138,357 research outputs found

    Automatic Repair of Buggy If Conditions and Missing Preconditions with SMT

    Get PDF
    We present Nopol, an approach for automatically repairing buggy if conditions and missing preconditions. As input, it takes a program and a test suite which contains passing test cases modeling the expected behavior of the program and at least one failing test case embodying the bug to be repaired. It consists of collecting data from multiple instrumented test suite executions, transforming this data into a Satisfiability Modulo Theory (SMT) problem, and translating the SMT result -- if there exists one -- into a source code patch. Nopol repairs object oriented code and allows the patches to contain nullness checks as well as specific method calls.Comment: CSTVA'2014, India (2014

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    Exact Gap Computation for Code Coverage Metrics in ISO-C

    Full text link
    Test generation and test data selection are difficult tasks for model based testing. Tests for a program can be meld to a test suite. A lot of research is done to quantify the quality and improve a test suite. Code coverage metrics estimate the quality of a test suite. This quality is fine, if the code coverage value is high or 100%. Unfortunately it might be impossible to achieve 100% code coverage because of dead code for example. There is a gap between the feasible and theoretical maximal possible code coverage value. Our review of the research indicates, none of current research is concerned with exact gap computation. This paper presents a framework to compute such gaps exactly in an ISO-C compatible semantic and similar languages. We describe an efficient approximation of the gap in all the other cases. Thus, a tester can decide if more tests might be able or necessary to achieve better coverage.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Automatic Test Generation for Space

    Get PDF
    The European Space Agency (ESA) uses an engine to perform tests in the Ground Segment infrastructure, specially the Operational Simulator. This engine uses many different tools to ensure the development of regression testing infrastructure and these tests perform black-box testing to the C++ simulator implementation. VST (VisionSpace Technologies) is one of the companies that provides these services to ESA and they need a tool to infer automatically tests from the existing C++ code, instead of writing manually scripts to perform tests. With this motivation in mind, this paper explores automatic testing approaches and tools in order to propose a system that satisfies VST needs

    An evaluation of pedagogically informed parameterised questions for self assessment

    No full text
    Self-assessment is a crucial component of learning. Learners can learn by asking themselves questions and attempting to answer them. However, creating effective questions is time-consuming because it may require considerable resources and the skill of critical thinking. Questions need careful construction to accurately represent the intended learning outcome and the subject matter involved. There are very few systems currently available which generate questions automatically, and these are confined to specific domains. This paper presents a system for automatically generating questions from a competency framework, based on a sound pedagogical and technological approach. This makes it possible to guide learners in developing questions for themselves, and to provide authoring templates which speed the creation of new questions for self-assessment. This novel design and implementation involves an ontological database that represents the intended learning outcome to be assessed across a number of dimensions, including level of cognitive ability and subject matter. The system generates a list of all the questions that are possible from a given learning outcome, which may then be used to test for understanding, and so could determine the degree to which learners actually acquire the desired knowledge. The way in which the system has been designed and evaluated is discussed, along with its educational benefits
    corecore