103 research outputs found

    Applying Grover's algorithm to AES: quantum resource estimates

    Full text link
    We present quantum circuits to implement an exhaustive key search for the Advanced Encryption Standard (AES) and analyze the quantum resources required to carry out such an attack. We consider the overall circuit size, the number of qubits, and the circuit depth as measures for the cost of the presented quantum algorithms. Throughout, we focus on Clifford+T+T gates as the underlying fault-tolerant logical quantum gate set. In particular, for all three variants of AES (key size 128, 192, and 256 bit) that are standardized in FIPS-PUB 197, we establish precise bounds for the number of qubits and the number of elementary logical quantum gates that are needed to implement Grover's quantum algorithm to extract the key from a small number of AES plaintext-ciphertext pairs.Comment: 13 pages, 3 figures, 5 tables; to appear in: Proceedings of the 7th International Conference on Post-Quantum Cryptography (PQCrypto 2016

    Design Automation and Design Space Exploration for Quantum Computers

    Get PDF
    A major hurdle to the deployment of quantum linear systems algorithms and recent quantum simulation algorithms lies in the difficulty to find inexpensive reversible circuits for arithmetic using existing hand coded methods. Motivated by recent advances in reversible logic synthesis, we synthesize arithmetic circuits using classical design automation flows and tools. The combination of classical and reversible logic synthesis enables the automatic design of large components in reversible logic starting from well-known hardware description languages such as Verilog. As a prototype example for our approach we automatically generate high quality networks for the reciprocal 1/x1/x, which is necessary for quantum linear systems algorithms.Comment: 6 pages, 1 figure, in 2017 Design, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 201
    • …
    corecore