1,248 research outputs found

    The integrated use of enterprise and system dynamics modelling techniques in support of business decisions

    Get PDF
    Enterprise modelling techniques support business process re-engineering by capturing existing processes and based on perceived outputs, support the design of future process models capable of meeting enterprise requirements. System dynamics modelling tools on the other hand are used extensively for policy analysis and modelling aspects of dynamics which impact on businesses. In this paper, the use of enterprise and system dynamics modelling techniques has been integrated to facilitate qualitative and quantitative reasoning about the structures and behaviours of processes and resource systems used by a Manufacturing Enterprise during the production of composite bearings. The case study testing reported has led to the specification of a new modelling methodology for analysing and managing dynamics and complexities in production systems. This methodology is based on a systematic transformation process, which synergises the use of a selection of public domain enterprise modelling, causal loop and continuous simulationmodelling techniques. The success of the modelling process defined relies on the creation of useful CIMOSA process models which are then converted to causal loops. The causal loop models are then structured and translated to equivalent dynamic simulation models using the proprietary continuous simulation modelling tool iThink

    Reusable modelling and simulation of flexible manufacturing for next generation semiconductor manufacturing facilities

    Get PDF
    Automated material handling systems (AMHS) in 300 mm semiconductor manufacturing facilities may need to evolve faster than expected considering the high performance demands on these facilities. Reusable simulation models are needed to cope with the demands of this dynamic environment and to deliver answers to the industry much faster. One vision for intrabay AMHS is to link a small group of intrabay AMHS systems, within a full manufacturing facility, together using what is called a Merge/Diverge link. This promises better operational performance of the AMHS when compared to operating two dedicated AMHS systems, one for interbay transport and the other for intrabay handling. A generic tool for modelling and simulation of an intrabay AMHS (GTIA-M&S) is built, which utilises a library of different blocks representing the different components of any intrabay material handling system. GTIA-M&S provides a means for rapid building and analysis of an intrabay AMHS under different operating conditions. The ease of use of the tool means that inexpert users have the ability to generate good models. Models developed by the tool can be executed with the merge/diverge capability enabled or disabled to provide comparable solutions to production demands and to compare these two different configurations of intrabay AMHS using a single simulation model. Finally, results from simulation experiments on a model developed using the tool were very informative in that they include useful decision making data, which can now be used to further enhance and update the design and operational characteristics of the intrabay AMHS

    Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda

    Get PDF
    Autonomous mobile robots (AMR) are currently being introduced in many intralogistics operations, like manufacturing, warehousing, cross-docks, terminals, and hospitals. Their advanced hardware and control software allow autonomous operations in dynamic environments. Compared to an automated guided vehicle (AGV) system in which a central unit takes control of scheduling, routing, and dispatching decisions for all AGVs, AMRs can communicate and negotiate independently with other resources like machines and systems and thus decentralize the decision-making process. Decentralized decision-making allows the system to react dynamically to changes in the system state and environment. These developments have influenced the traditional methods and decision-making processes for planning and control. This study identifies and classifies research related to the planning and control of AMRs in intralogistics. We provide an extended literature review that highlights how AMR technological advances affect planning and control decisions. We contribute to the literature by introducing an AMR planning and control framework t

    Design and optimization of an explosive storage policy in internet fulfillment warehouses

    Get PDF
    This research investigates the warehousing operations of internet retailers. The primary physical process in internet retail is fulfillment, which typically involves a large internet fulfillment warehouse (IFW) that has been built and designed exclusively for online sales and an accompanying parcel delivery network. Based on observational studies of IFW operations at a leading internet retailer, the investigations find that traditional warehousing methods are being replaced by new methods which better leverage information technology and efficiently serve the new internet retail driven supply chain economy. Traditional methods assume a warehouse moves bulk volumes to retail points where the bulks get broken down into individual items and sold. But in internet retail all the middle elements of a supply chain are combined into the IFW. Specifically, six key structural differentiations between traditional and IFW operations are identified: (i) explosive storage policy (ii) very large number of beehive storage locations (iii) bins with commingled SKUs (iv) immediate order fulfillment (v) short picking routes with single unit picks and (vi) high transaction volumes with total digital control. In combination, these have the effect of organizing the entire IFW warehouse like a forward picking area. Several models to describe and control IFW operations are developed and optimized. For IFWs the primary performance metric is order fulfillment time, the interval between order receipt and shipment, with a target of less than four hours to allow for same day shipment. Central to achieving this objective is an explosive storage policy which is defined as: An incoming bulk SKU is exploded into E storage lots such that no lot contains more than 10% of the received quantity, the lots are then stored in E locations anywhere in the warehouse without preset restrictions. The explosion ratio Ψo is introduced that measures the dispersion density, and show that in a randomized storage warehouse Ψoo\u3e0.40. Specific research objectives that are accomplished: (i) Develope a descriptive and prescriptive model for the control of IFW product flows identifying control variables and parameters and their relationship to the fulfillment time performance objective, (ii) Use a simulation analysis and baseline or greedy storage and picking algorithms to confirm that fulfillment time is a convex function of E and sensitive to Ǩ, the pick list size. For an experimental problem the fulfillment time decrease by 7% and 16% for explosion ratios ranging between Ψo=0.1 and 0.8, confirming the benefits of an explosive strategy, (iii) Develope the Bin Weighted Order Fillability (BWOF) heuristic, a fast order picking algorithm which estimates the number of pending orders than can be filled from a specific bin location. For small problems (120 orders) the BWOF performes well against an optimal assignment. For 45 test problems the BWOF matches the optimal in 28 cases and within 10% in five cases. For the large simulation experimental problems the BWOF heuristic further reduces fulfillment time by 18% for Ǩ =13, 27% for Ǩ =15 and 39% for Ǩ =17. The best fulfillment times are achieved at Ψo=0.5, allowing for additional benefits from faster storage times and reduced storage costs

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Selection of simulation variance reduction techniques through a fuzzy expert system

    Get PDF
    In this thesis, the design and development of a decision support system for the selection of a variance reduction technique for discrete event simulation studies is presented. In addition, the performance of variance reduction techniques as stand alone and combined application has been investigated. The aim of this research is to mimic the process of human decision making through an expert system and also handle the ambiguity associated with representing human expert knowledge through fuzzy logic. The result is a fuzzy expert system which was subjected to three different validation tests, the main objective being to establish the reasonableness of the systems output. Although these validation tests are among the most widely accepted tests for fuzzy expert systems, the overall results were not in agreement with expectations. In addition, results from the stand alone and combined application of variance reduction techniques, demonstrated that more instances of stand alone applications performed better at reducing variance than the combined application. The design and development of a fuzzy expert system as an advisory tool to aid simulation users, constitutes a significant contribution to the selection of variance reduction technique(s), for discrete event simulation studies. This is a novelty because it demonstrates the practicalities involved in the design and development process, which can be used on similar decision making problems by discrete event simulation researchers and practitioners using their own knowledge and experience. In addition, the application of a fuzzy expert system to this particular discrete event simulation problem, demonstrates the flexibility and usability of an alternative to the existing algorithmic approach. Under current experimental conditions, a new specific class of systems, in particular the Crossdocking Distribution System has been identified, for which the application of variance reduction techniques, i.e. Antithetic Variates and Control Variates are beneficial for variance reduction

    Scheduling and discrete event control of flexible manufacturing systems based on Petri nets

    Get PDF
    A flexible manufacturing system (FMS) is a computerized production system that can simultaneously manufacture multiple types of products using various resources such as robots and multi-purpose machines. The central problems associated with design of flexible manufacturing systems are related to process planning, scheduling, coordination control, and monitoring. Many methods exist for scheduling and control of flexible manufacturing systems, although very few methods have addressed the complexity of whole FMS operations. This thesis presents a Petri net based method for deadlock-free scheduling and discrete event control of flexible manufacturing systems. A significant advantage of Petri net based methods is their powerful modeling capability. Petri nets can explicitly and concisely model the concurrent and asynchronous activities, multi-layer resource sharing, routing flexibility, limited buffers and precedence constraints in FMSs. Petri nets can also provide an explicit way for considering deadlock situations in FMSs, and thus facilitate significantly the design of a deadlock-free scheduling and control system. The contributions of this work are multifold. First, it develops a methodology for discrete event controller synthesis for flexible manufacturing systems in a timed Petri net framework. The resulting Petri nets have the desired qualitative properties of liveness, boundedness (safeness), and reversibility, which imply freedom from deadlock, no capacity overflow, and cyclic behavior, respectively. This precludes the costly mathematical analysis for these properties and reduces on-line computation overhead to avoid deadlocks. The performance and sensitivity of resulting Petri nets, thus corresponding control systems, are evaluated. Second, it introduces a hybrid heuristic search algorithm based on Petri nets for deadlock-free scheduling of flexible manufacturing systems. The issues such as deadlock, routing flexibility, multiple lot size, limited buffer size and material handling (loading/unloading) are explored. Third, it proposes a way to employ fuzzy dispatching rules in a Petri net framework for multi-criterion scheduling. Finally, it shows the effectiveness of the developed methods through several manufacturing system examples compared with benchmark dispatching rules, integer programming and Lagrangian relaxation approaches

    Selection of simulation variance reduction techniques through a fuzzy expert system

    Get PDF
    In this thesis, the design and development of a decision support system for the selection of a variance reduction technique for discrete event simulation studies is presented. In addition, the performance of variance reduction techniques as stand alone and combined application has been investigated. The aim of this research is to mimic the process of human decision making through an expert system and also handle the ambiguity associated with representing human expert knowledge through fuzzy logic. The result is a fuzzy expert system which was subjected to three different validation tests, the main objective being to establish the reasonableness of the systems output. Although these validation tests are among the most widely accepted tests for fuzzy expert systems, the overall results were not in agreement with expectations. In addition, results from the stand alone and combined application of variance reduction techniques, demonstrated that more instances of stand alone applications performed better at reducing variance than the combined application. The design and development of a fuzzy expert system as an advisory tool to aid simulation users, constitutes a significant contribution to the selection of variance reduction technique(s), for discrete event simulation studies. This is a novelty because it demonstrates the practicalities involved in the design and development process, which can be used on similar decision making problems by discrete event simulation researchers and practitioners using their own knowledge and experience. In addition, the application of a fuzzy expert system to this particular discrete event simulation problem, demonstrates the flexibility and usability of an alternative to the existing algorithmic approach. Under current experimental conditions, a new specific class of systems, in particular the Crossdocking Distribution System has been identified, for which the application of variance reduction techniques, i.e. Antithetic Variates and Control Variates are beneficial for variance reduction

    An Integrated Framework to Assess ‘Leanness’ Performance in Distribution Centres

    Get PDF
    The theory behind lean philosophy is to create more value with less. Effective lean management enables organisations to exceed customer expectations while reducing costs. Despite the fact that numerous practices and approaches are used in the process of implementing lean philosophy and reducing waste within supply chain systems, little effort has been directed into assessing the leanness level of distribution and its impact on overall performance. Given the vital role of distribution units within supply chains, this research aims to develop a comprehensive lean assessment framework that integrates a selected set of statistical, analytical, and mathematical techniques in order to assess the ‘leanness’ level in the distribution business. Due to the limited number of published articles in the area of lean distribution, there are no clear definitions of the underlying factors and practices. Therefore, the primary phase of the proposed framework addresses the identification of lean distribution dimensional structure and practices. The other two phases of the framework discuss the development of a structured model for lean distribution and address the process to find a quantitative lean index for benchmarking lean implementation in distribution centres. Integrating the three phases provides the decision makers with an indicator of performance, subject to applying various lean practices. Incorporating the findings of a survey that sent to 700 distribution businesses in Ireland along with value stream mapping, modelling, simulation, and data envelopment analysis, has given the framework strength in the assessment of leanness. Research outcomes show that lean distribution consists of five key dimensions; workforce management, item replenishment, customers, transportation, and process quality. Lean practices associated with these dimensions are mainly focused on enhancing the communication channels with customers, simplifying the distribution networks structure, people participating in problem solving and a continuous improvement process, and increasing the reliability and efficiency of the distribution operations. The final output of the framework is two key leanness indices; one is set to measure the tactical leanness level, while the second index represents the leanness at the operational level. Both indices can effectively be used in evaluating the lean implementation process and conducting a benchmarking process based on the leanness level
    corecore