122 research outputs found

    Stochastic Control for Cooperative Cyber-Physical Networking

    Get PDF
    Die stetig fortschreitende Digitalisierung erlaubt einen immer autonomeren und intelligenteren Betrieb von Produktions- und Fertigungslinien, was zu einer stĂ€rker werdenden Verzahnung der physikalischen Prozesse und der Software-Komponenten zum Überwachen, Steuern und Messen fĂŒhrt. Cyber-physische Systeme (CPS) spielen hierbei eine SchlĂŒsselrolle, indem sie sowohl die physikalischen als auch die Software-Komponenten zu einem verteilten System zusammenfassen, innerhalb dessen UmgebungszustĂ€nde, Messwerte und Steuerbefehle ĂŒber ein Kommunikationsnetzwerk ausgetauscht werden. Die VerfĂŒgbarkeit von kostengĂŒnstigen GerĂ€ten und die Möglichkeit bereits existierende Infrastruktur zu nutzen sorgen dafĂŒr, dass auch innerhalb von CPS zunehmend auf den Einsatz von Standard-Netzen auf Basis von IEEE 802.3 (Ethernet) und IEEE 802.11 (WLAN) gesetzt wird. Nachteilig bei der Nutzung von Standard-Netzen sind jedoch auftretende DienstgĂŒte-Schwankungen, welche aus der gemeinsamen Nutzung der vorhandenen Infrastruktur resultieren und fĂŒr die Endsysteme in Form von sich Ă€ndernden Latenzen und Daten- und Paketverlustraten sichtbar werden. Regelkreise sind besonders anfĂ€llig fĂŒr DienstgĂŒte-Schwankungen, da sie typischerweise isochrone DatenĂŒbertragungen mit festen Latenzen benötigen, um die gewĂŒnschte RegelgĂŒte zu garantieren. FĂŒr die Vernetzung der einzelnen Komponenten, das heißt von Sensorik, Aktorik und Regler, setzt man daher klassischerweise auf Lösungen, die diese Anforderungen erfĂŒllen. Diese Lösungen sind jedoch relativ teuer und unflexibel, da sie den Einsatz von spezialisierten Netzwerken wie z.B. Feldbussen benötigen oder ĂŒber komplexe, speziell entwickelte Kommunikationsprotokolle realisiert werden wie sie beispielsweise die Time-Sensitive Networking (TSN) Standards definieren. Die vorliegende Arbeit prĂ€sentiert Ergebnisse des interdisziplinĂ€ren Forschungsprojekts CoCPN:Cooperative Cyber-Physical Networking, das ein anderes Konzept verfolgt und explizit auf CPS abzielt, die Standard-Netze einsetzen. CoCPN benutzt einen neuartigen, kooperativen Ansatz um i) die ElastizitĂ€t von Regelkreisen innerhalb solcher CPS zu erhöhen, das heißt sie in die Lage zu versetzen, mit den auftretenden DienstgĂŒte-Schwankungen umzugehen, und ii) das Netzwerk ĂŒber die Anforderungen der einzelnen Regler in Kenntnis zu setzen. Kern von CoCPN ist eine verteilte Architektur fĂŒr CPS, welche es den einzelnen Regelkreisen ermöglicht, die verfĂŒgbare Kommunikations-Infrastruktur gemeinsam zu nutzen. Im Gegensatz zu den oben genannten Lösungen benötigt CoCPN dafĂŒr keine zentrale Instanz mit globaler Sicht auf das Kommunikationssystem, sodass eine enge Kopplung an die Anwendungen vermieden wird. Stattdessen setzt CoCPN auf eine lose Kopplung zwischen Netzwerk und Regelkreisen, realisiert in Form eines Austauschs von Meta-Daten ĂŒber den sog. CoCPN-Translator. CoCPN implementiert ein Staukontrollverfahren, welches den typischen Zusammenhang zwischen erreichbarer RegelgĂŒte und Senderate ausnutzt: die erreichbare RegelgĂŒte steigt mit der Senderate und umgekehrt. Durch Variieren der zu erreichenden RegelgĂŒte kann das Sendeverhalten der Regler so eingestellt werden, dass die vorhandenen Kommunikations-Ressourcen optimal ausgenutzt und gleichzeitig Stausituationen vermieden werden. In dieser Arbeit beschĂ€ftigen wir uns mit den regelungstechnischen Fragestellungen innerhalb von CoCPN. Der Schwerpunkt liegt hierbei auf dem Entwurf und der Analyse von Algorithmen, die auf Basis der ĂŒber den CoCPN-Translator ausgetauschten Meta-Daten die notwendige ElastizitĂ€t liefern und es dadurch den Reglern ermöglichen, schnell auf Änderungen der Netzwerk-DienstgĂŒte zu reagieren. Dazu ist es notwendig, dass den Reglern ein Modell zur VerfĂŒgung gestellt wird, dass die Auswirkungen von Verzögerungen und Paketverlusten auf die RegelgĂŒte erfasst. Im ersten Teil der Arbeit wird eine Erweiterung eines existierenden Modellierungs-Ansatzes vorgestellt, dessen Grundidee es ist, sowohl die Dynamik der Regelstrecke als auch den Einfluss von Verzögerungen und Paketverlusten durch ein hybrides System darzustellen. Hybride Systeme zeichnen sich dadurch aus, dass sie sowohl kontinuierlich- als auch diskretwertige Zustandsvariablen besitzen. Unsere vorgestellte Erweiterung ist in der Lage, Änderungen der Netzwerk-DienstgĂŒte abzubilden und ist nicht auf eine bestimmte probabilistische Darstellung der auftretenden Verzögerungen und Paketverluste beschrĂ€nkt. ZusĂ€tzlich verzichtet unsere Erweiterung auf die in der Literatur ĂŒbliche Annahme, dass Quittungen fĂŒr empfangene Datenpakete stets fehlerfrei und mit vernachlĂ€ssigbarer Latenz ĂŒbertragen werden. Verglichen mit einem Großteil der verwandten Arbeiten, ermöglichen uns die genannten Eigenschaften daher eine realistischere BerĂŒcksichtigung der Netzwerk-EinflĂŒsse auf die RegelgĂŒte. Mit dem entwickelten Modell kann der Einfluss von Verzögerungen und Paketverlusten auf die RegelgĂŒte prĂ€diziert werden. Auf Basis dieser PrĂ€diktion können StellgrĂ¶ĂŸen dann mit Methoden der stochastischen modellprĂ€diktiven Regelung (stochastic model predictive control) berechnet werden. Unsere realistischere Betrachtung der Netzwerk-EinflĂŒsse auf die RegelgĂŒte fĂŒhrt hierbei zu einer gegenseitigen AbhĂ€ngigkeit von Regelung und SchĂ€tzung. Zur Berechnung der StellgrĂ¶ĂŸen muss der Regler den Zustand der Strecke aus den empfangenen Messungen schĂ€tzen. Die QualitĂ€t dieser SchĂ€tzungen hĂ€ngt von den berechneten StellgrĂ¶ĂŸen und deren Auswirkung auf die Regelstrecke ab. Umgekehrt beeinflusst die QualitĂ€t der SchĂ€tzungen aber maßgeblich die QualitĂ€t der StellgrĂ¶ĂŸen: Ist der SchĂ€tzfehler gering, kann der Regler bessere Entscheidungen treffen. Diese gegenseitige AbhĂ€ngigkeit macht die Berechnung von optimalen StellgrĂ¶ĂŸen unmöglich und bedingt daher die Fokussierung auf das Erforschen von approximativen AnsĂ€tzen. Im zweiten Teil dieser Arbeit stellen wir zwei neuartige Verfahren fĂŒr die stochastische modellprĂ€diktive Regelung ĂŒber Netzwerke vor. Im ersten Verfahren nutzen wir aus, dass bei hybriden System oft sogenannte multiple model-Algorithmen zur ZustandsschĂ€tzung verwendet werden, welche den geschĂ€tzten Zustand in Form einer Gaußmischdichte reprĂ€sentieren. Auf Basis dieses Zusammenhangs und einer globalen Approximation der Kostenfunktion leiten wir einen Algorithmus mit geringer KomplexitĂ€t zur Berechnung eines (suboptimalen) Regelgesetzes her. Dieses Regelgesetz ist nichtlinear und ergibt sich aus der gewichteten Kombination mehrerer unterlagerter Regelgesetze. Jedes dieser unterlagerten Regelgesetze lĂ€sst sich dabei als lineare Funktion genau einer der Komponenten der Gaußmischdichte darstellen. Unser zweites vorgestelltes Verfahren besitzt gegensĂ€tzliche Eigenschaften. Das resultierende Regelgesetz ist linear und basiert auf einer Approximation der Kostenfunktion, welche wir nur lokal, das heißt nur in der Umgebung einer erwarteten Trajektorie des geregelten Systems, berechnen. Diese Trajektorie wird hierbei durch die PrĂ€diktion einer initialen ZustandsschĂ€tzung ĂŒber den Optimierungshorizont gewonnen. Zur Berechnung des Regelgesetzes schlagen wir dann einen iterativen Algorithmus vor, welcher diese Approximation durch wiederholtes Optimieren der System-Trajektorie verbessert. Simulationsergebnisse zeigen, dass unsere neuartigen Verfahren eine signifikant höhere RegelgĂŒte erzielen können als verwandte AnsĂ€tze aus der Literatur. Der dritte Teil der vorliegenden Arbeit beschĂ€ftigt sich erneut mit dem hybriden System aus dem ersten Teil. Die im Rahmen dieser Arbeit verwendeten Netzwerk-Modelle, das heißt die verwendeten probabilistischen Beschreibungen der Verzögerungen und Paketverluste, werden vom CoCPN-Translator auf Grundlage von im Netzwerk gesammelten Status-Informationen erzeugt. Diese Status-Informationen bilden jedoch stets nur Ausschnitte ab und können nie exakt den "Zustand” des Netzwerks reprĂ€sentieren. Dementsprechend können die resultierenden Netzwerk-Modelle nicht als fehlerfrei erachtet werden. In diesem Teil der Arbeit untersuchen wir daher den Einfluss möglicher Fehler in den Netzwerk-Modellen auf die zu erwartende RegelgĂŒte. Weiterhin gehen wir der Frage nach der Existenz von Reglern, die robust gegenĂŒber solchen Fehlern und Unsicherheiten sind, nach. Dazu zeigen wir zunĂ€chst, dass sich Fehler in den Netzwerk-Modellen immer als eine polytopische Parameter-Unsicherheit im hybriden System aus dem ersten Teil manifestieren. FĂŒr solche polytopischen hybride System leiten wir dann eine sowohl notwendige als auch hinreichende StabilitĂ€tsbedingung her, was einen signifikanten Beitrag zur Theorie der hybriden Systeme darstellt. Die Auswertung dieser Bedingung erfordert es zu bestimmen, ob der gemeinsame Spektralradius (joint spectral radius) einer Menge von Matrizen kleiner als eins ist. Dieses Entscheidungsproblem ist bekanntermaßen NP-schwer, was die Anwendbarkeit der StabilitĂ€tsbedingung stark limitiert. Daher prĂ€sentieren wir eine hinreichende StabilitĂ€tsbedingung, die in polynomieller Zeit ĂŒberprĂŒft werden kann, da sie auf der ErfĂŒllbarkeit von linearen Matrixungleichungen basiert. Schließlich zeigen wir, dass die Existenz eines Reglers, der die StabilitĂ€t des betrachteten polytopischen hybriden Systems garantiert, von der ErfĂŒllbarkeit einer Ă€hnlichen Menge von Matrixungleichungen bestimmt wird. Diese Ungleichungen sind weniger restriktiv als die bisher in der Literatur bekannten, was die Synthese von weniger konservativen Reglern erlaubt. Schließlich zeigen wir im letzten Teil dieser Arbeit die Anwendbarkeit des kooperativen Konzepts von CoCPN in Simulations-Szenarien, in denen stark ausgelastete Netzwerk-Ressourcen mit anderen Anwendungen geteilt werden mĂŒssen. Wir demonstrieren, dass insbesondere das Zusammenspiel unserer modellprĂ€diktiven Verfahren mit dem Staukontrollverfahren von CoCPN einen zuverlĂ€ssigen Betrieb der Regelkreise ohne unerwĂŒnschte Einbußen der RegelgĂŒte auch dann ermöglicht, wenn sich die Kommunikationsbedingungen plötzlich und unvorhergesehen Ă€ndern. Insgesamt stellt unsere Arbeit somit einen wichtigen Baustein auf dem Weg zu einem flĂ€chendeckenden Einsatz von Standard-Netzen als flexible und adaptive Basis fĂŒr industrielle CPS dar

    Distributed control architecture for multiservice networks

    Get PDF
    The research focuses in devising decentralised and distributed control system architecture for the management of internetworking systems to provide improved service delivery and network control. The theoretical basis, results of simulation and implementation in a real-network are presented. It is demonstrated that better performance, utilisation and fairness can be achieved for network customers as well as network/service operators with a value based control system. A decentralised control system framework for analysing networked and shared resources is developed and demonstrated. This fits in with the fundamental principles of the Internet. It is demonstrated that distributed, multiple control loops can be run on shared resources and achieve proportional fairness in their allocation, without a central control. Some of the specific characteristic behaviours of the service and network layers are identified. The network and service layers are isolated such that each layer can evolve independently to fulfil their functions better. A common architecture pattern is devised to serve the different layers independently. The decision processes require no co-ordination between peers and hence improves scalability of the solution. The proposed architecture can readily fit into a clearinghouse mechanism for integration with business logic. This architecture can provide improved QoS and better revenue from both reservation-less and reservation-based networks. The limits on resource usage for different types of flows are analysed. A method that can sense and modify user utilities and support dynamic price offers is devised. An optimal control system (within the given conditions), automated provisioning, a packet scheduler to enforce the control and a measurement system etc are developed. The model can be extended to enhance the autonomicity of the computer communication networks in both client-server and P2P networks and can be introduced on the Internet in an incremental fashion. The ideas presented in the model built with the model-view-controller and electronic enterprise architecture frameworks are now independently developed elsewhere into common service delivery platforms for converged networks. Four US/EU patents were granted based on the work carried out for this thesis, for the cross-layer architecture, multi-layer scheme, measurement system and scheduler. Four conference papers were published and presented

    Performance of the transmission control protocol (TCP) over wireless with quality of service.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2001.The Transmission Control Protocol (TCP) is the most widely used transport protocol in the Internet. TCP is a reliable transport protocol that is tuned to perform well in wired networks where packet losses are mainly due to congestion. Wireless channels are characterized by losses due to transmission errors and handoffs. TCP interprets these losses as congestion and invokes congestion control mechanisms resulting in degradation of performance. TCP is usually layered over the Internet protocol (lP) at the network layer. JP is not reliable and does not provide for any Quality of Service (QoS). The Internet Engineering Task Force (IETF) has provided two techniques for providing QoS in the Internet. These include Integrated Services (lntServ) and Differentiated Services (DiffServ). IntServ provides flow based quality of service and thus it is not scalable on connections with large flows. DiffServ has grown in popularity since it is scalable. A packet in a DiffServ domain is classified into a class of service according to its contract profile and treated differently by its class. To provide end-to-end QoS there is a strong interaction between the transport protocol and the network protocol. In this dissertation we consider the performance of the TCP over a wireless channel. We study whether the current TCP protocols can deliver the desired quality of service faced with the challenges they have on wireless channel. The dissertation discusses the methods of providing for QoS in the Internet. We derive an analytical model for TCP protocol. It is extended to cater for the wireless channel and then further differentiated services. The model is shown to be accurate when compared to simulation. We then conclude by deducing to what degree you can provide the desired QoS with TCP on a wireless channel

    A Reinforcement Learning based Cognitive Approach for Quality of Experience Management in the Future Internet

    Get PDF
    This thesis aims at providing an innovative contribution to the definition of the Future Internet Core Platform, in the frame of the "La Sapienza" University research activities on the EU FP7 FI-WARE project. The thesis introduces and designs an innovative "Cognitive Application Interface" in charge of deriving key parameters driving the Network Control elements to meet personalised Application Quality of Experience Requirements. The thesis proposes the innovative concept of a dynamic association between Applications and Classes of Service. A Reinforcement Learning based approach is followed. A solution based on a standard Q-learning algorithm is proposed. Simulation results obtained using the OPNET simulation tool are described. Preliminary work on an alternative solution based on a Foe Q-Learning algorithm is also illustrated. The proposed framework is very flexible, allows QoE personalization, requires low processing capabilities and entails a very limited signalling overhead

    A Reinforcement Learning based Cognitive Approach for Quality of Experience Management in the Future Internet

    Get PDF
    This thesis aims at providing an innovative contribution to the definition of the Future Internet Core Platform, in the frame of the "La Sapienza" University research activities on the EU FP7 FI-WARE project. The thesis introduces and designs an innovative "Cognitive Application Interface" in charge of deriving key parameters driving the Network Control elements to meet personalised Application Quality of Experience Requirements. The thesis proposes the innovative concept of a dynamic association between Applications and Classes of Service. A Reinforcement Learning based approach is followed. A solution based on a standard Q-learning algorithm is proposed. Simulation results obtained using the OPNET simulation tool are described. Preliminary work on an alternative solution based on a Foe Q-Learning algorithm is also illustrated. The proposed framework is very flexible, allows QoE personalization, requires low processing capabilities and entails a very limited signalling overhead

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing
    • 

    corecore