939 research outputs found

    Quantum Zeno and anti-Zeno effects in an asymmetric nonlinear optical coupler

    Full text link
    Quantum Zeno and anti-Zeno effects in an asymmetric nonlinear optical coupler are studied. The asymmetric nonlinear optical coupler is composed of a linear waveguide (χ(1)\chi^{\left(1\right)}) and a nonlinear waveguide (χ(2)\chi^{\left(2\right)}) interacting with each other through the evanescent waves. The nonlinear waveguide has quadratic nonlinearity and it operates under second harmonic generation. A completely quantum mechanical description is used to describe the system. The closed form analytic solutions of Heisenberg's equations of motion for the different field modes are obtained using Sen-Mandal perturbative approach. In the coupler, the linear waveguide acts as a probe on the system (nonlinear waveguide). The effect of the presence of the probe (linear waveguide) on the photon statistics of the second harmonic mode of the system is considered as quantum Zeno and anti-Zeno effects. Further,it is also shown that in the stimulated case, it is easy to switch between quantum Zeno and anti-Zeno effects just by controlling the phase of the second harmonic mode of the asymmetric couplerComment: 7 pages. This work was presented in the International Conference on Optics and Photonics 2015,Kolkata, Indi

    Quantum e-commerce: A comparative study of possible protocols for online shopping and other tasks related to e-commerce

    Full text link
    A set of quantum protocols for online shopping is proposed and analyzed to establish that it is possible to perform secure online shopping using different types of quantum resources. Specifically, a single photon based, a Bell state based and two 3-qubit entangled state based quantum online shopping schemes are proposed. The Bell state based scheme, being a completely orthogonal state based protocol, is fundamentally different from the earlier proposed schemes which were based on conjugate coding. One of the 3-qubit entangled state based scheme is build on the principle of entanglement swapping which enables us to accomplish the task without transmission of the message encoded qubits through the channel. Possible ways of generalizing the entangled state based schemes proposed here to the schemes which use multiqubit entangled states is also discussed. Further, all the proposed protocols are shown to be free from the limitations of the recently proposed protocol of Huang et al. (Quantum Inf. Process. 14, 2211-2225, 2015) which allows the buyer (Alice) to change her order at a later time (after initially placing the order and getting it authenticated by the controller). The proposed schemes are also compared with the existing schemes using qubit efficiency.Comment: It's shown that quantum e-commerce is not a difficult task, and it can be done in various way

    Applications of quantum cryptographic switch: Various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles

    Full text link
    Recently, several aspects of controlled quantum communication (e.g., bidirectional controlled state teleportation, controlled quantum secure direct communication, controlled quantum dialogue, etc.) have been studied using nn-qubit (n≥3n\geq3) entanglement. Specially, a large number of schemes for bidirectional controlled state teleportation are proposed using mm-qubit entanglement (m∈{5,6,7}m\in\{5,6,7\}). Here, we propose a set of protocols to illustrate that it is possible to realize all these tasks related to controlled quantum communication using only Bell states and permutation of particles (PoP). As the generation and maintenance of a Bell state is much easier than a multi-partite entanglement, the proposed strategy has a clear advantage over the existing proposals. Further, it is shown that all the schemes proposed here may be viewed as applications of the concept of quantum cryptographic switch which was recently introduced by some of us. The performances of the proposed protocols as subjected to the amplitude damping and phase damping noise on the channels are also discussed.Comment: 12 pages, 3 figure

    Kak's three-stage protocol of secure quantum communication revisited: Hitherto unknown strengths and weaknesses of the protocol

    Full text link
    Kak's three-stage protocol for quantum key distribution is revisited with special focus on its hitherto unknown strengths and weaknesses. It is shown that this protocol can be used for secure direct quantum communication. Further, the implementability of this protocol in the realistic situation is analyzed by considering various Markovian noise models. It is found that the Kak's protocol and its variants in their original form can be implemented only in a restricted class of noisy channels, where the protocols can be transformed to corresponding protocols based on logical qubits in decoherence free subspace. Specifically, it is observed that Kak's protocol can be implemented in the presence of collective rotation and collective dephasing noise, but cannot be implemented in its original form in the presence of other types of noise, like amplitude damping and phase damping noise. Further, the performance of the protocol in the noisy environment is quantified by computing average fidelity under various noise models, and subsequently a set of preferred states for secure communication in noisy environment have also been identified.Comment: Kak's protocol is not suitable for quantum cryptography in presence of nois

    Design of Quantum Circuits for Galois Field Squaring and Exponentiation

    Full text link
    This work presents an algorithm to generate depth, quantum gate and qubit optimized circuits for GF(2m)GF(2^m) squaring in the polynomial basis. Further, to the best of our knowledge the proposed quantum squaring circuit algorithm is the only work that considers depth as a metric to be optimized. We compared circuits generated by our proposed algorithm against the state of the art and determine that they require 50%50 \% fewer qubits and offer gates savings that range from 37%37 \% to 68%68 \%. Further, existing quantum exponentiation are based on either modular or integer arithmetic. However, Galois arithmetic is a useful tool to design resource efficient quantum exponentiation circuit applicable in quantum cryptanalysis. Therefore, we present the quantum circuit implementation of Galois field exponentiation based on the proposed quantum Galois field squaring circuit. We calculated a qubit savings ranging between 44%44\% to 50%50\% and quantum gate savings ranging between 37%37 \% to 68%68 \% compared to identical quantum exponentiation circuit based on existing squaring circuits.Comment: To appear in conference proceedings of the 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2017
    • …
    corecore