
Design Automation and Design Space Exploration
for Quantum Computers

Mathias Soeken1 Martin Roetteler2 Nathan Wiebe2 Giovanni De Micheli1
1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

2Microsoft Research, Redmond, WA, USA

Abstract—A major hurdle to the deployment of quantum linear
systems algorithms and recent quantum simulation algorithms
lies in the difficulty to find inexpensive reversible circuits for
arithmetic using existing hand coded methods. Motivated by
recent advances in reversible logic synthesis, we synthesize
arithmetic circuits using classical design automation flows and
tools. The combination of classical and reversible logic synthesis
enables the automatic design of large components in reversible
logic starting from well-known hardware description languages
such as Verilog. As a prototype example for our approach we
automatically generate high quality networks for the reciprocal
1/x, which is necessary for quantum linear systems algorithms.

I. INTRODUCTION

Quantum computing is getting real. This year, researchers
have fabricated quantum computers that implement well-
known quantum algorithms reliably [1] or perform practical
applications such as high-energy physics simulation [2] and
electronic structure computation [3]. Since all such examples
involve circuits of very limited depth, hand designed circuits
suffice. However, as quantum computers scale up, design
automation is necessary in order to fully leverage the power
of this emerging computational model.

Fundamental differences between quantum and classical
computing pose serious design challenges. One is that the
basic fault-tolerant gate sets do not include a universal set of
classical gates as fundamental instructions. Instead, one can
implement a universal set of reversible gates by applying a
so-called T gate to the underlying quantum bits (or qubits, or
lines). This gate is sufficiently expensive [4] that it is customary
to neglect all other gates when costing a quantum algorithm.
Decomposing the reversible logic that arises in such algorithms
into networks that minimize T gates and qubits is therefore a
central challenge in quantum computing.

Many synthesis algorithms for reversible circuits have been
presented in the last 15 years, see, e.g., [5], [6]. Most of them
are applicable to small functions since they require an explicit
function representation, e.g., a truth table, as input. In the last
few years, more scalable algorithms have been presented [7],
[8], [9] that work on a symbolic function representation, thereby
allowing reversible circuits to be found for large functions.

In this paper, we show that scalable reversible logic syn-
thesis algorithms combined with conventional logic synthesis
algorithms allow reversible circuits to be found automatically
for large functions. We propose design flows that start from
an irreversible design description in Verilog and then use logic
synthesis algorithms to translate it into descriptions that are

compatible for reversible logic synthesis algorithms and finally
compile it into a quantum circuit. The various algorithms
used both in classical and reversible logic synthesis enable
nontrivial design space exploration. The designer can optimize
the synthesis output with respect to several objectives such as
space (number of qubits), time (number of quantum operations),
or runtime of the design flow. As a result, the proposed design
flows may be robust to changes in quantum architectures. The
design flows further allow researchers to accommodate the cost
of arithmetic and other functions when developing quantum
algorithms and architectures. To our knowledge, so far such
advanced design flows were not investigated and leveraged for
the design of quantum computers.

We illustrate the power of these design flows by finding
high quality reversible implementations of the reciprocal 1/x
with different bitwidths for x. The reciprocal is used in several
quantum algorithms of high interest. Most notably, it is essential
for quantum linear systems algorithms [10], [11]. Recent work
has shown that the space requirements imposed by having
to implement the reciprocal reversibly can be prohibitive for
implementations on a small quantum computer [12], [13]. The
implementation of the reciprocal is used as an example to
illustrate the proposed design flows. These are the central
contributions of this paper and applicable to many other
functions in a similar manner. The uniting advantage is that a
conventional description language such as Verilog can be used
as a starting point. This enables designers to easily adapt to
quantum computing as well as to easily incorporate a large
existing body of conventional logic synthesis software.

The experimental results confirm the effectiveness of the
proposed design flows. Specifically, we show that we can
explore tradeoffs between the number of lines and the depth
of the circuit that cannot be probed using the handcrafted
approaches used in current quantum algorithm design. This
flexibility opens up the possibility of highly optimized circuits
to be introduced to quantum compilation, which allows
algorithms to be better tailored to the severe architectural
restrictions imposed by quantum hardware.

II. PRELIMINARIES

A. Boolean Functions and Logic Representations

A multi-output Boolean function f : Bn → Bm maps
n Boolean input values to m Boolean output values and
we can represent f as an m-tuple of n-variable Boolean
functions (f1, . . . , fm). A literal is a Boolean variable in regular

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148026914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


or complemented form. In logic synthesis, there are several
representations for Boolean functions. 2-level representations
have a logic depth of 2; examples are sum-of-products (SOP)
in which literals are combined to product terms using AND
and product terms are combined using OR. In exclusive-sum-
of-products (ESOP), the XOR operation is used instead of
OR. 2-level representations can be come very large. Multi-
level representations are directed acyclic graphs called logic
networks, in which terminal nodes are input variables or
constants and internal nodes are logic operations. In the scope of
this paper, we use And-inverter graphs (AIGs, [14]) and XOR-
majority graphs (XMGs, [15]) as logic networks. AIGs have
AND gates and inverters as logic primitives and XMGs have
XOR, majority-of-three, and inverters as logic primitives [15].

B. Embedding

Quantum computing requires all operations to be reversible.
This also applies to the classical Boolean parts, e.g., arith-
metic components. However, many functions of practical
interest are not reversible. Embedding describes the pro-
cess of extending an irreversible n-input, m-output function
f(x1, . . . , xn) = (f1, . . . , fm) into an r-variable reversible
function f ′(x1, . . . , xr) = (f ′1, . . . , f

′
r) with r ≥ max{n,m}.

We say that f ′ embeds f , if there exists assignments
an+1, . . . , ar such that

f ′r−m+j(x1, . . . , xn, an+1, . . . , ar) = fj(x1, . . . , xn) (1)

for all 1 ≤ j ≤ m. The assignments an+1, . . . , ar are called
constant inputs. The functions f ′1, . . . , f

′
r−m are called garbage

outputs as they are discarded in (1) and only required to make
f ′ reversible.

Theorem 1 (Bennett embedding, [16]): Let f be a n-input, m-
output function. Then the (m+ n)-variable reversible function
f ′ with

f ′j(x1, . . . , xn+m) =

{
xj if j ≤ n,
xj ⊕ fj−n(x1, . . . , xn) otherwise

(2)
embeds f for xn+1 ← 0, . . . , xn+m ← 0.

The Bennett embedding implies an upper bound on the
number of additional lines r − n that are required to find an
embedding. But for some functions a smaller number can be
found.

The minimum number of required additional lines to embed
an irreversible n-input, m-output function f is

dlog2 max
y∈Bm

#{x ∈ Bn | f(x) = y}e, (3)

i.e., the binary logarithm of the maximum size of a collision
set of f . An embedding that ensures this minimum number
of additional lines is called optimum. It has been shown that
computing the minimum number of additional lines is coNP-
complete [17] and therefore one cannot expect to find optimum
reversible embeddings for large irreversible functions.

C. Reversible Circuits

In some respects, the structure of a reversible circuit is
simpler than the one of a classical logic network. A reversible
circuit for a function f : Br → Br has r circuit lines on which
reversible gates operate which are aligned in a cascade. We
consider the widely used mixed-polarity multiple-controlled
Toffoli gate (for short Toffoli gate) library in this paper. Each
gate has a set of control lines that can be positive or negative
and one target line that is disjoint from the control lines. The
gate inverts the value assigned at the target line if and only
if all values assigned to positive (negative) control lines are 1
(0). All values on other lines remain unchanged.

D. Reversible Logic Synthesis

Reversible logic synthesis algorithms can be categorized into
functional algorithms and structural algorithms. Functional
algorithms require as input a reversible function and therefore
embedding is required as a preprocessing step prior to synthesis.
Functional algorithms do not add additional lines to the
reversible circuit during synthesis and therefore can return
line optimum results. Many functional algorithms are based on
the transformation-based approach [5], in which Toffoli gates
are found that transform the input function into the identity
function, thereby finding a reversible circuit that realizes the
input function. The original implementation works on truth
tables, but a symbolic variant of the algorithm exists [7] that
can be applied to larger functions. For small functions, SAT-
based [18] and enumerative approaches [19] can even guarantee
gate optimum results.

In structural algorithms the input function is given in terms
of some structural representation, e.g., a 2-level or multi-level
logic network or a decision diagram. Synthesis is performed by
generating reversible subcircuits for substructures (e.g., using
functional synthesis approaches [8]) and then concatenating
the subcircuits. Structural algorithms are significantly more
scalable compared to functional ones, but have the drawback
of generating a large number of additional lines—often much
higher than the (m+ n) bound in Theorem 1.

III. RECIPROCAL

We are interested in finding a reversible embedding for the
reciprocal function rec : Bn → Bn with rec(x1, . . . , xn) =
(y1, . . . , yn) such that 1

x = y when x = (x1 . . . xn)2 and
y = (0.y1 . . . yn)2. One can increase n to obtain a higher
precision with the cost of a more costly implementation.

We propose two designs to implement the reciprocal using
Verilog: (i) INTDIV(n), which uses Verilog’s integer devision
operator, and (ii) NEWTON(n), which implements division using
the Newton-Raphson method on fixed-point numbers. Both
implementations are described in more detail in the remainder
of this section.

1) Integer division: We compute the result of the integer
division 2n/x, where both 2n and x are represented using
(n+1)-bit unsigned integers. The result is a (n+1)-bit unsigned
integer from which we omit the most significant bit. Then, the
remaining bits represent y.



Example 1: Let n = 8 and let x = 22. We have
1
22 = 0.045. With Verilog’s integer division, we get
(1 0000 0000)2/(0 0001 0110)2 = (0 0000 1011)2. Hence, y =
2−5 + 2−7 + 2−8 = 0.04296875.

2) Newton-Raphson method: We implemented the Newton-
Raphson method in Verilog based on signed fixed-point
numbers. In the following, we use the format Q3.w to denote a
signed fixed-point number in two’s-complement encoding that
has 3 integer bits (including the sign bit) and w fractional bits.
Arithmetic operations can be implemented on signed integer
numbers using integer operations. The result of an addition or
subtraction of two Q3.w numbers is again a Q3.w number.

Multiplication is slightly more involved. Given a Q3.w1

number u and a Q3.w2 number v, the result of integer
multiplication u ∗ v is a Q6.(w1 + w2) number. We introduce
the shortcut u ∗w v that truncates the 3 most significant integer
bits and the least significant fractional bits to return a Q3.w
number.

The overall procedure is as follows:
1) set x′ ← Q3.n(x/2e) such that 1

2 ≤ x′ < 1
2) set x0 ← Q3.2n(48/17)− (Q3.n(32/17) ∗2n x′)
3) for 1 ≤ i ≤ I ,

set xi ← xi−1 + xi−1 ∗2n Q3.2n(1)− (x′ ∗2n xi−1)
4) set y′ ← xI � e
5) set y to the n most significant bits of y′

In step 1, we normalize x and make it a fixed-point number
x′ such that the integer part is 0 and the most significant
fractional bit is 1. Note that this can be done using a right-
shift by e. In step 2, we compute the starting value x0 using
constants 48/17 and 32/17. We apply the Newton iteration
I = dlog2 P+1

log2 17e times. The values xi for 0 ≤ i ≤ I have 2n
fractional bits, i.e., we use twice the input precision to carry
out the computations in the Newton iteration (step 3). We use
the same exponent e to shift the value of xI and then extract
the n most significant bits as y.

IV. DESIGN FLOWS

This section describes the main contribution of the paper.
We show a variety of design flows starting from the two
Verilog designs INTDIV(n) and NEWTON(n) that have been
introduced in the previous section. Fig. 1 offers an overview
of the design flows which pass four levels: (i) the design level
containing the Verilog descriptions, (ii) the logic synthesis level
in which the designs are optimized and transformed into formats
required by (iii) the reversible synthesis level in which synthesis
algorithms generate reversible networks that can eventually be
mapped to (iv) architectures at the quantum level. In the scope
of this paper, we stop after the reversible networks have been
obtained. The experiments in the next section will show that
INTDIV(n) is superior to NEWTON(n) in this experiment,
both in quality and runtime. However, a simple design such
as INTDIV(n) is not possible for some functions. Functions
such as 1√

x
or trigonometric functions require approximation

techniques with an implementation similar to the NEWTON(n)
design. Thus NEWTON(n) can be considered a proxy for
reversible synthesis of other functions.

de
si

gn
le

ve
l

lo
gi

c
sy

nt
he

si
s

le
ve

l
re

ve
rs

ib
le

sy
nt

he
si

s
le

ve
l

qu
an

tu
m

le
ve

l

INTDIV(n) NEWTON(n)

ABC
collapse

ABC
exorcism

ABC

CirKit

RevKit
symbolic
functional
synthesis

REVS
ESOP-based

synthesis

REVS
hierarchical

synthesis

Architecture 1 Architecture n. . .

Verilog

AIG

BDD ESOP XMG

Rev. circuit

Fig. 1. Design flows; lines represent interfaces between files and tools and
are annotated using the function representation at the interface

At the reversible synthesis level we consider synthesis
algorithms from three different approach categories to target
different cost aspects: (i) symbolic functional synthesis for a
low number of qubits, (ii) ESOP-based synthesis for moderate
number of qubits, and (iii) hierarchical synthesis as a scalable
solution for large bitwidths and low T -count. How each
algorithm is used in the flow is described in more detail in the
following.

A. Symbolic Functional Synthesis

The input to symbolic functional synthesis is a binary
decision diagram (BDD). This is obtained by reading the
Verilog into the logic synthesis tool ABC [20] optimize it
several rounds using ‘dc2’ before collapsing it into a BDD
using ‘collapse’.

At the reversible synthesis level an optimum embedding is
obtained from the BDD (see [17], [7]). The resulting reversible
function is represented as a BDD that is input to the SAT-
based variant of the symbolic transformation-based synthesis
algorithm [7]. The inputs x1, . . . , xn are not preserved by
the embedding, i.e., the function rec(x1, . . . , xn) is applied
in-place. This synthesis algorithm guarantees the optimum
number of qubits which must be in between n and 2n. A
property of the transformation-based algorithm is that large
Toffoli gates with controls on all circuits lines are generated.
This leads to large T -count.

B. ESOP-based Synthesis

The input is a multi-output ESOP expression. This is
obtained with ABC by first optimizing the input design using



the command sequence ‘satclp; sop; fx; strash; dc2’ which
generates an AIG. We then use ‘&exorcism’ to collapse the
AIG into a ESOP and optimize it using the algorithm presented
in [21]. We then perform ESOP-based synthesis with the
reversible synthesis tool REVS [9] which is a tool that allows
to trade off between circuit size and the number of qubits.
REVS offers different strategies for cleaning up intermediate
calculations and re-using the qubits that have been freed up.
For Boolean functions in ESOP format, REVS offers a mode
for factoring common subexpressions, the size of which are
bounded by an integer parameter p. If p = 0, then REVS
proceeds by taking each product term with k literals in the
given multi-output ESOP expression and translates it into a
Toffoli gate with k controls and polarities according to the
literals’ polarities. If a product term is shared among several
outputs, only one Toffoli gate is required to realize one output
and CNOT gates are used to copy the result to the other outputs.
Then the synthesis algorithm creates circuits with 2n qubits,
and each Toffoli gate cannot have more than n controls. If
p > 0, then REVS considers groups of p product terms in the
ESOP expansion that have the same output value and tries
to factors the resulting expressions. Intermediate results in
the factorization are stored in additional lines, which typically
leads to an increase of the total number of used lines beyond
2n. However, overall this often leads to a reduction of the
overall number of T gates, in particular if many terms in the
ESOP expansion correspond to the exact same function value.

C. Hierarchical Synthesis

We perform hierarchical synthesis with REVS by using as
input an XOR-Majority Graph (XMG). An XMG is a logic
network in which the primitives are XOR, AND, OR, the
MAJ (majority-of-three function, see, e.g., [22]), and their
inverted forms. This network representation is advantageous for
reversible logic synthesis. First, the MAJ gate can be realized
with only one Toffoli gate and therefore has the same number
of T gates as an AND and OR gate by being more expressive.
Second, an XOR gate can be realized using CNOT gates and
therefore does not require any T gates. Third, the XOR gate can
be applied in-place, if the value of at least one its operands is
no longer required to compute another gate. The same applies
for the MAJ gate, if all of its operands are no longer required.
We derive optimized XMGs from optimized AIGs using the
algorithm presented in [15] using CirKit’s1 command ‘xmglut
-k 4’ on AIGs that were optimized using multiple iterations of
‘resyn2’ in ABC.

V. EXPERIMENTS

We have generated reversible circuits for the INTDIV(n)
and NEWTON(n) designs using all three design flows. This
section presents the results of the experimental evaluation. We
used the command ‘tbs -s’ in RevKit [23] for the symbolic
functional synthesis [7]. We used REVS [9] to obtain results for
both the ESOP-based and hierarchical synthesis algorithm. All

1github.com/msoeken/cirkit

TABLE I
BASELINE RESULTS WITH MANUAL DESIGN

RESDIV(n) QNEWTON(n)

n qubits T -count qubits T -count
8 48 8 512 111 14 632

16 96 34 944 234 64 004
32 192 141 568 615 352 440
64 384 569 856 1226 1 405 284

TABLE II
RESULTS WITH SYMBOLIC FUNCTIONAL REVERSIBLE SYNTHESIS

INTDIV(n) NEWTON(n)

n qubits T -count runtime qubits T -count runtime
4 7 597 0.10 7 589 0.29
5 9 1 613 0.11 9 1 848 0.32
6 11 5 963 0.18 11 6 419 0.41
7 13 20 008 0.31 13 17 867 0.57
8 15 51 386 0.74 15 56 379 4.15
9 17 142 901 2.54 17 148 913 6.47

10 19 380 009 10.94 19 383 891 15.72
11 21 946 724 43.62 21 945 117 54.44
12 23 2 318 841 284.72 23 2 346 319 296.67
13 25 5 599 538 1 862.22 25 5 645 530 1 669.84
14 27 13 148 102 10 545.50 27 13 186 076 9 342.96
15 29 30 761 399 44 501.20 29 30 746 528 41 398.30
16 31 71 155 258 274 744.00 31 71 259 272 213 135.52

experiments have been carried out on an Intel E5-2670 octacore
CPU with 2.60 GHz and 128 GB main memory. All runtimes
are given in seconds. Correctness of the synthesized designs has
been verified using ABC’s combinational equivalence checker
‘cec’. All generated files and pointers to implementation details
can be found at msoeken.github.io/reciprocal.html.

We use two manual quantum circuit designs for a baseline
comparison. First, an integer division algorithm based on the
restoring division algorithm [24] that computes for n-bit inputs
a and b the n-bit quotient q and n-bit remainder r such that
a = qb+r, using 3n qubits. We refer to this circuit as RESDIV.
One can use the circuit to compute the n-bit reciprocal 1/x
by setting a = 2n and b = x in a 2n-bit version of the
circuit in order to match the precision of our designs. We
also manually created a design following the Newton-Raphson
method, which is similar but more accurate to the designs
proposed in [12] and [13] and we refer to it as QNEWTON.
In contrast to the NEWTON design that follows the standard
algorithm, we adjusted the algorithm as follows to reduce the
number of lines needed. QNEWTON works by first bitshifting the
inputs into the range [0.5, 1), implementing Newton iterations
with the Cucarro adder [25], text book multiplication, and
then finally bit shifting the values again to provide the desired
answer. The precision of the adders used were varied at each
Newton iteration to minimize the space and time resources
needed to hit the target accuracy.
QNEWTON’s use of variable internal precision for the Newton

iterations allows us to compute with roughly half the qubits
predicted in previous results that examined computing recip-
rocals on quantum computers using Newton iterations [12],



TABLE III
RESULTS WITH REVS [9]

INTDIV(n), p = 0 NEWTON(n), p = 0 INTDIV(n), p = 1 NEWTON(n), p = 1

n qubits T -count runtime qubits T -count runtime qubits T -count runtime qubits T -count runtime
5 10 232 0.04 10 135 0.26 12 241 0.04 10 135 0.26
6 12 423 0.09 12 294 0.35 14 411 0.08 13 268 0.32
7 14 791 0.08 14 568 0.35 17 803 0.11 17 511 0.34
8 16 1 342 0.12 16 1 039 3.92 20 1 349 0.13 20 1 060 3.94
9 18 2 056 0.19 18 1 894 5.62 23 1 887 0.21 22 1 850 5.68

10 20 3 415 0.32 20 3 311 9.27 23 3 238 0.32 24 3 071 9.16
11 22 5 631 0.52 22 5 303 14.98 29 5 244 0.69 27 4 846 14.97
12 24 8 431 0.95 24 8 423 25.09 30 7 700 1.20 29 7 136 25.29
13 26 13 414 1.93 26 14 287 44.03 31 11 474 2.01 32 11 988 44.16
14 28 21 902 3.22 28 21 782 72.70 37 19 063 3.82 34 19 186 72.94
15 30 33 502 8.18 30 34 815 118.74 35 27 897 8.51 37 28 635 118.99
16 32 52 376 19.13 32 50 784 1 128.73 46 42 717 1 598.71 38 41 532 1 129.66
17 34 78 470 36.24 34 95 462 1 860.05 41 64 089 37.46 43 76 022 1 861.80
18 36 119 510 86.64 36 153 414 3 182.44 43 94 577 101.05 44 119 657 3 186.19
19 38 179 095 169.99 38 229 768 5 276.51 46 138 912 182.24 46 175 598 5 286.83
20 40 284 118 393.96 40 349 398 11 486.74 48 218 341 440.79 47 263 106 11 502.31
21 42 422 806 823.56 42 552 496 18 869.36 51 318 627 852.37 51 412 488 18 936.66
22 44 640 351 3 075.21 44 837 646 29 371.18 52 476 603 3 137.62 53 616 065 30 666.43
23 46 941 408 7 462.87 46 1 249 894 52 547.84 56 684 166 7 631.37 56 909 364 52 936.22
24 48 1 417 327 19 487.67 48 1 885 742 106 612.57 57 1 021 041 19 915.68 58 1 344 400 107 490.99
25 50 2 119 663 72 035.25 50 2 819 902 220 349.12 60 1 512 893 73 999.97 60 1 985 367 222 364.17

[13]. Our work also differs from [12], [13] in that here detailed
T gate estimates are provided. As such, these numbers are a
slight improvement upon the previous state of the art.

For each reversible circuit we report the number of qubits, the
T -count (according to [26] and [27]), and the overall runtime
of the flow. The baseline results obtained from RESDIV(n)
and QNEWTON(n) are given in Table I for n = 8, 16, 32, 64.

Table II lists the experimental results for n ≤ 16 when using
symbolic functional synthesis. For these circuits the number
of qubits is optimum. That the numbers are equivalent for
INTDIV and NEWTON is not necessarily expected, as NEWTON
approximates 1/x which may have an effect on the maximum
occurrence of an output assignment. The number of qubits is
3.2× and 3.1× smaller compared to the RESDIV baseline for
n = 8 and n = 16, respectively. However, this comes with the
price of a very high T -count. The numbers for NEWTON are
slightly higher compared to INTDIV with exceptions in case
of n ∈ {4, 7, 11, 15}. The reason for this large number is that
functional synthesis generated reversible circuits with Toffoli
gates that have a large number of control lines. For example,
the realizations for n = 16 contain Toffoli gate with up to 27
control lines. For INTDIV, the T -count is 6.0× and 2036.3×
larger compared to RESDIV for n = 8 and n = 16. The
comparison to QNEWTON is qualitatively similar. The runtimes
are very high reaching about 3.2 days for n = 16 making
this design flow not scalable for larger bitwidths. Despite the
increased runtimes, this result is remarkable because it shows
that our design flow can find designs that use less than the 2n
lines required for the out of place reciprocal circuit.

Table III lists results for n ≤ 25 when using REVS with a
2-level ESOP description as input. For p = 0, the number of
qubits is 2n which is only one qubit more compared to the
functional synthesis approach. Compared to the baseline the

TABLE IV
RESULTS WITH HIERARCHICAL SYNTHESIS

INTDIV(n) NEWTON(n)

n qubits T -count runtime qubits T -count runtime
16 892 5 607 1.67 10 713 73 080 75.66
32 3 501 21 455 15.48 56 207 392 917 1 218.28
64 13 465 80 339 38.34 178 653 1 264 704 3 008.98

128 51 897 308 364 376.39 1 029 441 7 033 040 37 575.67

number of qubits is 3× smaller for both n = 8 and n = 16.
However, as the Toffoli gates have fewer number of controls,
the T -count is much smaller compared to functional synthesis.
For small n the NEWTON design has better T -count, which
changes for large n. When comparing the NEWTON design to
the RESDIV baseline, the T -count is 8.2× better for n = 8
but 1.5× larger for n = 16. Relative to QNEWTON, we see
comparable numbers of T gates and far fewer lines at p = 0,
however the ESOP-based approach in REVS outperforms it at
p = 1. The REVS-based design flow is more scalable than the
functional approach, but also reaches its limits: for n = 25,
it takes about 20 hours to find a realization for the INTDIV
design, and about 2.5 days for the NEWTON design.

Table IV lists results when using the hierarchical synthesis
approach. This approach can scale to large bitwidths as can
be seen from the INTDIV design. We show results up to
n = 128, but circuits for larger bitwidths can still be obtained
in a reasonable amount of time. First, we like to point out
that the results for INTDIV differ significantly from NEWTON,
in contrast to the other two design flows. This is due to the
fact, that we perform logic optimization at AIG level after
the network has been synthesized from its Verilog description.
The starting points are significantly different and optimization



approaches can easily get stuck in local minima. Drastic
measures such as collapsing the network into a 2-level logic
form (as in the two previous design flows) are required in order
to escape from them. However, collapsing does not scale to
these high bitwidths. Due to this large difference in quality,
we use INTDIV for comparison to the baseline design. The
number of qubits is 9.3× and 18.2× larger for n = 16 and
n = 32 compared to the RESDIV baseline design. However,
the T -count is 6.2× and 6.6× smaller for n = 16 and n = 32.
Both, the number of qubits and the number of T -count can be
improved by spending more effort in minimizing the number
of gates in the XMGs during logic synthesis, with the cost of a
higher runtime. The T -count of NEWTON also is comparable to
QNEWTON however the latter requires 46× and 91× fewer lines
for n = 16 and n = 32. This discrepancy occurs because the
hierarchical approach does not directly optimize the precision
in each Newton iteration. Although INTDIV shows better
performance in this example, the numbers for NEWTON are
still quite meaningful. As discussed above, for functions such as
1√
x

or trigonometric functions Newton’s method will frequently
be the technique of choice for logic synthesis. These designs are
therefore meaningful benchmarks for NEWTON’s performance
for other logic synthesis problems.

VI. CONCLUSIONS

We presented versatile design flows for the synthesis of
reversible logic in quantum computers. Our flows take Verilog
programs as input that are translated using classical logic
synthesis algorithms into formats appropriate for reversible
logic synthesis algorithms. This enables design exploration and
gives the designer the possibility to optimize with respect to a
cost metric such as the number of T gates or qubits, metrics that
correspond to time and space in quantum computers. These
capabilities are absent in existing approaches for quantum
circuit compilation. Our work provides a necessary tool for
making quantum algorithms practical, such as quantum linear
systems algorithms and quantum simulation algorithms.

We illustrated the design flows and synthesize a variety
of reversible circuits for the reciprocal 1/x with different
bitwidths for x and show that we are able to find circuits that
beat handcrafted designs in either width or size, depending on
our optimization goal. In future work we plan to integrate our
design flows into industrial logic synthesis software and find
efficient reversible implementations for floating point arithmetic
designs.

Acknowledgments: The authors wish to thank Thomas Häner,
Alan Mishchenko, Alex Parent, and the anonymous reviewers
for their helpful comments. This research was supported
by the European Research Council (H2020-ERC-2014-ADG
669354 CyberCare) and the Swiss National Science Foundation
(200021_169084 MAJesty).

REFERENCES

[1] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and
C. Monroe, “Demonstration of a small programmable quantum computer
with atomic qubits,” Nature, vol. 536, pp. 63–66, 2016.

[2] E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg, A. Erhard, M. Heyl,
P. Hauke, M. Dalmonte, T. Monz, P. Zoller, and R. Blatt, “Real-time
dynamics of lattice gauge theories with a few-qubit quantum computer,”
Nature, vol. 534, pp. 516–519, 2016.

[3] P. J. J. O’Malley et al., “Scalable quantum simulation of molecular
energies,” Phys. Rev. X, vol. 6, p. 031007, 2016.

[4] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits,” IEEE
Trans. CAD of Int. Circ. and Syst., vol. 32, no. 6, pp. 818–830, 2013.

[5] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in DAC, 2003, pp. 318–323.

[6] D. Maslov, G. W. Dueck, and D. M. Miller, “Techniques for the synthesis
of reversible Toffoli networks,” ACM Trans. Design Autom. Electr. Syst.,
vol. 12, no. 4, 2007.

[7] M. Soeken, G. W. Dueck, and D. M. Miller, “A fast symbolic transfor-
mation based algorithm for reversible logic synthesis,” in Int’l Conf. on
Reversible Computation, 2016.

[8] M. Soeken and A. Chattopadhyay, “Unlocking efficiency and scalability
of reversible logic synthesis using conventional logic synthesis,” in Proc.
DAC, 2016, pp. 149:1–149:6.

[9] A. Parent, M. Roetteler, and K. M. Svore, “Reversible circuit compilation
with space constraints,” arXiv, vol. 1510.00377, 2015.

[10] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear
systems of equations,” Phys. Rev. Lett., vol. 103, no. 15, p. 150502, 2009.

[11] N. Wiebe, D. Braun, and S. Lloyd, “Quantum algorithm for data fitting,”
Physical review letters, vol. 109, no. 5, p. 050505, 2012.

[12] N. Wiebe and M. Roetteler, “Quantum arithmetic and numerical
analysis using Repeat-Until-Success circuits,” Quantum Information and
Communication, vol. 16, pp. 134–178, 2016.

[13] M. K. Bhaskar, S. Hadfield, A. Papageorgiou, and I. Petras, “Quantum
algorithms and circuits for scientific computing,” arXiv:1511.08253,
2015.

[14] L. Hellerman, “A catalog of three-variable Or-invert and And-invert
logical circuits,” IEEE Trans. Electronic Computers, vol. 12, no. 3, pp.
198–223, 1963.

[15] W. Haaswijk, M. Soeken, L. G. Amarù, P.-E. Gaillardon, and
G. De Micheli, “A novel basis for logic rewriting,” in Asia and South
Pacific Design Automation Conference, 2017.

[16] C. H. Bennett, “Logical reversibility of computation,” IBM Jrnl. of
Research and Development, vol. 17, pp. 525–532, 1973.

[17] M. Soeken, R. Wille, O. Keszocze, D. M. Miller, and R. Drechsler,
“Embedding of large Boolean functions for reversible logic,” J. Emerg.
Techn. in Comp. Systems, vol. 12, no. 4, p. 41, 2016.

[18] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact multiple-
control Toffoli network synthesis with SAT techniques,” IEEE Trans.
CAD of Int. Circ. and Syst., vol. 28, no. 5, pp. 703–715, 2009.

[19] O. Golubitsky, S. M. Falconer, and D. Maslov, “Synthesis of the optimal
4-bit reversible circuits,” in Proc. DAC, 2010, pp. 653–656.

[20] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Computer Aided Verification, 2010, pp. 24–40.

[21] A. Mishchenko and M. Perkowski, “Fast heuristic minimization of
exclusive sum-of-products,” in Int’l Reed-Muller Workshop, 2001.

[22] L. G. Amarù, P. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Proc. DAC, 2014, pp. 194:1–194:6.

[23] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A toolkit
for reversible circuit design,” Multiple-Valued Logic and Soft Computing,
vol. 18, no. 1, pp. 55–65, 2012.

[24] H. Thapliyal, T. Varun, and E. Munoz-Coreas, “Quantum circuit design
of integer division optimizing ancillary qubits and T -count,” arXiv, vol.
1609.01241, 2016.

[25] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new
quantum ripple-carry addition circuit,” arXiv quant-ph/0410184, 2004.

[26] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Phys. Rev. A, vol. 93,
p. 022311, 2016.

[27] A. Barenco et al., “Elementary gates for quantum computation,” Phys.
Rev. A, vol. 52, pp. 3457–3467, 1995.


