2,497 research outputs found

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    A computational model based on human performance for fluid management in critical care

    Get PDF
    Computational simulation is one of the most important ways of reproducing the dynamic responses of a Cyber Physical System using a model of the system. The simulation discovers areas of differential system performance and allows linking such performance back to system characteristics. In the medical domain, patient simulators are used to train physicians in patient management. One critical question is how to verify these systems under realistic human (physician) input. This requires the creation of realistic human models that would be able to capture human cognitive and decision abilities and limitations. Verification of such an overall physician-patient model would result in two advantages: (a) since physicians realistically would not give all possible inputs to the system, verification could be more efficient and (b) the verification may uncover areas of poor human performance. In this paper, we describe our methodology and results in creating a computational model of human fluid management in critical care, based on human experiments

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    A Graph Rewriting Approach for Transformational Design of Digital Systems

    Get PDF
    Transformational design integrates design and verification. It combines โ€œcorrectness by constructionโ€ and design creativity by the use of pre-proven behaviour preserving transformations as design steps. The formal aspects of this methodology are hidden in the transformations. A constraint is the availability of a design representation with a compositional formal semantics. Graph representations are useful design representations because of their visualisation of design information. In this paper graph rewriting theory, as developed in the last twenty years in mathematics, is shown to be a useful basis for a formal framework for transformational design. The semantic aspects of graphs which are no part of graph rewriting theory are included by the use of attributed graphs. The used attribute algebra, table algebra, is a relation algebra derived from database theory. The combination of graph rewriting, table algebra and transformational design is new

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ˜ˆ์•• ์˜ˆ์ธก ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์œค์„ฑ๋กœ.While COVID-19 is changing the world's social profile, it is expected that the telemedicine sector, which has not been activated due to low regulation and reliability, will also undergo a major change. As COVID-19 spreads in the United States, the US Department of Health \& Human Services temporarily loosens the standards for telemedicine, while enabling telemedicine using Facebook, Facebook Messenger-based video chat, Hangouts, and Skype. The expansion of the telemedicine market is expected to quickly transform the existing treatment-oriented hospital-led medical market into a digital healthcare service market focused on prevention and management through wearables, big data, and health records analysis. In this prevention and management-oriented digital healthcare service, it is very important to develop a technology that can easily monitor a person's health status. One of the vital signs that can be used for personal health monitoring is blood pressure. High BP is a common and dangerous condition. About 1 out of 3 adults in the U.S. (about 75 million people) have high BP. This common condition increases the risk of heart disease and stroke, two of the leading causes of death for Americans. High BP is called the silent killer because it often has no warning signs or symptoms, and many people are not aware they have it. For these reasons, it is important to develop a technology that can easily and conveniently check BP regularly. In biomedical data analysis, various studies are being attempted to effectively analyze by applying machine learning to biomedical big data accumulated in large quantities. However, collecting blood pressure-related data at the level of big data is very difficult and very expensive because it takes a lot of manpower and time. So in this dissertation, we proposed a three-step strategy to overcome these issues. First, we describe a BP prediction model with extraction and concentration CNN architecture, to process publicly disclosed sequential ECG and PPG dataset. Second, we evaluate the performance of the developed model by applying the developed model to privately measured data. To address the third issue, we propose the knowledge distillation method and input pre-processing method to improve the accuracy of the blood pressure prediction model. All the methods proposed in this dissertation are based on a deep convolutional neural network (CNN). Unlike other studies based on manual recognition of the features, by utilizing the advantage of deep learning which automatically extracts features, raw biomedical signals are used intact to reflect the inherent characteristics of the signals themselves.์ฝ”๋กœ๋‚˜ 19์— ์˜ํ•œ ์ „ ์„ธ๊ณ„์˜ ์‚ฌํšŒ์  ํ”„๋กœํ•„ ๋ณ€ํ™”๋กœ, ๊ทœ์ œ์™€ ์‹ ๋ขฐ์„ฑ์ด ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์— ํ™œ์„ฑํ™” ๋˜์ง€ ์•Š์€ ์›๊ฒฉ ์˜๋ฃŒ ๋ถ„์•ผ๋„ ํฐ ๋ณ€ํ™”๋ฅผ ๊ฒช์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ฝ”๋กœ๋‚˜ 19๊ฐ€ ๋ฏธ๊ตญ์— ํผ์ง์— ๋”ฐ๋ผ ๋ฏธ๊ตญ ๋ณด๊ฑด๋ณต์ง€๋ถ€๋Š” ์›๊ฒฉ ์ง„๋ฃŒ์˜ ํ‘œ์ค€์„ ์ผ์‹œ์ ์œผ๋กœ ์™„ํ™”ํ•˜๋ฉด์„œ ํŽ˜์ด์Šค๋ถ, ํŽ˜์ด์Šค๋ถ ๋ฉ”์‹ ์ € ๊ธฐ๋ฐ˜ ํ™”์ƒ ์ฑ„ํŒ…, ํ–‰์•„์›ƒ, ์Šค์นด์ดํ”„๋ฅผ ์‚ฌ์šฉํ•œ ์›๊ฒฉ ์ง„๋ฃŒ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์›๊ฒฉ์˜๋ฃŒ ์‹œ์žฅ์˜ ํ™•์žฅ์€ ๊ธฐ์กด์˜ ์น˜๋ฃŒ์ค‘์‹ฌ ๋ณ‘์›์ฃผ๋„์˜ ์˜๋ฃŒ์‹œ์žฅ์„ ์›จ์–ด๋Ÿฌ๋ธ”, ๋น… ๋ฐ์ดํ„ฐ ๋ฐ ๊ฑด๊ฐ•๊ธฐ๋ก ๋ถ„์„์„ ํ†ตํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ์— ์ค‘์ ์„ ๋‘” ๋””์ง€ํ„ธ ์˜๋ฃŒ ์„œ๋น„์Šค ์‹œ์žฅ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ ์ค‘์‹ฌ์˜ ๋””์ง€ํ„ธ ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ๊ฑด๊ฐ• ์ƒํƒœ๋ฅผ ์‰ฝ๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•œ๋ฐ ํ˜ˆ์••์€ ๊ฐœ์ธ ๊ฑด๊ฐ• ๋ชจ๋‹ˆํ„ฐ๋ง์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•„์ˆ˜ ์ง•ํ›„ ์ค‘ ํ•˜๋‚˜ ์ž…๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์•„์ฃผ ํ”ํ•˜๊ณ  ์œ„ํ—˜ํ•œ ์งˆํ™˜์ž…๋‹ˆ๋‹ค. ๋ฏธ๊ตญ ์„ฑ์ธ 3๋ช…์ค‘ 1๋ช…(์•ฝ 7,500๋งŒ๋ช…)์ด ๊ณ ํ˜ˆ์••์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฏธ๊ตญ์ธ์˜ ์ฃผ์š” ์‚ฌ๋ง ์›์ธ ์ค‘ ๋‘๊ฐ€์ง€์ธ ์‹ฌ์žฅ์งˆํ™˜๊ณผ ๋‡Œ์กธ์ค‘์˜ ์œ„ํ—˜์„ ์ฆ๊ฐ€ ์‹œํ‚ต๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์‹ ์ฒด์— ๊ฒฝ๊ณ  ์‹ ํ˜ธ๋‚˜ ์ž๊ฐ ์ฆ์ƒ์ด ์—†์–ด ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์ž์‹ ์ด ๊ณ ํ˜ˆ์••์ธ ๊ฒƒ์„ ์ธ์ง€ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— "์‚ฌ์ผ๋ŸฐํŠธ ํ‚ฌ๋Ÿฌ"๋ผ ๋ถˆ๋ฆฌ์›๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ์ •๊ธฐ์ ์œผ๋กœ ์‰ฝ๊ณ  ํŽธ๋ฆฌํ•˜๊ฒŒ ํ˜ˆ์••์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ƒ์ฒด์˜ํ•™ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ถ„์•ผ์—์„œ๋Š” ๋จธ์‹  ๋Ÿฌ๋‹์„ ๋Œ€๋Ÿ‰์œผ๋กœ ์ˆ˜์ง‘๋œ ์ƒ์ฒด์˜ํ•™ ๋น… ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๋Š” ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํšจ๊ณผ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น… ๋ฐ์ดํ„ฐ ์ˆ˜์ค€์œผ๋กœ ๋‹ค๋Ÿ‰์˜ ํ˜ˆ์•• ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์€ ์ „๋ฌธ์ ์ธ ์ธ๋ ฅ๋“ค์ด ์˜ค๋žœ์‹œ๊ฐ„์„ ํ•„์š”๋กœ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋งค์šฐ ์–ด๋ ต๊ณ  ๋น„์šฉ ๋˜ํ•œ ๋งŽ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ 3๋‹จ๊ณ„ ์ „๋žต์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋จผ์ € ๋ˆ„๊ตฌ๋‚˜ ์‹œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ณต๊ฐœ๋˜์–ด ์žˆ๋Š” ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉ, ์ˆœ์ฐจ์ ์ธ ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ์—์„œ ํ˜ˆ์••์„ ์ž˜ ์˜ˆ์ธกํ•˜๋„๋ก ๊ณ ์•ˆ๋œ ์ถ”์ถœ ๋ฐ ๋†์ถ• ์ž‘์—…์„ ๋ฐ˜๋ณตํ•˜๋Š” ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ ์ œ์•ˆ๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ๊ฐœ์ธ์—๊ฒŒ์„œ ์ธก์ •ํ•œ ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•ด ์ œ์•ˆ๋œ ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ ํ˜ˆ์••์˜ˆ์ธก ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ง€์‹ ์ฆ๋ฅ˜๋ฒ•๊ณผ ์ž…๋ ฅ์‹ ํ˜ธ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋ชจ๋“  ํ˜ˆ์••์˜ˆ์ธก ๋ฐฉ๋ฒ•์€ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ํ˜ˆ์•• ์˜ˆ์ธก์— ํ•„์š”ํ•œ ํŠน์ง•๋“ค์„ ์ˆ˜๋™์œผ๋กœ ์ถ”์ถœํ•ด์•ผ ํ•˜๋Š” ๋‹ค๋ฅธ ์—ฐ๊ตฌ๋“ค๊ณผ ๋‹ค๋ฅด๊ฒŒ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹์˜ ์žฅ์ ์„ ํ™œ์šฉ, ์•„๋ฌด๋Ÿฐ ์ฒ˜๋ฆฌ๋„ ํ•˜์ง€ ์•Š์€ ์›๋ž˜ ๊ทธ๋Œ€๋กœ์˜ ์ƒ์ฒด ์‹ ํ˜ธ์—์„œ ์‹ ํ˜ธ ์ž์ฒด์˜ ๊ณ ์œ ํ•œ ํŠน์ง•์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.1 Introduction 1 2 Background 5 2.1 Cuff-based BP measurement methods 9 2.1.1 Auscultatory method 9 2.1.2 Oscillometric method 10 2.1.3 Tonometric method 11 2.2 Biomedical signals used in cuffless BP prediction methods 13 2.2.1 Electrocardiography (ECG) 13 2.2.2 Photoplethysmography (PPG) 20 2.3 Cuffless BP measurement methods 21 2.3.1 PWV based BP prediction methods 25 2.3.2 Machine learning based pulse wave analysis methods 26 2.4 Deep learning for sequential biomedical data 30 2.4.1 Convolutional neural networks 31 2.4.2 Recurrent neural networks 32 3 End-to-end blood pressure prediction via fully convolutional networks 33 3.1 Introduction 35 3.2 Method 38 3.2.1 Data preparation 38 3.2.2 CNN based prediction model 41 3.2.3 Detailed architecture 45 3.3 Experimental results 47 3.3.1 Setup 47 3.3.2 Model evaluation & selection 48 3.3.3 Calibration-based method 51 3.3.4 Performance comparison 52 3.3.5 Verification using international standards for BP measurement grading criteria 54 3.3.6 Performance comparison by the input signal combinations 56 3.3.7 An ablation study of each architectural component of extraction-concentration blocks 58 3.3.8 Preprocessing of input signal to improve blood pressure prediction performance 59 3.4 Discussion 61 3.5 Summary 63 4 Blood pressure prediction by a smartphone sensor using fully convolutional networks 64 4.1 Introduction 66 4.2 Method 69 4.2.1 Data acquisition 71 4.2.2 Preprocessing of the PPG signals 71 4.2.3 PPG signal selection 71 4.2.4 Data preparation for CNN model training 72 4.2.5 Network architectures 72 4.3 Experimental results 75 4.3.1 Implementation details 75 4.3.2 Effect of PPG combination on BP prediction 75 4.3.3 Performance comparison with other related works 76 4.3.4 Verification using international standards for BP measurement grading criteria 77 4.3.5 Preprocessing of input signal to improve blood pressure prediction performance 79 4.4 Discussion 81 4.5 Summary 83 5 Improving accuracy of blood pressure prediction by distilling the knowledge of neural networks 84 5.1 Introduction 85 5.2 Methods 87 5.3 Experimental results 88 5.4 Discussion & Summary 89 6 Conclusion 90 6.1 Future work 92 Bibliography 93 Abstract (In Korean) 106Docto

    The specification and verification of systolic wave algorithms

    Get PDF
    Bibliography: leaf 12."March, 1984""DAAG29-84-K0005" "N00014-81-K-0742"C.J. Kuo, Bernard C. Levy, Bruce R. Musicus

    Noninvasive Arterial Blood Pressure Estimation using ABPNet and VITAL-ECG

    Get PDF
    4noArterial Blood Pressure (ABP) is an important physiological parameter that should be properly monitored for the purposes of prevention and detection of cardiovascular diseases, which represent one of the leading causes of death in the world. Currently, the most common adopted noninvasive blood pressure measurement system is sphygmomanometer, which works by inflating and deflating a cuff around the arm. This work presents ABPNet, a new prediction technique, based on a multilayer perceptron (MLP), which uses ECG and PPG to estimate both systolic and diastolic blood pressure. To train the neural network, signals are gathered from the Physionet MIMIC database. The proposed architecture performances are evaluated w.r.t. both the invasive blood pressure signal and the noninvasive sphygmomanometer measurements. The experimental results are quite promising; they are compliant with the ANSI/AAMI/ ISO 81060-2:2013 for sphygmomanometer certification because the network predicted values are within +/-5 mmHg w.r.t. real invasive measurements, as imposed by the legislation. Finally, it is shown how ABPNet can be used to improve the VITAL-ECG, a wearable device designed to acquire vital parameters, such as electrocardiographic (ECG) and photoplethysmographic (PLETH/PPG) signals; indeed, by embedding the ABPNet neural network, VITAL-ECG can be upgraded to estimate, also, ABP. As a consequence, the device could be used to fight cardiovascular diseases and prevent their dangerous effects.partially_openopenPaviglianiti A.; Randazzo V.; Pasero E.; Vallan A.Paviglianiti, A.; Randazzo, V.; Pasero, E.; Vallan, A

    Centre for Information Science Research Annual Report, 1987-1991

    Get PDF
    Annual reports from various departments of the AN
    • โ€ฆ
    corecore