. 2, pp. 1133–1151, Feb. 2021.

MAHER SALEM received the M.Sc. degree from
Duisburg-Essen University, and the Ph.D. degree
from Kassel University, Germany. He is currently
a Lecturer with the Department of Informatics,
King’s College London, U.K. He is also the
Deputy Chair of the Assessment Sub-Board of
Online Cybersecurity. He has more than 20 years
of industrial and academic experience in cyber-
security. His research interests include intrusion
detection systems, threat intelligence, machine

learning, and cybersecurity in education.

ABDEL-KARIM AL-TAMIMI received the M.Sc.
and Ph.D. degrees in computer engineering from
Washington University in St. Louis. He is cur-
rently a Senior Lecturer with the Department of
Computing, Sheffield HallamUniversity, U.K. His
research interests include machine learning/AI,
multimedia networks and applications, and com-
puter security.

VOLUME 10, 2022 131245

http://dx.doi.org/10.1109/ACCESS.2021.3129336

