6 research outputs found

    Hybrid-Vehcloud: An Obstacle Shadowing Approach for VANETs in Urban Environment

    Full text link
    Routing of messages in Vehicular Ad-hoc Networks (VANETs) is challenging due to obstacle shadowing regions with high vehicle densities, which leads to frequent disconnection problems and blocks radio wave propagation between vehicles. Previous researchers used multi-hop, vehicular cloud or roadside infrastructures to solve the routing issue among the vehicles, but they suffer from significant packet delays and frequent packet losses arising from obstacle shadowing. We proposed a vehicular cloud based hybrid technique called Hybrid-Vehcloud to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. The novelty of our approach lies in the fact that our proposed technique dynamically adapts between obstacle shadowing and non-obstacle shadowing regions. Simulation based performance analysis of Hybrid-Vehcloud showed improved performance over Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP) and Cloud-VANET schemes at high vehicle densities

    Virtual Drive Testing Over-The-Air for Vehicular Communications

    Get PDF
    Multiple-input multiple-output (MIMO) over-the-air (OTA) testing is a standardized procedure to evaluate the performance of MIMO-capable devices such as mobile phones and laptops. With the growth of the vehicle-to-everything (V2X) service, the need for vehicular communication testing is expected to increase significantly. The so-called multi-probe anechoic chamber (MPAC) setup is standardized for MIMO OTA testing. Typically, a test zone of 0.85 wavelength in diameter can be achieved with an 8-probe MPAC setup, which can encompass device-under-test (DUT) of small form factors. However, a test zone of this size may not be large enough to encompass DUTs such as cars. In this article, the sufficient number of OTA probes for the MPAC setup for car testing is investigated with respect to the emulation accuracy. Our investigation shows that the effective antenna distance of the DUT is more critical than its physical dimensions to determine the required number of OTA probes. In addition, throughput measurements are performed under the standard SCME UMa and UMi channel models with the 8-probe MPAC setup and the wireless cable setup, i.e. another standardized testing setup. The results show reasonably good agreement between the two setups for MIMO OTA testing with cars under the standard channel models

    Exploiting vehicular social networks and dynamic clustering to enhance urban mobility management

    Get PDF
    Transport authorities are employing advanced traffic management system (ATMS) to improve vehicular traffic management efficiency. ATMS currently uses intelligent traffic lights and sensors distributed along the roads to achieve its goals. Furthermore, there are other promising technologies that can be applied more efficiently in place of the abovementioned ones, such as vehicular networks and 5G. In ATMS, the centralized approach to detect congestion and calculate alternative routes is one of the most adopted because of the difficulty of selecting the most appropriate vehicles in highly dynamic networks. The advantage of this approach is that it takes into consideration the scenario to its full extent at every execution. On the other hand, the distributed solution needs to previously segment the entire scenario to select the vehicles. Additionally, such solutions suggest alternative routes in a selfish fashion, which can lead to secondary congestions. These open issues have inspired the proposal of a distributed system of urban mobility management based on a collaborative approach in vehicular social networks (VSNs), named SOPHIA. The VSN paradigm has emerged from the integration of mobile communication devices and their social relationships in the vehicular environment. Therefore, social network analysis (SNA) and social network concepts (SNC) are two approaches that can be explored in VSNs. Our proposed solution adopts both SNA and SNC approaches for alternative route-planning in a collaborative way. Additionally, we used dynamic clustering to select the most appropriate vehicles in a distributed manner. Simulation results confirmed that the combined use of SNA, SNC, and dynamic clustering, in the vehicular environment, have great potential in increasing system scalability as well as improving urban mobility management efficiency1916CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP401802/2016-7; 2015/25588-6; 2016/24454-9; 2018/02204-6; 465446/2014-088887.136422/2017-002014/50937-

    On Adjacent Channel Interference-Aware Radio Resource Management for Vehicle-to-Vehicle Communication

    Get PDF
    Safety applications play an essential role in supporting traffic safety and efficiency in next generation vehicular networks. Typical safety applications require vehicle-to-vehicle (V2V) communication with high reliability and low latency. The reliability of a communication link is mainly determined by the received interference, and broadly speaking, there are two types of interferences: co-channel interference (CCI) and adjacent channel interference (ACI). The CCI is cross-talk between transmitters scheduled in the same time-frequency slot, whereas ACI is interference due to leakage of transmit power outside the intended frequency slot. The ACI is typically not a problem in cellular communication since interference is dominated by CCI due to spectrum re-usage. However, ACI is a significant problem in near-far situations, i.e., when the channel gain from the interferer to receiver is high compared to the channel gain from the intended transmitter. The near-far situation is more common in V2V broadcast communication scenario due to high dynamic range of the channel gain and penetration loss by intermediate vehicles. This thesis investigates the impact of ACI on V2V communication and methods to mitigate it by proper radio resource management (RRM), i.e., scheduling and power control.In [Paper A], we first study ACI models for various transmission schemes and its impact on V2V communication. We propose a problem formulation for a) optimal scheduling as a Boolean linear programming (BLP) problem and b) optimal power control as a mixed Boolean linear programming (MBLP) problem. The objective of the problem formulation is to maximize the connectivity among VUEs in the network. Near-optimal schedules and power values are computed by solving first a) and then b) for smaller size instances of the problem. To handle larger-size instances of the problem, heuristic scheduling and power control algorithms with less computational complexity are proposed. We also propose a simple distributed block interleaver scheduler (BIS), which can be used as a baseline method.In [Paper B], we formulate the joint scheduling and power control problem as an MBLP to maximize the connectivity among VUEs. A column generation method is proposed to address the scalability of the network, i.e., to reduce the computational complexity of the joint problem. Moreover, the scheduling problem is observed to be numerically sensitive due to the high dynamic range of channel values and adjacent channel interference ratio (ACIR) values. Therefore, a novel method is proposed to reduce the sensitivity and compute a numerically stable optimal solution at the price of increased computational complexity.In [Paper C], we extend the RRM problem formulation to include various objectives, such as maximizing connectivity/throughput and minimizing age of information (AoI). In order to account for the fairness, we also formulate the problem to improve the worst-case throughput, connectivity, and AoI of a link in the network. All the problems are formulated as MBLP problems. In order to support a large V2V network, a clustering algorithm is proposed whose computational complexity scale well with the network size. Moreover, a multihop distributed scheduling scheme is proposed to handle zero channel state information (CSI) case

    A Measurement Based Multilink Shadowing Model for V2V Network Simulations of Highway Scenarios

    No full text
    Shadowing from vehicles can significantly degrade the performance of vehicle-to-vehicle (V2V) communication in multilink systems, e.g., vehicular ad-hoc networks (VANETs). It is thus important to characterize and model the influence of common shadowing objects like cars properly when designing these VANETs. Despite the fact that for multilink systems it is essential to model the joint effects on the different links, the multilink shadowing effects of V2V channels on VANET simulations are not yet well understood. In this paper we present a measurement based analysis of multilink shadowing effects in a V2V communication system with cars as blocking objects. In particular we analyze, characterize and model the large scale fading, both regarding the autocorrelation and the joint multilink cross-correlation process, for communication at 5.9 GHz between four cars in a highway convoy scenario. The results show that it is essential to separate the instantaneous propagation condition into line-of-sight (LOS) and obstructed LOS (OLOS), by other cars, and then apply an appropriate pathloss model for each of the two cases. The choice of the pathloss model not only influences the autocorrelation but also changes the cross-correlation of the large scale fading process between different links. By this, we conclude that it is important that VANET simulators should use geometry based models, that distinguish between LOS and OLOS communication. Otherwise, the VANET simulators need to consider the cross-correlation between different communication links to achieve results close to reality

    Roteamento de tráfego veicular colaborativo e sem infraestrutura para sistemas de transportes inteligentes  

    Get PDF
    Orientadores: Leandro Aparecido Villas, Edmundo Roberto Mauro MadeiraTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Devido à atual tendência mundial de urbanização, a sociedade moderna enfrenta, cada vez mais, sérios problemas de mobilidade urbana. Além disso, com o aumento constante do fluxo de tráfego veicular, as atuais soluções existentes para gerenciamento de tráfego se tornaram ineficientes. Com isso, para atender às crescentes necessidades dos sistemas de transporte, é necessário sistemas de transporte inteligentes (ITS). O desenvolvimento de ITS sustentável requer integração e interoperabilidade contínuas com tecnologias emergentes, tais como as redes veiculares (VANETs). As VANETs são consideradas uma tecnologia promissora que provê aplicações críticas de segurança e serviços de entretenimento, consequentemente melhorando a experiência de viagem do motorista e dos passageiros. Esta tese propõe um sistema de gerenciamento de tráfego de veículos sem a necessidade de uma infraestrutura de apoio. Para alcançar o sistema desejado foram necessários propor soluções intermediárias que contribuíram nesta tese. A primeira contribuição reside em uma solução que emprega conhecimento histórico dos padrões de mobilidade dos motoristas para obter uma visão global da situação da rede viária. Diferentemente de outras abordagens que precisam de troca constante de informações entre os veículos e o servidor central, nossa solução utiliza informações espaciais e temporais sobre padrões de mobilidade, além das informações específicas da infraestrutura viária, a fim de identificar congestionamentos no tráfego, permitindo, assim, o planejamento de roteamento de veículos. Como segunda contribuição, foi proposta uma solução distribuída para calcular a intermediação egocêntrica nas VANETs. Por meio da métrica egocêntrica foi proposto um mecanismo inovador de ranqueamento de veículos em redes altamente dinâmicas. As principais vantagens desse mecanismo para aplicações de VANETs são: (i) a redução do consumo de largura de banda e (ii) a superação do problema de topologias altamente dinâmicas. A terceira contribuição é uma solução de planejamento de rotas colaborativo com intuito de melhorar o gerenciamento do tráfego de veículos em cenários urbanos. Como última contribuição, esta tese integra as soluções descritas acima, propondo um sistema eficiente de gerenciamento de tráfego de veículos. As soluções propostas foram amplamente comparadas com outras soluções da literatura em diferentes métricas de avaliação de desempenho. Os resultados mostram que o sistema de gerenciamento de tráfego de veículos proposto é eficiente e escalável, qual pode ser uma boa alternativa para mitigar os problemas de mobilidade urbanaAbstract: Due to the current global trend of urbanization, modern society is facing severe urban mobility problems. In addition, considering the constant increase in vehicular traffic on roads, existing traffic management solutions have become inefficient. In order to assist the increasing needs of transport systems today, there is a need for intelligent transportation systems (ITS). Developing a sustainable ITS requires seamless integration and interoperability with emerging technologies such as vehicular ad-hoc networks (VANETs). VANETs are considered to be a promising technology providing access to critical life-safety applications and infotainment services, consequently improving drivers¿ and passengers¿ on-road experiences. This thesis proposes an infrastructure-less vehicular traffic management system. To achieve such a system, intermediate solutions that contributed to this thesis were proposed. The first contribution lies in a solution that employs historical knowledge of driver mobility patterns to gain an overall view of the road network situation. Unlike other approaches that need constant information exchange between vehicles and the central server, our solution uses space and temporal information about mobility patterns, as well as road infrastructure information, in order to identify traffic congestion, thus allowing for vehicle routing planning. Secondly, a distributed solution to calculate egocentric betweenness in VANETs was proposed. Through the egocentric metric, an innovative vehicle ranking mechanism in highly dynamic networks was proposed. The main advantages of this mechanism for VANETs applications are (i) reduced bandwidth consumption and (ii) overcoming the problem of highly dynamic topologies. The third contribution is a collaborative route planning solution designed to improve vehicle traffic management in urban settings. As the last contribution, this thesis integrates the solutions described above, proposing an efficient vehicle traffic management system. The proposed solutions were widely compared with other literature solutions on different performance evaluation metrics. The evaluation results show that the proposed vehicle traffic management system is efficient, scalable, and cost-effective, which may be a good alternative to mitigate urban mobility problemsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2015/25588-6FAPES
    corecore